Abstract

Epsilon-near-zero (ENZ) media are an emerging class of nanophotonic materials that engender electromagnetic fields with small phase variation due to their approximately zero permittivity. These quasi-static fields facilitate several unique optical properties, such as subwavelength confinement, arbitrary wavefront control, and enhanced light–matter interactions, which make ENZ materials promising platforms for nanophotonic and plasmonic systems. Here, we report our analysis of single and dimer nanoantennas deposited on an aluminum-doped zinc oxide layer with an ENZ wavelength around 1.5 μm. Using near-field microscopy, far-field spectroscopy, finite-element numerical simulations, and a semi-analytic Fabry–Perot (FP) model, we show that single nanoantennas support highly dispersive plasmonic modes with less than unity effective mode index at wavelengths greater than the ENZ wavelength, which consequently fixes the resonance near the ENZ wavelength of the substrate. Furthermore, we observe a strong reduction in the near-field coupling between dimer nanoantennas via measurements of the resonance shift as a function of gap size. This reduction of near-field coupling allows one to design arrays of independently operating antennas with higher densities and thereby significantly improve the array characteristics, especially when targeting gradient metasurface implementations. Our results demonstrate the use of ENZ materials for increasing the versatility and functionality of plasmonic structures and provide foundational insight into this exotic material phenomenon.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes

Daniel Weber, Pablo Albella, Pablo Alonso-González, Frank Neubrech, Han Gui, Tadaaki Nagao, Rainer Hillenbrand, Javier Aizpurua, and Annemarie Pucci
Opt. Express 19(16) 15047-15061 (2011)

Palladium bridged gold nanocylinder dimer: plasmonic properties and hydrogen sensitivity

Arindam Dasgupta and G. V. Pavan Kumar
Appl. Opt. 51(11) 1688-1693 (2012)

Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas

Pablo Alonso-González, Pablo Albella, Federico Golmar, Libe Arzubiaga, Félix Casanova, Luis E. Hueso, Javier Aizpurua, and Rainer Hillenbrand
Opt. Express 21(1) 1270-1280 (2013)

References

  • View by:
  • |
  • |
  • |

  1. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
    [Crossref]
  2. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70, 046608 (2004).
    [Crossref]
  3. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
    [Crossref]
  4. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
    [Crossref]
  5. D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
    [Crossref]
  6. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100, 023903 (2008).
    [Crossref]
  7. M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ϵ near-zero metamaterials,” Phys. Rev. B 76, 245109 (2007).
    [Crossref]
  8. M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
    [Crossref]
  9. N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
    [Crossref]
  10. L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
    [Crossref]
  11. H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342, 1223–1226 (2013).
    [Crossref]
  12. B. T. Diroll, P. Guo, R. P. H. Chang, and R. D. Schaller, “Large transient optical modulation of epsilon-near-zero colloidal nanocrystals,” ACS Nano 10, 10099–10105 (2016).
    [Crossref]
  13. T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
    [Crossref]
  14. M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117, 107404 (2016).
    [Crossref]
  15. E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87, 033831 (2013).
    [Crossref]
  16. R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87, 201101 (2013).
    [Crossref]
  17. E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
    [Crossref]
  18. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
    [Crossref]
  19. Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).
    [Crossref]
  20. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
    [Crossref]
  21. J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).
    [Crossref]
  22. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
    [Crossref]
  23. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
    [Crossref]
  24. J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide-a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
    [Crossref]
  25. J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alù, and A. Boltasseva, “Controlling the polarization state of light with plasmonic metal oxide metasurface,” ACS Nano 10, 9326–9333 (2016).
    [Crossref]
  26. T. Tyborski, S. Kalusniak, S. Sadofev, F. Henneberger, M. Woerner, and T. Elsaesser, “Ultrafast nonlinear response of bulk plasmons in highly doped ZnO layers,” Phys. Rev. Lett. 115, 147401 (2015).
    [Crossref]
  27. M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
    [Crossref]
  28. J. Park, J.-H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17, 407–413 (2017).
    [Crossref]
  29. H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide plasmostor,” Nano Lett. 14, 6463–6468 (2014).
    [Crossref]
  30. Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
    [Crossref]
  31. X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12, 866–870 (2017).
    [Crossref]
  32. J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3, 339–346 (2016).
    [Crossref]
  33. S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93, 063846 (2016).
    [Crossref]
  34. S. Campione, J. R. Wendt, G. A. Keeler, and T. S. Luk, “Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers,” ACS Photon. 3, 293–297 (2016).
    [Crossref]
  35. S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4, 044011 (2015).
    [Crossref]
  36. S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109, 237401 (2012).
    [Crossref]
  37. E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95, 201101 (2009).
    [Crossref]
  38. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
    [Crossref]
  39. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  40. A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
    [Crossref]
  41. V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148–8154 (2015).
    [Crossref]
  42. V. A. Zenin, S. Choudhury, S. Saha, V. M. Shalaev, A. Boltasseva, and S. I. Bozhevolnyi, “Hybrid plasmonic waveguides formed by metal coating of dielectric ridges,” Opt. Express 25, 12295–12302 (2017).
    [Crossref]
  43. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
    [Crossref]
  44. P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112, 4954–4960 (2008).
    [Crossref]
  45. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
    [Crossref]

2017 (5)

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
[Crossref]

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

J. Park, J.-H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17, 407–413 (2017).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12, 866–870 (2017).
[Crossref]

V. A. Zenin, S. Choudhury, S. Saha, V. M. Shalaev, A. Boltasseva, and S. I. Bozhevolnyi, “Hybrid plasmonic waveguides formed by metal coating of dielectric ridges,” Opt. Express 25, 12295–12302 (2017).
[Crossref]

2016 (9)

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3, 339–346 (2016).
[Crossref]

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93, 063846 (2016).
[Crossref]

S. Campione, J. R. Wendt, G. A. Keeler, and T. S. Luk, “Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers,” ACS Photon. 3, 293–297 (2016).
[Crossref]

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alù, and A. Boltasseva, “Controlling the polarization state of light with plasmonic metal oxide metasurface,” ACS Nano 10, 9326–9333 (2016).
[Crossref]

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117, 107404 (2016).
[Crossref]

B. T. Diroll, P. Guo, R. P. H. Chang, and R. D. Schaller, “Large transient optical modulation of epsilon-near-zero colloidal nanocrystals,” ACS Nano 10, 10099–10105 (2016).
[Crossref]

2015 (7)

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).
[Crossref]

T. Tyborski, S. Kalusniak, S. Sadofev, F. Henneberger, M. Woerner, and T. Elsaesser, “Ultrafast nonlinear response of bulk plasmons in highly doped ZnO layers,” Phys. Rev. Lett. 115, 147401 (2015).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).
[Crossref]

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4, 044011 (2015).
[Crossref]

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148–8154 (2015).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

2014 (2)

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide plasmostor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

2013 (8)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide-a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87, 033831 (2013).
[Crossref]

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87, 201101 (2013).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
[Crossref]

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342, 1223–1226 (2013).
[Crossref]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

2012 (1)

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109, 237401 (2012).
[Crossref]

2011 (3)

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

2009 (2)

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95, 201101 (2009).
[Crossref]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

2008 (2)

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112, 4954–4960 (2008).
[Crossref]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100, 023903 (2008).
[Crossref]

2007 (3)

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ϵ near-zero metamaterials,” Phys. Rev. B 76, 245109 (2007).
[Crossref]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

2005 (1)

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

2004 (1)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70, 046608 (2004).
[Crossref]

Adams, D. C.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Alam, M. Z.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93, 063846 (2016).
[Crossref]

Alù, A.

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alù, and A. Boltasseva, “Controlling the polarization state of light with plasmonic metal oxide metasurface,” ACS Nano 10, 9326–9333 (2016).
[Crossref]

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87, 201101 (2013).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

Anderson, Z.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Andryieuski, A.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148–8154 (2015).
[Crossref]

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

Archambault, A.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109, 237401 (2012).
[Crossref]

Atwater, H. A.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide plasmostor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Benz, A.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4, 044011 (2015).
[Crossref]

Bezares, F. J.

Boltasseva, A.

V. A. Zenin, S. Choudhury, S. Saha, V. M. Shalaev, A. Boltasseva, and S. I. Bozhevolnyi, “Hybrid plasmonic waveguides formed by metal coating of dielectric ridges,” Opt. Express 25, 12295–12302 (2017).
[Crossref]

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alù, and A. Boltasseva, “Controlling the polarization state of light with plasmonic metal oxide metasurface,” ACS Nano 10, 9326–9333 (2016).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3, 339–346 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide-a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

Boyd, R. W.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93, 063846 (2016).
[Crossref]

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

Bozhevolnyi, S. I.

V. A. Zenin, S. Choudhury, S. Saha, V. M. Shalaev, A. Boltasseva, and S. I. Bozhevolnyi, “Hybrid plasmonic waveguides formed by metal coating of dielectric ridges,” Opt. Express 25, 12295–12302 (2017).
[Crossref]

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148–8154 (2015).
[Crossref]

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

Brener, I.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4, 044011 (2015).
[Crossref]

Briggs, D. P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Brongersma, M. L.

J. Park, J.-H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17, 407–413 (2017).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12, 866–870 (2017).
[Crossref]

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Burgos, S. P.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide plasmostor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Caglayan, H.

Caldwell, J. D.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3, 339–346 (2016).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).
[Crossref]

Campione, S.

S. Campione, J. R. Wendt, G. A. Keeler, and T. S. Luk, “Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers,” ACS Photon. 3, 293–297 (2016).
[Crossref]

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4, 044011 (2015).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Capasso, F.

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95, 201101 (2009).
[Crossref]

Carnemolla, E. G.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

Caspani, L.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Cavanna, A.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109, 237401 (2012).
[Crossref]

Chan, C. T.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
[Crossref]

Chander, K.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide plasmostor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Chang, R. P. H.

B. T. Diroll, P. Guo, R. P. H. Chang, and R. D. Schaller, “Large transient optical modulation of epsilon-near-zero colloidal nanocrystals,” ACS Nano 10, 10099–10105 (2016).
[Crossref]

Cheng, Q.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100, 023903 (2008).
[Crossref]

Choudhury, S.

V. A. Zenin, S. Choudhury, S. Saha, V. M. Shalaev, A. Boltasseva, and S. I. Bozhevolnyi, “Hybrid plasmonic waveguides formed by metal coating of dielectric ridges,” Opt. Express 25, 12295–12302 (2017).
[Crossref]

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alù, and A. Boltasseva, “Controlling the polarization state of light with plasmonic metal oxide metasurface,” ACS Nano 10, 9326–9333 (2016).
[Crossref]

Clerici, M.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Coenen, T.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
[Crossref]

Cubukcu, E.

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95, 201101 (2009).
[Crossref]

Cui, T. J.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100, 023903 (2008).
[Crossref]

Cui, Y.

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12, 866–870 (2017).
[Crossref]

Cummer, S. A.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100, 023903 (2008).
[Crossref]

de Ceglia, D.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

De Leon, I.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93, 063846 (2016).
[Crossref]

DeVault, C.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alù, and A. Boltasseva, “Controlling the polarization state of light with plasmonic metal oxide metasurface,” ACS Nano 10, 9326–9333 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

Di Falco, A.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Diroll, B. T.

B. T. Diroll, P. Guo, R. P. H. Chang, and R. D. Schaller, “Large transient optical modulation of epsilon-near-zero colloidal nanocrystals,” ACS Nano 10, 10099–10105 (2016).
[Crossref]

Dondapati, K.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide-a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Dutta, A.

Ellis, C. T.

Elsaesser, T.

T. Tyborski, S. Kalusniak, S. Sadofev, F. Henneberger, M. Woerner, and T. Elsaesser, “Ultrafast nonlinear response of bulk plasmons in highly doped ZnO layers,” Phys. Rev. Lett. 115, 147401 (2015).
[Crossref]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112, 4954–4960 (2008).
[Crossref]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[Crossref]

Engheta, N.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
[Crossref]

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3, 339–346 (2016).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ϵ near-zero metamaterials,” Phys. Rev. B 76, 245109 (2007).
[Crossref]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Faccio, D.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Ferrera, M.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

Fleury, R.

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87, 201101 (2013).
[Crossref]

García de Abajo, F. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Gavrilenko, A. V.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide-a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

Gavrilenko, V. I.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide-a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

Gennser, U.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109, 237401 (2012).
[Crossref]

Giannini, V.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).
[Crossref]

Giles, A. J.

Glembocki, O. J.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3, 339–346 (2016).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide-a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

Goodhue, W. D.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Gramotnev, D. K.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148–8154 (2015).
[Crossref]

Greffet, J. J.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109, 237401 (2012).
[Crossref]

Guo, P.

B. T. Diroll, P. Guo, R. P. H. Chang, and R. D. Schaller, “Large transient optical modulation of epsilon-near-zero colloidal nanocrystals,” ACS Nano 10, 10099–10105 (2016).
[Crossref]

Han, S.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Hand, T.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100, 023903 (2008).
[Crossref]

Hang, Z. H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
[Crossref]

Henneberger, F.

T. Tyborski, S. Kalusniak, S. Sadofev, F. Henneberger, M. Woerner, and T. Elsaesser, “Ultrafast nonlinear response of bulk plasmons in highly doped ZnO layers,” Phys. Rev. Lett. 115, 147401 (2015).
[Crossref]

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[Crossref]

Huang, X.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
[Crossref]

Huang, Y.-W.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Hwang, H. Y.

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12, 866–870 (2017).
[Crossref]

Inampudi, S.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112, 4954–4960 (2008).
[Crossref]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[Crossref]

Javani, M. H.

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117, 107404 (2016).
[Crossref]

Kaipurath, R. P. M.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Kalusniak, S.

T. Tyborski, S. Kalusniak, S. Sadofev, F. Henneberger, M. Woerner, and T. Elsaesser, “Ultrafast nonlinear response of bulk plasmons in highly doped ZnO layers,” Phys. Rev. Lett. 115, 147401 (2015).
[Crossref]

Kang, J.-H.

J. Park, J.-H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17, 407–413 (2017).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12, 866–870 (2017).
[Crossref]

Keeler, G. A.

S. Campione, J. R. Wendt, G. A. Keeler, and T. S. Luk, “Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers,” ACS Photon. 3, 293–297 (2016).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Kern, K.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Kildishev, A. V.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3, 339–346 (2016).
[Crossref]

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alù, and A. Boltasseva, “Controlling the polarization state of light with plasmonic metal oxide metasurface,” ACS Nano 10, 9326–9333 (2016).
[Crossref]

Kim, J.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alù, and A. Boltasseva, “Controlling the polarization state of light with plasmonic metal oxide metasurface,” ACS Nano 10, 9326–9333 (2016).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3, 339–346 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide-a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

Kim, S. J.

J. Park, J.-H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17, 407–413 (2017).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12, 866–870 (2017).
[Crossref]

Kinsey, N.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

Kita, S.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).
[Crossref]

Klem, J. F.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4, 044011 (2015).
[Crossref]

Kravchenko, I. I.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Kriesch, A.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide plasmostor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Kuhta, N. A.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Kurizki, G.

E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87, 033831 (2013).
[Crossref]

Lai, Y.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
[Crossref]

Lavrinenko, A. V.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148–8154 (2015).
[Crossref]

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

Lederer, F.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Lee, H. W.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide plasmostor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Lee, H. W. H.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Li, Y.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).
[Crossref]

Liberal, I.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
[Crossref]

Lindsay, L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).
[Crossref]

Liu, R.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100, 023903 (2008).
[Crossref]

Liu, S.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4, 044011 (2015).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Liu, X.

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12, 866–870 (2017).
[Crossref]

J. Park, J.-H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17, 407–413 (2017).
[Crossref]

Loncar, M.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).
[Crossref]

Luk, T. S.

S. Campione, J. R. Wendt, G. A. Keeler, and T. S. Luk, “Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers,” ACS Photon. 3, 293–297 (2016).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Mahmoud, A. M.

Maier, S. A.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).
[Crossref]

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Malureanu, R.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148–8154 (2015).
[Crossref]

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

Marquier, F.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109, 237401 (2012).
[Crossref]

Mazur, E.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).
[Crossref]

Mock, J. J.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100, 023903 (2008).
[Crossref]

Moitra, P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Muñoz, P.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).
[Crossref]

Naik, G. V.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3, 339–346 (2016).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide-a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

O’Brien, K.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342, 1223–1226 (2013).
[Crossref]

Pala, R.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide plasmostor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Pala, R. A.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Papadakis, G.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide plasmostor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Pardo, F.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109, 237401 (2012).
[Crossref]

Park, J.

J. Park, J.-H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17, 407–413 (2017).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12, 866–870 (2017).
[Crossref]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Pelouard, J. L.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109, 237401 (2012).
[Crossref]

Pertsch, T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Peschel, U.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide plasmostor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Pietrzyk, M.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Podolskiy, V. A.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Polman, A.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Prasankumar, R. P.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Prokes, S. M.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide-a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

Radko, I. P.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148–8154 (2015).
[Crossref]

Reinecke, T. L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).
[Crossref]

Reshef, O.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).
[Crossref]

Ribaudo, T.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Rockstuhl, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Roger, T.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Sadofev, S.

T. Tyborski, S. Kalusniak, S. Sadofev, F. Henneberger, M. Woerner, and T. Elsaesser, “Ultrafast nonlinear response of bulk plasmons in highly doped ZnO layers,” Phys. Rev. Lett. 115, 147401 (2015).
[Crossref]

Saha, S.

Salandrino, A.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342, 1223–1226 (2013).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

Scalora, M.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Schaller, R. D.

B. T. Diroll, P. Guo, R. P. H. Chang, and R. D. Schaller, “Large transient optical modulation of epsilon-near-zero colloidal nanocrystals,” ACS Nano 10, 10099–10105 (2016).
[Crossref]

Schulz, S. A.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93, 063846 (2016).
[Crossref]

Shahmoon, E.

E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87, 033831 (2013).
[Crossref]

Shalaev, V.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

Shalaev, V. M.

V. A. Zenin, S. Choudhury, S. Saha, V. M. Shalaev, A. Boltasseva, and S. I. Bozhevolnyi, “Hybrid plasmonic waveguides formed by metal coating of dielectric ridges,” Opt. Express 25, 12295–12302 (2017).
[Crossref]

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alù, and A. Boltasseva, “Controlling the polarization state of light with plasmonic metal oxide metasurface,” ACS Nano 10, 9326–9333 (2016).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide-a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

Shaltout, A.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ϵ near-zero metamaterials,” Phys. Rev. B 76, 245109 (2007).
[Crossref]

Sinclair, M. B.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4, 044011 (2015).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Slocum, D.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Smith, D. R.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100, 023903 (2008).
[Crossref]

Sokhoyan, R.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Stockman, M. I.

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117, 107404 (2016).
[Crossref]

Suchowski, H.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342, 1223–1226 (2013).
[Crossref]

Tahir, A. A.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93, 063846 (2016).
[Crossref]

Thyagarajan, K.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Tischler, J. G.

Tsai, D. P.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Tyborski, T.

T. Tyborski, S. Kalusniak, S. Sadofev, F. Henneberger, M. Woerner, and T. Elsaesser, “Ultrafast nonlinear response of bulk plasmons in highly doped ZnO layers,” Phys. Rev. Lett. 115, 147401 (2015).
[Crossref]

Upham, J.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93, 063846 (2016).
[Crossref]

Valentine, J.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Vangala, S.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Vassant, S.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109, 237401 (2012).
[Crossref]

Vesseur, E. J. R.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
[Crossref]

Vincenti, M. A.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

Vogelgesang, R.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Volkov, V. S.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148–8154 (2015).
[Crossref]

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

Vulis, D. I.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).
[Crossref]

Vurgaftman, I.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).
[Crossref]

Wasserman, D.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

Weitz, R. T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Wendt, J. R.

S. Campione, J. R. Wendt, G. A. Keeler, and T. S. Luk, “Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers,” ACS Photon. 3, 293–297 (2016).
[Crossref]

Woerner, M.

T. Tyborski, S. Kalusniak, S. Sadofev, F. Henneberger, M. Woerner, and T. Elsaesser, “Ultrafast nonlinear response of bulk plasmons in highly doped ZnO layers,” Phys. Rev. Lett. 115, 147401 (2015).
[Crossref]

Wong, Z. J.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342, 1223–1226 (2013).
[Crossref]

Yang, Y.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Yin, M.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).
[Crossref]

Yin, X.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342, 1223–1226 (2013).
[Crossref]

Yuan, H.

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12, 866–870 (2017).
[Crossref]

Zenin, V. A.

V. A. Zenin, S. Choudhury, S. Saha, V. M. Shalaev, A. Boltasseva, and S. I. Bozhevolnyi, “Hybrid plasmonic waveguides formed by metal coating of dielectric ridges,” Opt. Express 25, 12295–12302 (2017).
[Crossref]

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148–8154 (2015).
[Crossref]

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

Zhang, X.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342, 1223–1226 (2013).
[Crossref]

Zhao, Y.

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alù, and A. Boltasseva, “Controlling the polarization state of light with plasmonic metal oxide metasurface,” ACS Nano 10, 9326–9333 (2016).
[Crossref]

Zheng, H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
[Crossref]

Ziolkowski, R. W.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70, 046608 (2004).
[Crossref]

ACS Nano (2)

B. T. Diroll, P. Guo, R. P. H. Chang, and R. D. Schaller, “Large transient optical modulation of epsilon-near-zero colloidal nanocrystals,” ACS Nano 10, 10099–10105 (2016).
[Crossref]

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alù, and A. Boltasseva, “Controlling the polarization state of light with plasmonic metal oxide metasurface,” ACS Nano 10, 9326–9333 (2016).
[Crossref]

ACS Photon. (1)

S. Campione, J. R. Wendt, G. A. Keeler, and T. S. Luk, “Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers,” ACS Photon. 3, 293–297 (2016).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

Appl. Phys. Lett. (2)

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95, 201101 (2009).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106, 151103 (2015).
[Crossref]

J. Phys. Chem. C (1)

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112, 4954–4960 (2008).
[Crossref]

Nano Lett. (7)

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[Crossref]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148–8154 (2015).
[Crossref]

J. Park, J.-H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17, 407–413 (2017).
[Crossref]

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide plasmostor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Nanophotonics (1)

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2015).
[Crossref]

Nat. Commun. (1)

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

Nat. Mater. (1)

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).
[Crossref]

Nat. Nanotechnol. (1)

X. Liu, J.-H. Kang, H. Yuan, J. Park, S. J. Kim, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Electrical tuning of a quantum plasmonic resonance,” Nat. Nanotechnol. 12, 866–870 (2017).
[Crossref]

Nat. Photonics (4)

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
[Crossref]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Optica (2)

Phys. Rev. A (2)

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93, 063846 (2016).
[Crossref]

E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87, 033831 (2013).
[Crossref]

Phys. Rev. Appl. (1)

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4, 044011 (2015).
[Crossref]

Phys. Rev. B (4)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87, 201101 (2013).
[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ϵ near-zero metamaterials,” Phys. Rev. B 76, 245109 (2007).
[Crossref]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Phys. Rev. E (1)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70, 046608 (2004).
[Crossref]

Phys. Rev. Lett. (7)

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011).
[Crossref]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100, 023903 (2008).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ϵ-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110, 013902 (2013).
[Crossref]

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117, 107404 (2016).
[Crossref]

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109, 237401 (2012).
[Crossref]

T. Tyborski, S. Kalusniak, S. Sadofev, F. Henneberger, M. Woerner, and T. Elsaesser, “Ultrafast nonlinear response of bulk plasmons in highly doped ZnO layers,” Phys. Rev. Lett. 115, 147401 (2015).
[Crossref]

Phys. Rev. X (1)

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide-a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

Science (2)

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342, 1223–1226 (2013).
[Crossref]

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

Other (1)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Semi-analytical FP model for a single nanorod. (a) Sketch of a nanorod upon normal illumination, exciting two counter-propagating nanorod modes. (b), (c) Electric field distribution of nanorod waveguiding mode at the free-space wavelength of 1475 nm, deposited on (b) an Al:ZnO and (c) a ZnO substrate. Magenta arrows represent the transverse electric field. (d), (e) Numerically calculated effective mode index, propagation length, and reflection coefficient for a gold nanorod on the Al:ZnO (solid lines) and a ZnO substrate (dashed lines). Insets show the approximate configurations of the finite-element solver.
Fig. 2.
Fig. 2. Comparison of the field produced by full 3D FEM simulations and semi-analytical FP model. Simulations are done for gold antennas on Al:ZnO substrate at 1500 nm excitation from the bottom, polarized along the antenna length. The field was calculated at z = 20    nm (i.e., through the middle of the antenna, top) and z = 90    nm (i.e., 50 nm above the antenna, bottom) for two antenna lengths: 600 (left) and 1800 nm (right). The fields were normalized to the amplitude of the transmitted plane wave (note different color map scales).
Fig. 3.
Fig. 3. Far-field characterization of nanorod arrays. (a) Cross-polarized configuration of our ellipsometer used for measuring the far-field scattering of the single antenna arrays. The input polarization is rotated 45 ° with respect to the nanorod’s long axis and incident at 18°. The reflected light is passed through an analyzer set at the 45°. (b) Resonant wavelength as a function of antenna length for the Al:ZnO (black) and ZnO (red) substrates. The solid lines are calculated using the FP model, square and circular markers are results of scattering cross-section numerical calculations, and cross markers indicate experimental values obtained from cross-polarization spectroscopy. The dashed line indicates the ENZ wavelength of 1475 nm.
Fig. 4.
Fig. 4. Near-field optical microscopy of individual nanorods. (a) Schematic of the SNOM setup. (b) First column contains the measured topography, the magnitude, and the phase of the near field for gold antennas on Al:ZnO substrate at 1475 nm excitation, polarized along the antenna length (the polarization is shown with a white arrow). Second and third column are the corresponding z component of the electric field ( E z ) calculated at 50 nm above nanorods with full 3D finite-element simulations and the semi-analytical FP model, respectively. Recorded topography and designed antenna parameters were used for masks in phase maps.
Fig. 5.
Fig. 5. Suppression of near-field coupling in dimer antennas. (a) Scattering, extinction, and absorption cross sections of dimer antennas on both Al:ZnO (left column) and glass (right column) substrates calculated with FEM. Gap distances of 10 and 200 nm are shown in the top and bottom rows, respectively. The antenna lengths are chosen such that the maximum cross sections coincide at a gap distance of 200 nm to clearly illustrate the distinction in total redshift. (b) Resonance wavelength redshift of dimer nanoantennas as a function of gap size, normalized to a gap of 200 nm. Black squares and line mark the experimentally measured and simulated, respectively, redshift of dimers on Al:ZnO as a function of gap size. Red line marks simulated redshift for dimers on glass. Inset shows the collected cross-polarized reflection spectra.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 π N λ 0 L + ϕ = π + π m ; m = 0 , 2 , 4 , ,
d λ d L = 2 π ( π + π m ϕ ) N 2 ( N λ 0 N λ ) .
E z ( x ) sin ( 2 π N λ 0 x + i L prop x ) .