Abstract

Phase information and spatially coherent illumination have usually been considered indispensable components of most microwave imaging systems. Dynamic metasurface apertures (DMAs)—with their ability to generate spatially incoherent illumination—have recently supplanted these assumptions in favor of simplified imaging hardware. In light of this development, we investigate the coherence of a phaseless imaging system based on metasurface apertures. In doing so, we propose and experimentally demonstrate coherent and incoherent computational microwave ghost imaging using DMAs. These apertures can generate a multitude of distinct speckle fields at a single frequency by modulating the electrical properties of radiating complementary metamaterial elements patterned into the surface of a waveguide. We show that a pair of dynamic apertures, one acting as transmit and the other as receive, can achieve two-dimensional, phaseless, coherent imaging. Further, by averaging the intensity measurements obtained in this manner over a random set or ensemble of receive aperture distributions, we demonstrate that an incoherent imaging system can be achieved in which single-port ensemble averaging by the electrically large DMA plays the role of spatial averaging in a bucket detector. We investigate the effects of these different imaging schemes on the resulting reconstructions and provide experimental demonstrations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture

Aaron V. Diebold, Mohammadreza F. Imani, Timothy Sleasman, and David R. Smith
Appl. Opt. 57(9) 2142-2149 (2018)

Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements

Aaron V. Diebold, Laura Pulido-Mancera, Timothy Sleasman, Michael Boyarsky, Mohammadreza F. Imani, and David R. Smith
J. Opt. Soc. Am. B 34(12) 2610-2623 (2017)

Computational ghost imaging for remote sensing

Baris I. Erkmen
J. Opt. Soc. Am. A 29(5) 782-789 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
    [Crossref]
  2. J. M. Beada’a, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas. 63, 117–123 (2014).
    [Crossref]
  3. N. K. Nikolova, “Microwave imaging for breast cancer,” IEEE Microw. Mag. 12(7), 78–94 (2011).
    [Crossref]
  4. M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens. 46, 1589–1599 (2008).
    [Crossref]
  5. M. G. Amin, Through-the-Wall Radar Imaging (CRC Press, 2017).
  6. S. S. Ahmed, A. Schiessl, and L.-P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
    [Crossref]
  7. W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in IEEE International Symposium on Phased Array Systems and Technology (PAST) (IEEE, 2016), pp. 1–6.
  8. B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. Á. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
    [Crossref]
  9. D. Sheen, D. McMakin, and T. Hall, “Near-field three-dimensional radar imaging techniques and applications,” Appl. Opt. 49, E83–E93 (2010).
    [Crossref]
  10. E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51, 1690–1705 (2003).
    [Crossref]
  11. M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).
  12. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).
  13. D. L. Marks, O. Yurduseven, and D. R. Smith, “Fourier accelerated multistatic imaging: a fast reconstruction algorithm for multiple-input-multiple-output radar imaging,” IEEE Access 5, 1796–1809 (2017).
    [Crossref]
  14. J. N. Mait, G. W. Euliss, and R. A. Athale, “Computational imaging,” Adv. Opt. Photon. 10, 409–483 (2018).
    [Crossref]
  15. L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier ptychography with an led array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
    [Crossref]
  16. A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4, 1117–1125 (2017).
    [Crossref]
  17. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
    [Crossref]
  18. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref]
  19. A. C. T. Yoya, B. Fuchs, and M. Davy, “Computational passive imaging of thermal sources with a leaky chaotic cavity,” Appl. Phys. Lett. 111, 193501 (2017).
    [Crossref]
  20. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
    [Crossref]
  21. D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).
  22. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
    [Crossref]
  23. G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
    [Crossref]
  24. J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
    [Crossref]
  25. T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
    [Crossref]
  26. J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
    [Crossref]
  27. T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
    [Crossref]
  28. T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
    [Crossref]
  29. M. Boyarsky, T. Sleasman, L. Pulido-Mancera, A. V. Diebold, M. F. Imani, and D. R. Smith, “Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas,” Appl. Opt. 57, 4123–4134 (2018).
    [Crossref]
  30. T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
    [Crossref]
  31. D. L. Marks, O. Yurduseven, and D. R. Smith, “Cavity-backed metasurface antennas and their application to frequency diversity imaging,” J. Opt. Soc. Am. A 34, 472–480 (2017).
    [Crossref]
  32. O. Yurduseven, P. Flowers, S. Ye, D. L. Marks, J. N. Gollub, T. Fromenteze, B. J. Wiley, and D. R. Smith, “Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas,” IET Microw. Antennas Propag. 11, 1962–1969 (2017).
    [Crossref]
  33. O. Yurduseven, T. Fromenteze, and D. R. Smith, “Relaxation of alignment errors and phase calibration in computational frequency-diverse imaging using phase retrieval,” IEEE Access 6, 14884–14894 (2018).
    [Crossref]
  34. J. Laviada and F. Las-Heras, “Phaseless antenna measurement on non-redundant sample points via Leith-Upatnieks holography,” IEEE Trans. Antennas Propag. 61, 4036–4044 (2013).
    [Crossref]
  35. J. Laviada, Y. Alvarez-Lopez, A. Arboleya-Arboleya, C. Garcia-Gonzalez, and F. Las-Heras, “Interferometric technique with nonredundant sampling for phaseless inverse scattering,” IEEE Trans. Antennas Propag. 62, 739–746 (2014).
    [Crossref]
  36. J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
    [Crossref]
  37. Y. Yang and R. S. Blum, “Phase synchronization for coherent MIMO radar: algorithms and their analysis,” IEEE Trans. Signal Process. 59, 5538–5557 (2011).
    [Crossref]
  38. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [Crossref]
  39. E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via matrix completion,” SIAM Rev. 57, 225–251 (2015).
    [Crossref]
  40. O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2738–2741 (2017).
    [Crossref]
  41. T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
    [Crossref]
  42. A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
    [Crossref]
  43. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  44. T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
    [Crossref]
  45. D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
    [Crossref]
  46. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [Crossref]
  47. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
    [Crossref]
  48. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  49. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
    [Crossref]
  50. J. W. Goodman, Statistical Properties of Laser Speckle Patterns (Springer, 1975), pp. 9–75.
  51. F. Ferri, D. Magatti, V. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
    [Crossref]
  52. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
    [Crossref]
  53. A. F. Abouraddy, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Entangled-photon Fourier optics,” J. Opt. Soc. Am. B 19, 1174–1184 (2002).
    [Crossref]
  54. J. Cheng, “Transfer functions in lensless ghost-imaging systems,” Phys. Rev. A 78, 043823 (2008).
    [Crossref]
  55. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).
  56. M. Bache, E. Brambilla, A. Gatti, and L. A. Lugiato, “Ghost imaging schemes: fast and broadband,” Opt. Express 12, 6067–6081 (2004).
    [Crossref]
  57. A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57, 2142–2149 (2018).
    [Crossref]
  58. P. S. Considine, “Effects of coherence on imaging systems,” J. Opt. Soc. Am. 56, 1001–1009 (1966).
    [Crossref]
  59. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
    [Crossref]
  60. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
    [Crossref]
  61. T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
    [Crossref]
  62. L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
    [Crossref]
  63. A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
    [Crossref]
  64. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1999).
  65. G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
    [Crossref]
  66. J. W. Goodman, Statistical Optics (Wiley, 2015).
  67. G. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory 6, 311–329 (1960).
    [Crossref]
  68. M. Tanter, J.-L. Thomas, and M. Fink, “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108, 223–234 (2000).
    [Crossref]
  69. M. Soumekh, Synthetic Aperture Radar Signal Processing (Wiley, 1999), Vol. 7.
  70. D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
    [Crossref]
  71. S. S. Ahmed, Electronic Microwave Imaging with Planar Multistatic Arrays (Logos Verlag Berlin, 2014).
  72. C. Sheppard, M. Gu, and X. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
    [Crossref]
  73. M. Soumekh, “Bistatic synthetic aperture radar inversion with application in dynamic object imaging,” IEEE Trans. Signal Process. 39, 2044–2055 (1991).
    [Crossref]
  74. C. Sheppard, M. Gu, Y. Kawata, and S. Kawata, “Three-dimensional transfer functions for high-aperture systems,” J. Opt. Soc. Am. A 11, 593–598 (1994).
    [Crossref]
  75. T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EUCAP) (IEEE, 2017), pp. 1415–1418.
  76. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985).
    [Crossref]
  77. C. Sheppard and X. Mao, “Three-dimensional imaging in a microscope,” J. Opt. Soc. Am. A 6, 1260–1269 (1989).
    [Crossref]
  78. D. A. Agard, Y. Hiraoka, P. Shaw, and J. W. Sedat, “Fluorescence microscopy in three dimensions,” in Methods in Cell Biology (Elsevier, 1989), Vol. 30, pp. 353–377.
  79. M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
    [Crossref]
  80. P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Trans. Graph. 24, 745–755 (2005).
    [Crossref]
  81. F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
    [Crossref]
  82. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
    [Crossref]
  83. W. Wang, X. Hu, J. Liu, S. Zhang, J. Suo, and G. Situ, “Gerchberg–Saxton-like ghost imaging,” Opt. Express 23, 28416–28422 (2015).
    [Crossref]
  84. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
    [Crossref]
  85. C. Zhang, S. Guo, J. Cao, J. Guan, and F. Gao, “Object reconstitution using pseudo-inverse for ghost imaging,” Opt. Express 22, 30063–30073 (2014).
    [Crossref]
  86. H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113, 084903 (2013).
    [Crossref]
  87. R. K. Amineh, M. Ravan, A. Trehan, and N. K. Nikolova, “Near-field microwave imaging based on aperture raster scanning with TEM horn antennas,” IEEE Trans. Antennas Propag. 59, 928–940 (2011).
    [Crossref]
  88. L. Pulido-Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical modeling of a two-dimensional waveguide-fed metasurface,” arXiv:1807.11592 (2018).
  89. M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wireless Propag. Lett., 1-1 (2018), DOI: 10.1109/LAWP.2018.2873131.
    [Crossref]
  90. W. Wang, Y. P. Wang, J. Li, X. Yang, and Y. Wu, “Iterative ghost imaging,” Opt. Lett. 39, 5150–5153 (2014).
    [Crossref]
  91. M. I. Akhlaghi and A. Dogariu, “Compressive correlation imaging with random illumination,” Opt. Lett. 40, 4464–4467 (2015).
    [Crossref]
  92. S. M. Khamoushi, Y. Nosrati, and S. H. Tavassoli, “Sinusoidal ghost imaging,” Opt. Lett. 40, 3452–3455 (2015).
    [Crossref]
  93. X. Zhang, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Li, X. Peng, W. He, G. Dong, and H. Chen, “Singular value decomposition ghost imaging,” Opt. Express 26, 12948–12958 (2018).
    [Crossref]
  94. N. Bender, H. Ylmaz, Y. Bromberg, and H. Cao, “Customizing speckle intensity statistics,” Optica 5, 595–600 (2018).
    [Crossref]
  95. L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
    [Crossref]
  96. D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8, 054048 (2017).
    [Crossref]
  97. A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. L. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging 4, 184–193 (2018).
    [Crossref]
  98. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
    [Crossref]
  99. S. A. N. Saqueb and K. Sertel, “Phase-sensitive single-pixel THz imaging using intensity-only measurements,” IEEE Trans. Terahertz Sci. Technol. 6, 810–816 (2016).
    [Crossref]
  100. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
    [Crossref]
  101. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
    [Crossref]
  102. L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).
    [Crossref]

2018 (7)

2017 (11)

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
[Crossref]

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8, 054048 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2738–2741 (2017).
[Crossref]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Cavity-backed metasurface antennas and their application to frequency diversity imaging,” J. Opt. Soc. Am. A 34, 472–480 (2017).
[Crossref]

O. Yurduseven, P. Flowers, S. Ye, D. L. Marks, J. N. Gollub, T. Fromenteze, B. J. Wiley, and D. R. Smith, “Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas,” IET Microw. Antennas Propag. 11, 1962–1969 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4, 1117–1125 (2017).
[Crossref]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Fourier accelerated multistatic imaging: a fast reconstruction algorithm for multiple-input-multiple-output radar imaging,” IEEE Access 5, 1796–1809 (2017).
[Crossref]

A. C. T. Yoya, B. Fuchs, and M. Davy, “Computational passive imaging of thermal sources with a leaky chaotic cavity,” Appl. Phys. Lett. 111, 193501 (2017).
[Crossref]

2016 (8)

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. Á. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
[Crossref]

S. A. N. Saqueb and K. Sertel, “Phase-sensitive single-pixel THz imaging using intensity-only measurements,” IEEE Trans. Terahertz Sci. Technol. 6, 810–816 (2016).
[Crossref]

2015 (7)

M. I. Akhlaghi and A. Dogariu, “Compressive correlation imaging with random illumination,” Opt. Lett. 40, 4464–4467 (2015).
[Crossref]

S. M. Khamoushi, Y. Nosrati, and S. H. Tavassoli, “Sinusoidal ghost imaging,” Opt. Lett. 40, 3452–3455 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

W. Wang, X. Hu, J. Liu, S. Zhang, J. Suo, and G. Situ, “Gerchberg–Saxton-like ghost imaging,” Opt. Express 23, 28416–28422 (2015).
[Crossref]

E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via matrix completion,” SIAM Rev. 57, 225–251 (2015).
[Crossref]

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

2014 (9)

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

J. Laviada, Y. Alvarez-Lopez, A. Arboleya-Arboleya, C. Garcia-Gonzalez, and F. Las-Heras, “Interferometric technique with nonredundant sampling for phaseless inverse scattering,” IEEE Trans. Antennas Propag. 62, 739–746 (2014).
[Crossref]

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier ptychography with an led array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
[Crossref]

J. M. Beada’a, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas. 63, 117–123 (2014).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

C. Zhang, S. Guo, J. Cao, J. Guan, and F. Gao, “Object reconstitution using pseudo-inverse for ghost imaging,” Opt. Express 22, 30063–30073 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

W. Wang, Y. P. Wang, J. Li, X. Yang, and Y. Wu, “Iterative ghost imaging,” Opt. Lett. 39, 5150–5153 (2014).
[Crossref]

2013 (5)

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113, 084903 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

J. Laviada and F. Las-Heras, “Phaseless antenna measurement on non-redundant sample points via Leith-Upatnieks holography,” IEEE Trans. Antennas Propag. 61, 4036–4044 (2013).
[Crossref]

2012 (5)

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).
[Crossref]

2011 (4)

R. K. Amineh, M. Ravan, A. Trehan, and N. K. Nikolova, “Near-field microwave imaging based on aperture raster scanning with TEM horn antennas,” IEEE Trans. Antennas Propag. 59, 928–940 (2011).
[Crossref]

Y. Yang and R. S. Blum, “Phase synchronization for coherent MIMO radar: algorithms and their analysis,” IEEE Trans. Signal Process. 59, 5538–5557 (2011).
[Crossref]

N. K. Nikolova, “Microwave imaging for breast cancer,” IEEE Microw. Mag. 12(7), 78–94 (2011).
[Crossref]

S. S. Ahmed, A. Schiessl, and L.-P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

2010 (2)

D. Sheen, D. McMakin, and T. Hall, “Near-field three-dimensional radar imaging techniques and applications,” Appl. Opt. 49, E83–E93 (2010).
[Crossref]

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

2009 (3)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

2008 (6)

F. Ferri, D. Magatti, V. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

J. Cheng, “Transfer functions in lensless ghost-imaging systems,” Phys. Rev. A 78, 043823 (2008).
[Crossref]

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref]

M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens. 46, 1589–1599 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

2007 (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

2006 (1)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

2005 (3)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

2004 (1)

2003 (1)

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51, 1690–1705 (2003).
[Crossref]

2002 (1)

2001 (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

2000 (1)

M. Tanter, J.-L. Thomas, and M. Fink, “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108, 223–234 (2000).
[Crossref]

1995 (2)

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

1994 (1)

1991 (2)

C. Sheppard, M. Gu, and X. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
[Crossref]

M. Soumekh, “Bistatic synthetic aperture radar inversion with application in dynamic object imaging,” IEEE Trans. Signal Process. 39, 2044–2055 (1991).
[Crossref]

1989 (1)

1985 (1)

1982 (1)

1966 (1)

1960 (1)

G. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory 6, 311–329 (1960).
[Crossref]

Abbosh, A. M.

J. M. Beada’a, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas. 63, 117–123 (2014).
[Crossref]

Abouraddy, A. F.

Agard, D. A.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref]

D. A. Agard, Y. Hiraoka, P. Shaw, and J. W. Sedat, “Fluorescence microscopy in three dimensions,” in Methods in Cell Biology (Elsevier, 1989), Vol. 30, pp. 353–377.

Ahmed, S. S.

S. S. Ahmed, A. Schiessl, and L.-P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

S. S. Ahmed, Electronic Microwave Imaging with Planar Multistatic Arrays (Logos Verlag Berlin, 2014).

Akhlaghi, M. I.

Allain, M.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Alvarez, Y.

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. Á. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

Alvarez-Lopez, Y.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
[Crossref]

J. Laviada, Y. Alvarez-Lopez, A. Arboleya-Arboleya, C. Garcia-Gonzalez, and F. Las-Heras, “Interferometric technique with nonredundant sampling for phaseless inverse scattering,” IEEE Trans. Antennas Propag. 62, 739–746 (2014).
[Crossref]

Amin, M. G.

M. G. Amin, Through-the-Wall Radar Imaging (CRC Press, 2017).

Amineh, R. K.

R. K. Amineh, M. Ravan, A. Trehan, and N. K. Nikolova, “Near-field microwave imaging based on aperture raster scanning with TEM horn antennas,” IEEE Trans. Antennas Propag. 59, 928–940 (2011).
[Crossref]

Anderson, T. L.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in IEEE International Symposium on Phased Array Systems and Technology (PAST) (IEEE, 2016), pp. 1–6.

Arboleya-Arboleya, A.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
[Crossref]

J. Laviada, Y. Alvarez-Lopez, A. Arboleya-Arboleya, C. Garcia-Gonzalez, and F. Las-Heras, “Interferometric technique with nonredundant sampling for phaseless inverse scattering,” IEEE Trans. Antennas Propag. 62, 739–746 (2014).
[Crossref]

Arnitz, D.

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. L. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging 4, 184–193 (2018).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Athale, R. A.

Bache, M.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

M. Bache, E. Brambilla, A. Gatti, and L. A. Lugiato, “Ghost imaging schemes: fast and broadband,” Opt. Express 12, 6067–6081 (2004).
[Crossref]

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1999).

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Barbastathis, G.

Beada’a, J. M.

J. M. Beada’a, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas. 63, 117–123 (2014).
[Crossref]

Belkebir, K.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Bender, N.

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Biteen, J. S.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Blum, R. S.

Y. Yang and R. S. Blum, “Phase synchronization for coherent MIMO radar: algorithms and their analysis,” IEEE Trans. Signal Process. 59, 5538–5557 (2011).
[Crossref]

Bond, E. J.

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51, 1690–1705 (2003).
[Crossref]

Bowen, P.

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8, 054048 (2017).
[Crossref]

Bowen, P. T.

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
[Crossref]

L. Pulido-Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical modeling of a two-dimensional waveguide-fed metasurface,” arXiv:1807.11592 (2018).

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Boyarsky, M.

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, A. V. Diebold, M. F. Imani, and D. R. Smith, “Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas,” Appl. Opt. 57, 4123–4134 (2018).
[Crossref]

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. L. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging 4, 184–193 (2018).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EUCAP) (IEEE, 2017), pp. 1415–1418.

Brady, D.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

Brady, D. J.

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

Brambilla, E.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

M. Bache, E. Brambilla, A. Gatti, and L. A. Lugiato, “Ghost imaging schemes: fast and broadband,” Opt. Express 12, 6067–6081 (2004).
[Crossref]

Bromberg, Y.

N. Bender, H. Ylmaz, Y. Bromberg, and H. Cao, “Customizing speckle intensity statistics,” Optica 5, 595–600 (2018).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Cande, W. Z.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref]

Candes, E. J.

E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via matrix completion,” SIAM Rev. 57, 225–251 (2015).
[Crossref]

Cao, H.

Cao, J.

Carlton, P. M.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref]

Carron, I.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Chardon, G.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Chen, B.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Chen, H.

Cheng, J.

J. Cheng, “Transfer functions in lensless ghost-imaging systems,” Phys. Rev. A 78, 043823 (2008).
[Crossref]

Coldwell, C. M.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in IEEE International Symposium on Phased Array Systems and Technology (PAST) (IEEE, 2016), pp. 1–6.

Considine, P. S.

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

Daudet, L.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Davy, M.

A. C. T. Yoya, B. Fuchs, and M. Davy, “Computational passive imaging of thermal sources with a leaky chaotic cavity,” Appl. Phys. Lett. 111, 193501 (2017).
[Crossref]

Dehmollaian, M.

M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens. 46, 1589–1599 (2008).
[Crossref]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Diebold, A. V.

Dogariu, A.

Dong, G.

Driscoll, T.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Dufilie, P.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in IEEE International Symposium on Phased Array Systems and Technology (PAST) (IEEE, 2016), pp. 1–6.

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

Eldar, Y. C.

E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via matrix completion,” SIAM Rev. 57, 225–251 (2015).
[Crossref]

Euliss, G. W.

Feller, S. D.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

F. Ferri, D. Magatti, V. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

Fienup, J. R.

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

M. Tanter, J.-L. Thomas, and M. Fink, “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108, 223–234 (2000).
[Crossref]

Fleischer, J. W.

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).
[Crossref]

Flowers, P.

O. Yurduseven, P. Flowers, S. Ye, D. L. Marks, J. N. Gollub, T. Fromenteze, B. J. Wiley, and D. R. Smith, “Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas,” IET Microw. Antennas Propag. 11, 1962–1969 (2017).
[Crossref]

Fromenteze, T.

O. Yurduseven, T. Fromenteze, and D. R. Smith, “Relaxation of alignment errors and phase calibration in computational frequency-diverse imaging using phase retrieval,” IEEE Access 6, 14884–14894 (2018).
[Crossref]

O. Yurduseven, P. Flowers, S. Ye, D. L. Marks, J. N. Gollub, T. Fromenteze, B. J. Wiley, and D. R. Smith, “Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas,” IET Microw. Antennas Propag. 11, 1962–1969 (2017).
[Crossref]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2738–2741 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EUCAP) (IEEE, 2017), pp. 1415–1418.

Fu, X.

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. L. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging 4, 184–193 (2018).
[Crossref]

Fuchs, B.

A. C. T. Yoya, B. Fuchs, and M. Davy, “Computational passive imaging of thermal sources with a leaky chaotic cavity,” Appl. Phys. Lett. 111, 193501 (2017).
[Crossref]

Gao, F.

Garcia-Gonzalez, C.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
[Crossref]

J. Laviada, Y. Alvarez-Lopez, A. Arboleya-Arboleya, C. Garcia-Gonzalez, and F. Las-Heras, “Interferometric technique with nonredundant sampling for phaseless inverse scattering,” IEEE Trans. Antennas Propag. 62, 739–746 (2014).
[Crossref]

Garg, G.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

F. Ferri, D. Magatti, V. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

M. Bache, E. Brambilla, A. Gatti, and L. A. Lugiato, “Ghost imaging schemes: fast and broadband,” Opt. Express 12, 6067–6081 (2004).
[Crossref]

Gehm, M. E.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Gigan, S.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Girard, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Golish, D. R.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Gollub, J.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EUCAP) (IEEE, 2017), pp. 1415–1418.

Gollub, J. N.

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. L. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging 4, 184–193 (2018).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2738–2741 (2017).
[Crossref]

O. Yurduseven, P. Flowers, S. Ye, D. L. Marks, J. N. Gollub, T. Fromenteze, B. J. Wiley, and D. R. Smith, “Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas,” IET Microw. Antennas Propag. 11, 1962–1969 (2017).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

Golubovskaya, I. N.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref]

Gonzalez-Valdes, B.

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. Á. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).

J. W. Goodman, Statistical Properties of Laser Speckle Patterns (Springer, 1975), pp. 9–75.

J. W. Goodman, Statistical Optics (Wiley, 2015).

Gowda, V. R.

Gu, M.

C. Sheppard, M. Gu, Y. Kawata, and S. Kawata, “Three-dimensional transfer functions for high-aperture systems,” J. Opt. Soc. Am. A 11, 593–598 (1994).
[Crossref]

C. Sheppard, M. Gu, and X. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
[Crossref]

Guan, J.

Guney, D.

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113, 084903 (2013).
[Crossref]

Guo, S.

Gustafsson, M. G.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref]

Hagness, S. C.

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51, 1690–1705 (2003).
[Crossref]

Hall, T.

Hall, T. E.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

He, W.

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Herd, J. S.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in IEEE International Symposium on Phased Array Systems and Technology (PAST) (IEEE, 2016), pp. 1–6.

Hiraoka, Y.

D. A. Agard, Y. Hiraoka, P. Shaw, and J. W. Sedat, “Fluorescence microscopy in three dimensions,” in Methods in Cell Biology (Elsevier, 1989), Vol. 30, pp. 353–377.

Horowitz, M.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Hu, X.

Hunt, J.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

Imani, M.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EUCAP) (IEEE, 2017), pp. 1415–1418.

Imani, M. F.

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. L. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging 4, 184–193 (2018).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, A. V. Diebold, M. F. Imani, and D. R. Smith, “Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas,” Appl. Opt. 57, 4123–4134 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57, 2142–2149 (2018).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

L. Pulido-Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical modeling of a two-dimensional waveguide-fed metasurface,” arXiv:1807.11592 (2018).

M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wireless Propag. Lett., 1-1 (2018), DOI: 10.1109/LAWP.2018.2873131.
[Crossref]

Ireland, D.

J. M. Beada’a, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas. 63, 117–123 (2014).
[Crossref]

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

Katz, O.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Kawata, S.

Kawata, Y.

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Khamoushi, S. M.

Kittle, D. S.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Klyshko, D.

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

Krieger, J. D.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in IEEE International Symposium on Phased Array Systems and Technology (PAST) (IEEE, 2016), pp. 1–6.

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Kundtz, N.

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
[Crossref]

L. Pulido-Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical modeling of a two-dimensional waveguide-fed metasurface,” arXiv:1807.11592 (2018).

Kundtz, N. B.

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8, 054048 (2017).
[Crossref]

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Las-Heras, F.

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. Á. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
[Crossref]

J. Laviada, Y. Alvarez-Lopez, A. Arboleya-Arboleya, C. Garcia-Gonzalez, and F. Las-Heras, “Interferometric technique with nonredundant sampling for phaseless inverse scattering,” IEEE Trans. Antennas Propag. 62, 739–746 (2014).
[Crossref]

J. Laviada and F. Las-Heras, “Phaseless antenna measurement on non-redundant sample points via Leith-Upatnieks holography,” IEEE Trans. Antennas Propag. 61, 4036–4044 (2013).
[Crossref]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Laviada, J.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
[Crossref]

J. Laviada, Y. Alvarez-Lopez, A. Arboleya-Arboleya, C. Garcia-Gonzalez, and F. Las-Heras, “Interferometric technique with nonredundant sampling for phaseless inverse scattering,” IEEE Trans. Antennas Propag. 62, 739–746 (2014).
[Crossref]

J. Laviada and F. Las-Heras, “Phaseless antenna measurement on non-redundant sample points via Leith-Upatnieks holography,” IEEE Trans. Antennas Propag. 61, 4036–4044 (2013).
[Crossref]

Le Moal, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Lee, J.

Lensch, H.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Lerosey, G.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Levoy, M.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Li, J.

Li, S.

Li, X.

Lipworth, G.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Liu, J.

Liu, N.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Liu, X.

Liutkus, A.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Lord, S. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Lugiato, L.

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

Lugiato, L. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

M. Bache, E. Brambilla, A. Gatti, and L. A. Lugiato, “Ghost imaging schemes: fast and broadband,” Opt. Express 12, 6067–6081 (2004).
[Crossref]

Magatti, D.

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

F. Ferri, D. Magatti, V. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

Mait, J. N.

Majewski, J. J.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in IEEE International Symposium on Phased Array Systems and Technology (PAST) (IEEE, 2016), pp. 1–6.

Mancera, L. P.

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8, 054048 (2017).
[Crossref]

Mantzavinos, S.

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. Á. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

Mao, X.

C. Sheppard, M. Gu, and X. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
[Crossref]

C. Sheppard and X. Mao, “Three-dimensional imaging in a microscope,” J. Opt. Soc. Am. A 6, 1260–1269 (1989).
[Crossref]

Marks, D. L.

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. L. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging 4, 184–193 (2018).
[Crossref]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Fourier accelerated multistatic imaging: a fast reconstruction algorithm for multiple-input-multiple-output radar imaging,” IEEE Access 5, 1796–1809 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2738–2741 (2017).
[Crossref]

O. Yurduseven, P. Flowers, S. Ye, D. L. Marks, J. N. Gollub, T. Fromenteze, B. J. Wiley, and D. R. Smith, “Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas,” IET Microw. Antennas Propag. 11, 1962–1969 (2017).
[Crossref]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Cavity-backed metasurface antennas and their application to frequency diversity imaging,” J. Opt. Soc. Am. A 34, 472–480 (2017).
[Crossref]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Marschner, S. R.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Martina, D.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Martinez-Lorenzo, J. Á.

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. Á. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

Maurais-Galejs, D. T.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in IEEE International Symposium on Phased Array Systems and Technology (PAST) (IEEE, 2016), pp. 1–6.

McMakin, D.

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

Meng, X.

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Moerner, W.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Moulder, W. F.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in IEEE International Symposium on Phased Array Systems and Technology (PAST) (IEEE, 2016), pp. 1–6.

Mrozack, A.

Mudry, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Mustafa, S.

J. M. Beada’a, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas. 63, 117–123 (2014).
[Crossref]

Nguyen, H. T.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in IEEE International Symposium on Phased Array Systems and Technology (PAST) (IEEE, 2016), pp. 1–6.

Nicoletti, C.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Nikolova, N. K.

N. K. Nikolova, “Microwave imaging for breast cancer,” IEEE Microw. Mag. 12(7), 78–94 (2011).
[Crossref]

R. K. Amineh, M. Ravan, A. Trehan, and N. K. Nikolova, “Near-field microwave imaging based on aperture raster scanning with TEM horn antennas,” IEEE Trans. Antennas Propag. 59, 928–940 (2011).
[Crossref]

Nosrati, Y.

Odabasi, H.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113, 084903 (2013).
[Crossref]

Padgett, M.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Padgett, M. J.

Padilla, W. J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Pavani, S. R. P.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Pedross-Engel, A.

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. L. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging 4, 184–193 (2018).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Peng, X.

Piestun, R.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Pittman, T.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Popoff, S.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Pulido-Mancera, L.

Ramchandran, K.

Rappaport, C. M.

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. Á. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

Ravan, M.

R. K. Amineh, M. Ravan, A. Trehan, and N. K. Nikolova, “Near-field microwave imaging based on aperture raster scanning with TEM horn antennas,” IEEE Trans. Antennas Propag. 59, 928–940 (2011).
[Crossref]

Reynolds, M.

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Reynolds, M. S.

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. L. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging 4, 184–193 (2018).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

Rose, A.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

Sala, V.

F. Ferri, D. Magatti, V. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

Saleh, B. E.

Saqueb, S. A. N.

S. A. N. Saqueb and K. Sertel, “Phase-sensitive single-pixel THz imaging using intensity-only measurements,” IEEE Trans. Terahertz Sci. Technol. 6, 810–816 (2016).
[Crossref]

Sarabandi, K.

M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens. 46, 1589–1599 (2008).
[Crossref]

Savatier, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Scarcelli, G.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

Schiessl, A.

S. S. Ahmed, A. Schiessl, and L.-P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

Schmidt, L.-P.

S. S. Ahmed, A. Schiessl, and L.-P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

Sedat, J. W.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref]

D. A. Agard, Y. Hiraoka, P. Shaw, and J. W. Sedat, “Fluorescence microscopy in three dimensions,” in Methods in Cell Biology (Elsevier, 1989), Vol. 30, pp. 353–377.

Sen, P.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Sentenac, A.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Sergienko, A.

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Sergienko, A. V.

Sertel, K.

S. A. N. Saqueb and K. Sertel, “Phase-sensitive single-pixel THz imaging using intensity-only measurements,” IEEE Trans. Terahertz Sci. Technol. 6, 810–816 (2016).
[Crossref]

Shao, L.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref]

Shapiro, J. H.

Shaw, P.

D. A. Agard, Y. Hiraoka, P. Shaw, and J. W. Sedat, “Fluorescence microscopy in three dimensions,” in Methods in Cell Biology (Elsevier, 1989), Vol. 30, pp. 353–377.

Sheen, D.

Sheen, D. M.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

Sheppard, C.

Shih, Y.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Sinha, A.

Situ, G.

W. Wang, X. Hu, J. Liu, S. Zhang, J. Suo, and G. Situ, “Gerchberg–Saxton-like ghost imaging,” Opt. Express 23, 28416–28422 (2015).
[Crossref]

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).
[Crossref]

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

Sleasman, T.

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, A. V. Diebold, M. F. Imani, and D. R. Smith, “Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas,” Appl. Opt. 57, 4123–4134 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57, 2142–2149 (2018).
[Crossref]

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. L. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging 4, 184–193 (2018).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wireless Propag. Lett., 1-1 (2018), DOI: 10.1109/LAWP.2018.2873131.
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EUCAP) (IEEE, 2017), pp. 1415–1418.

Smith, D.

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

Smith, D. R.

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57, 2142–2149 (2018).
[Crossref]

O. Yurduseven, T. Fromenteze, and D. R. Smith, “Relaxation of alignment errors and phase calibration in computational frequency-diverse imaging using phase retrieval,” IEEE Access 6, 14884–14894 (2018).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, A. V. Diebold, M. F. Imani, and D. R. Smith, “Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas,” Appl. Opt. 57, 4123–4134 (2018).
[Crossref]

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. L. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging 4, 184–193 (2018).
[Crossref]

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8, 054048 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Fourier accelerated multistatic imaging: a fast reconstruction algorithm for multiple-input-multiple-output radar imaging,” IEEE Access 5, 1796–1809 (2017).
[Crossref]

O. Yurduseven, P. Flowers, S. Ye, D. L. Marks, J. N. Gollub, T. Fromenteze, B. J. Wiley, and D. R. Smith, “Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas,” IET Microw. Antennas Propag. 11, 1962–1969 (2017).
[Crossref]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Cavity-backed metasurface antennas and their application to frequency diversity imaging,” J. Opt. Soc. Am. A 34, 472–480 (2017).
[Crossref]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2738–2741 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wireless Propag. Lett., 1-1 (2018), DOI: 10.1109/LAWP.2018.2873131.
[Crossref]

L. Pulido-Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical modeling of a two-dimensional waveguide-fed metasurface,” arXiv:1807.11592 (2018).

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EUCAP) (IEEE, 2017), pp. 1415–1418.

Soumekh, M.

M. Soumekh, “Bistatic synthetic aperture radar inversion with application in dynamic object imaging,” IEEE Trans. Signal Process. 39, 2044–2055 (1991).
[Crossref]

M. Soumekh, Synthetic Aperture Radar Signal Processing (Wiley, 1999), Vol. 7.

M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).

Stack, R. A.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Streibl, N.

Strekalov, D.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

Strohmer, T.

E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via matrix completion,” SIAM Rev. 57, 225–251 (2015).
[Crossref]

Sun, B.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Suo, J.

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tanter, M.

M. Tanter, J.-L. Thomas, and M. Fink, “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108, 223–234 (2000).
[Crossref]

Tavassoli, S. H.

Teich, M. C.

Teixeira, F.

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113, 084903 (2013).
[Crossref]

Thomas, J.-L.

M. Tanter, J.-L. Thomas, and M. Fink, “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108, 223–234 (2000).
[Crossref]

Thompson, M. A.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Tian, L.

Trehan, A.

R. K. Amineh, M. Ravan, A. Trehan, and N. K. Nikolova, “Near-field microwave imaging based on aperture raster scanning with TEM horn antennas,” IEEE Trans. Antennas Propag. 59, 928–940 (2011).
[Crossref]

Trofatter, K.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Trofatter, K. P.

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. L. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging 4, 184–193 (2018).
[Crossref]

Trofatter, P.

Turin, G.

G. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory 6, 311–329 (1960).
[Crossref]

Twieg, R. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Van Veen, B. D.

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51, 1690–1705 (2003).
[Crossref]

Vera, E.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Voroninski, V.

E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via matrix completion,” SIAM Rev. 57, 225–251 (2015).
[Crossref]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Waller, L.

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier ptychography with an led array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
[Crossref]

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).
[Crossref]

Wang, C. R.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref]

Wang, W.

Wang, Y.

Wang, Y. P.

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Welsh, S. S.

Wiley, B. J.

O. Yurduseven, P. Flowers, S. Ye, D. L. Marks, J. N. Gollub, T. Fromenteze, B. J. Wiley, and D. R. Smith, “Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas,” IET Microw. Antennas Propag. 11, 1962–1969 (2017).
[Crossref]

Wu, Y.

Xu, W.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

Yang, X.

Yang, Y.

Y. Yang and R. S. Blum, “Phase synchronization for coherent MIMO radar: algorithms and their analysis,” IEEE Trans. Signal Process. 59, 5538–5557 (2011).
[Crossref]

Ye, S.

O. Yurduseven, P. Flowers, S. Ye, D. L. Marks, J. N. Gollub, T. Fromenteze, B. J. Wiley, and D. R. Smith, “Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas,” IET Microw. Antennas Propag. 11, 1962–1969 (2017).
[Crossref]

Yin, Y.

Ylmaz, H.

Yoya, A. C. T.

A. C. T. Yoya, B. Fuchs, and M. Davy, “Computational passive imaging of thermal sources with a leaky chaotic cavity,” Appl. Phys. Lett. 111, 193501 (2017).
[Crossref]

Yurduseven, O.

O. Yurduseven, T. Fromenteze, and D. R. Smith, “Relaxation of alignment errors and phase calibration in computational frequency-diverse imaging using phase retrieval,” IEEE Access 6, 14884–14894 (2018).
[Crossref]

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. L. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging 4, 184–193 (2018).
[Crossref]

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8, 054048 (2017).
[Crossref]

O. Yurduseven, P. Flowers, S. Ye, D. L. Marks, J. N. Gollub, T. Fromenteze, B. J. Wiley, and D. R. Smith, “Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas,” IET Microw. Antennas Propag. 11, 1962–1969 (2017).
[Crossref]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Cavity-backed metasurface antennas and their application to frequency diversity imaging,” J. Opt. Soc. Am. A 34, 472–480 (2017).
[Crossref]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2738–2741 (2017).
[Crossref]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Fourier accelerated multistatic imaging: a fast reconstruction algorithm for multiple-input-multiple-output radar imaging,” IEEE Access 5, 1796–1809 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

Zhang, C.

Zhang, S.

Zhang, X.

Zvolensky, T.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

ACM Trans. Graph. (1)

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (5)

Appl. Phys. Lett. (4)

F. Ferri, D. Magatti, V. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

A. C. T. Yoya, B. Fuchs, and M. Davy, “Computational passive imaging of thermal sources with a leaky chaotic cavity,” Appl. Phys. Lett. 111, 193501 (2017).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (1)

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref]

IEEE Access (2)

D. L. Marks, O. Yurduseven, and D. R. Smith, “Fourier accelerated multistatic imaging: a fast reconstruction algorithm for multiple-input-multiple-output radar imaging,” IEEE Access 5, 1796–1809 (2017).
[Crossref]

O. Yurduseven, T. Fromenteze, and D. R. Smith, “Relaxation of alignment errors and phase calibration in computational frequency-diverse imaging using phase retrieval,” IEEE Access 6, 14884–14894 (2018).
[Crossref]

IEEE Antennas Propag. Mag. (1)

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. Á. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (2)

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wireless Propag. Lett. 16, 2738–2741 (2017).
[Crossref]

IEEE Microw. Mag. (1)

N. K. Nikolova, “Microwave imaging for breast cancer,” IEEE Microw. Mag. 12(7), 78–94 (2011).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

IEEE Trans. Antennas Propag. (5)

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51, 1690–1705 (2003).
[Crossref]

J. Laviada and F. Las-Heras, “Phaseless antenna measurement on non-redundant sample points via Leith-Upatnieks holography,” IEEE Trans. Antennas Propag. 61, 4036–4044 (2013).
[Crossref]

J. Laviada, Y. Alvarez-Lopez, A. Arboleya-Arboleya, C. Garcia-Gonzalez, and F. Las-Heras, “Interferometric technique with nonredundant sampling for phaseless inverse scattering,” IEEE Trans. Antennas Propag. 62, 739–746 (2014).
[Crossref]

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antennas Propag. 63, 573–584 (2015).
[Crossref]

R. K. Amineh, M. Ravan, A. Trehan, and N. K. Nikolova, “Near-field microwave imaging based on aperture raster scanning with TEM horn antennas,” IEEE Trans. Antennas Propag. 59, 928–940 (2011).
[Crossref]

IEEE Trans. Comput. Imaging (1)

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. L. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging 4, 184–193 (2018).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens. 46, 1589–1599 (2008).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

J. M. Beada’a, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas. 63, 117–123 (2014).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

S. S. Ahmed, A. Schiessl, and L.-P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

IEEE Trans. Signal Process. (2)

Y. Yang and R. S. Blum, “Phase synchronization for coherent MIMO radar: algorithms and their analysis,” IEEE Trans. Signal Process. 59, 5538–5557 (2011).
[Crossref]

M. Soumekh, “Bistatic synthetic aperture radar inversion with application in dynamic object imaging,” IEEE Trans. Signal Process. 39, 2044–2055 (1991).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

S. A. N. Saqueb and K. Sertel, “Phase-sensitive single-pixel THz imaging using intensity-only measurements,” IEEE Trans. Terahertz Sci. Technol. 6, 810–816 (2016).
[Crossref]

IET Microw. Antennas Propag. (1)

O. Yurduseven, P. Flowers, S. Ye, D. L. Marks, J. N. Gollub, T. Fromenteze, B. J. Wiley, and D. R. Smith, “Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas,” IET Microw. Antennas Propag. 11, 1962–1969 (2017).
[Crossref]

IRE Trans. Inf. Theory (1)

G. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory 6, 311–329 (1960).
[Crossref]

J. Acoust. Soc. Am. (1)

M. Tanter, J.-L. Thomas, and M. Fink, “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108, 223–234 (2000).
[Crossref]

J. Appl. Phys. (1)

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113, 084903 (2013).
[Crossref]

J. Mod. Opt. (1)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (7)

J. Opt. Soc. Am. B (5)

Nat. Photonics (4)

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).
[Crossref]

Nature (2)

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Opt. Commun. (1)

C. Sheppard, M. Gu, and X. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Optica (2)

Phys. Rev. A (4)

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

J. Cheng, “Transfer functions in lensless ghost-imaging systems,” Phys. Rev. A 78, 043823 (2008).
[Crossref]

Phys. Rev. Appl. (2)

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
[Crossref]

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8, 054048 (2017).
[Crossref]

Phys. Rev. B (1)

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
[Crossref]

Phys. Rev. Lett. (4)

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Sci. Rep. (2)

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Science (2)

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

SIAM Rev. (1)

E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via matrix completion,” SIAM Rev. 57, 225–251 (2015).
[Crossref]

Other (15)

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).

J. W. Goodman, Statistical Properties of Laser Speckle Patterns (Springer, 1975), pp. 9–75.

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EUCAP) (IEEE, 2017), pp. 1415–1418.

S. S. Ahmed, Electronic Microwave Imaging with Planar Multistatic Arrays (Logos Verlag Berlin, 2014).

M. Soumekh, Synthetic Aperture Radar Signal Processing (Wiley, 1999), Vol. 7.

J. W. Goodman, Statistical Optics (Wiley, 2015).

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1999).

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in IEEE International Symposium on Phased Array Systems and Technology (PAST) (IEEE, 2016), pp. 1–6.

M. G. Amin, Through-the-Wall Radar Imaging (CRC Press, 2017).

M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

D. A. Agard, Y. Hiraoka, P. Shaw, and J. W. Sedat, “Fluorescence microscopy in three dimensions,” in Methods in Cell Biology (Elsevier, 1989), Vol. 30, pp. 353–377.

L. Pulido-Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical modeling of a two-dimensional waveguide-fed metasurface,” arXiv:1807.11592 (2018).

M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wireless Propag. Lett., 1-1 (2018), DOI: 10.1109/LAWP.2018.2873131.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Schematic illustration of DMA. (b) Imaging configuration using DMA transmitter and DMA receiver. (c) Schematic illustration of imaging system.
Fig. 2.
Fig. 2. (a) 2D space-invariant approximation of mutual intensity JT(Δr) for experimentally measured fields. (b) Spatial frequency spectrum of fields from a transmitting DMA displaced along the y axis by 30 cm. (c) 2D space-invariant mutual intensity approximation JTR(Δr). (d) Spatial frequency spectrum of effective fields ETR(r) for transmitter and receiver separated by 20 cm. (e) y cross section of the mutual intensities for fields over a patch centered at a distance of 40 cm from the aperture plane, using a co-located transmitter and receiver. (f) x cross sections (through the origin) as the distance d between the transmitting and receiving DMAs is increased.
Fig. 3.
Fig. 3. (a) Normalized intensity measurements of 50 distinct scattered speckle fields by a truly incoherent system, a coherent system employing point detection, and a coherent system employing spatial intensity averaging of a set of point detection measurements. (b) Intensity measurements by a DMA averaging over different numbers of tuning states. (c) Correlation coefficient between intensity measurements by different reception methods and incoherent intensity measurements.
Fig. 4.
Fig. 4. (a) 2D space-invariant approximation of incoherent PSF, |JT(Δr)|2, for experimentally measured fields, (b) Incoherent/optical transfer function corresponding to fields from a transmitting DMA displaced along the y axis by 30 cm.
Fig. 5.
Fig. 5. Simulated image of an extended, off-axis target using different reception methods.
Fig. 6.
Fig. 6. Simulated PSNR (dB) versus number of measurements for different reception techniques.
Fig. 7.
Fig. 7. Image of three targets using pseudoinverse applied to (a) full-field data and (b) intensity data.
Fig. 8.
Fig. 8. Experimental image of an extended, target using different reception methods. The inset shows a photograph of the copper target.
Fig. 9.
Fig. 9. (a) Reciprocal images of two targets obtained by averaging over receiver tuning states on the left, and transmitter tuning states on the right. (b) Product of the reciprocal images in (a).

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

ETm(r)=ZTaYTaETam(rTa)G(rTa,r)dyTadzTa,
G(rTa,r)=k(xxTa)j2πejk|rrTa||rrTa|2
ERam(rRa)=ETm(r)f(r)G(r,rRa)dV.
gmn=ZRaYRaERam(rRa)ARan(rRa)dyRadzRa=ETm(r)f(r)ZRaYRaARan(rRa)G(r,rRa)dyRadzRadV,
E^Rn(r):=ZRaYRaARan(rRa)G(r,rRa)dyRadzRa
gmn=ETm(r)E^Rn(r)f(r)dV.
Γ12(r1,r2)=E1*(r1)E2(r2),
|Γ12(r1,r2)|2=I1(r1)I2(r2)I1(r1)I2(r2),
Γsd(r)=Es*(r)g,
Γsd(r)=ETm*(r)E^Rn*(r)×ETm(r)E^Rn(r)f(r)dVmn=ETm*(r)E^Rn*(r)ETm(r)E^Rn(r)mnf(r)dV=ETRmn*(r)ETRmn(r)mnf(r)dV.
JTR(r,r)=ETRmn*(r)ETRmn(r)mn
Gcoh(r)=|Γsd(r)|2=|JTR(r,r)f(r)dV|2.
Gcoh(r)=|ETRmn(r)|2|gmn|2mn|ETRmn(r)|2mn|gmn|2mn.
JTR(r,r)=ETm*(r)E^Rn*(r)ETm(r)E^Rn(r)mn=ETm*(r)ETm(r)mE^Rn*(r)E^Rn(r)n=JT(r,r)JR(r,r).
I0m=|ETm(r)|2|f(r)|2dV.
Icm(rRa)=|ETm(r)f(r)G(r,rRa)dV|2.
Isam=1KkIcm(rRak),
|gmn|2=ETm*(r)E^Rn*(r)f*(r)dV×ETm(r)E^Rn(r)f(r)dV.
|gmn|2n=ETm*(r)ETm(r)E^Rn*(r)E^Rn(r)nf*(r)f(r)dVdV.
|gmn|2n|ETm(r)|2|f(r)|2dV.
ρ=cov(I0,I^)σI0σI^,
Γsd(r)=ETm*(r)ETm(r)E^Rn(r)f(r)dVm,
|Γsd(r)|2=ETm*(r)ETm(r1)mE^Rn(r1)f(r1)dV1×ETm(r)ETm*(r2)mE^Rn*(r2)f*(r2)dV2.
Ginc(r)=|Γsd(r)|2n=ETm*(r)ETm(r1)mETm(r)ETm*(r2)m×E^Rn(r1)E^Rn*(r2)nf(r1)f*(r2)dV1dV2=JT(r,r1)JT*(r,r2)JR(r1,r2)f(r1)f*(r2)dV1dV2.
Ginc(r)|JT(r,r1)|2|f(r1)|2dV1.
Ginc(r)=|ETm(r)|2|gmn|2nm|ETm(r)|2m|gmn|2nm.
PSNR=10log10(1Nn=1N[G(rn)|f(rn)|2]2).
|gmn|2m|E^Rn(r)|2|f(r)|2dV.
G¯inc(r)=|E^Rn(r)|2|gmn|2mn|E^Rn(r)|2n|gmn|2mn|JR(r,r)|2|f(r)|2dV,
g^=H^f^,
Gk=1MiH^ikg^i,k=1,,Ns=1MijH^ikH^ijf^j
G=1MH^Tg^=1MH^TH^f^.
G=1MH^+H^f^,