Abstract

The quest for imaging protocols with ever-reduced dose is one of the most powerful motivators driving the currently exploding field of ghost imaging (GI). Ghost tomography (GT) using single-pixel detection extends the burgeoning field of GI to 3D, with the use of penetrating radiation. For hard x-rays, GT has the potential to relax the constraints that dose rate and detector performance impose on image quality and resolution. In this work, spatially random x-ray intensity patterns illuminate a specimen from various view-angles; in each case, the total transmitted intensity is recorded by a single-pixel (or bucket) detector. These readings, combined with knowledge of the corresponding 2D illuminating patterns and specimen orientations, are sufficient for 3D specimen reconstruction. The experimental demonstration of GT is presented here using synchrotron hard x-rays. This result significantly expands the scope of GI to encompass volumetric imaging (i.e., tomography), of optically opaque objects using penetrating radiation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
X-ray ptychography with extended depth of field

Esther H. R. Tsai, Ivan Usov, Ana Diaz, Andreas Menzel, and Manuel Guizar-Sicairos
Opt. Express 24(25) 29089-29108 (2016)

Spiral scanning X-ray fluorescence computed tomography

Martin D. de Jonge, Andrew M. Kingston, Nader Afshar, Jan Garrevoet, Robin Kirkham, Gary Ruben, Glenn R. Myers, Shane J. Latham, Daryl L. Howard, David J. Paterson, Christopher G. Ryan, and Gawain McColl
Opt. Express 25(19) 23424-23436 (2017)

X-ray in-line phase tomography of multimaterial objects

Max Langer, Peter Cloetens, Alexandra Pacureanu, and Françoise Peyrin
Opt. Lett. 37(11) 2151-2153 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
    [Crossref]
  2. M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philos. Trans. R. Soc. London A 375, 20160233 (2017).
    [Crossref]
  3. R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540, 100–103 (2017).
    [Crossref]
  4. S. Li, F. Cropp, K. Kabra, T. J. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121, 114801 (2018).
    [Crossref]
  5. H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117, 113901 (2016).
    [Crossref]
  6. D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
    [Crossref]
  7. A. Schori and S. Schwartz, “X-ray ghost imaging with a laboratory source,” Opt. Express 25, 14822–14828 (2017).
    [Crossref]
  8. A.-X. Zhang, Y.-H. He, L.-A. Wu, L.-M. Chen, and B.-B. Wang, “Table-top x-ray ghost imaging with ultra-low radiation,” Optica 5, 374–377 (2018).
    [Crossref]
  9. D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” Int. Union Crystallogr. J. 5, 428–438 (2018).
  10. A. Schori, D. Borodin, K. Tamasaku, and S. Shwartz, “Ghost imaging with paired x-ray photons,” Phys. Rev. A 97, 063804 (2018).
    [Crossref]
  11. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
    [Crossref]
  12. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
    [Crossref]
  13. D. Ceddia and D. M. Paganin, “Random-matrix bases, ghost imaging, and x-ray phase contrast computational ghost imaging,” Phys. Rev. A 97, 062119 (2018).
    [Crossref]
  14. T. E. Gureyev, D. M. Paganin, A. Kozlov, Y. I. Nesterets, and H. M. Quiney, “Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging,” Phys. Rev. A 97, 053819 (2018).
    [Crossref]
  15. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
    [Crossref]
  16. M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
    [Crossref]
  17. T. Mohr, A. Herdt, and W. Elsässer, “2D tomographic terahertz imaging using a single pixel detector,” Opt. Express 26, 3353–3367 (2018).
    [Crossref]
  18. A. M. Kingston, G. R. Myers, D. Pelliccia, I. D. Svalbe, and D. M. Paganin, “X-ray ghost-tomography: denoising, dose fractionation and mask considerations,” arXiv.org, https://arxiv.org/abs/1804.03370 (2018).
  19. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
    [Crossref]
  20. M. Berger, J. Hubbell, S. Seltzer, J. Chang, J. Coursey, R. Sukumar, D. Zucker, and K. Olsen, 2010, https://www.nist.gov/pml/xcom-photon-cross-sections-database .
  21. K. Choi and D. J. Brady, “Coded aperture computed tomography,” Proc. SPIE 7468, 74680B (2009).
    [Crossref]
  22. Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31, 1369–1394 (2014).
    [Crossref]
  23. D. J. Brady, A. Mrozack, K. MacCabe, and P. Llull, “Compressive tomography,” Adv. Opt. Photon. 7, 756–813 (2015).
    [Crossref]
  24. M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3, 1545 (2013).
    [Crossref]
  25. T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).
    [Crossref]

2018 (8)

S. Li, F. Cropp, K. Kabra, T. J. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121, 114801 (2018).
[Crossref]

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” Int. Union Crystallogr. J. 5, 428–438 (2018).

A. Schori, D. Borodin, K. Tamasaku, and S. Shwartz, “Ghost imaging with paired x-ray photons,” Phys. Rev. A 97, 063804 (2018).
[Crossref]

D. Ceddia and D. M. Paganin, “Random-matrix bases, ghost imaging, and x-ray phase contrast computational ghost imaging,” Phys. Rev. A 97, 062119 (2018).
[Crossref]

T. E. Gureyev, D. M. Paganin, A. Kozlov, Y. I. Nesterets, and H. M. Quiney, “Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging,” Phys. Rev. A 97, 053819 (2018).
[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).
[Crossref]

T. Mohr, A. Herdt, and W. Elsässer, “2D tomographic terahertz imaging using a single pixel detector,” Opt. Express 26, 3353–3367 (2018).
[Crossref]

A.-X. Zhang, Y.-H. He, L.-A. Wu, L.-M. Chen, and B.-B. Wang, “Table-top x-ray ghost imaging with ultra-low radiation,” Optica 5, 374–377 (2018).
[Crossref]

2017 (3)

A. Schori and S. Schwartz, “X-ray ghost imaging with a laboratory source,” Opt. Express 25, 14822–14828 (2017).
[Crossref]

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philos. Trans. R. Soc. London A 375, 20160233 (2017).
[Crossref]

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540, 100–103 (2017).
[Crossref]

2016 (3)

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (1)

M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3, 1545 (2013).
[Crossref]

2010 (1)

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

2009 (3)

K. Choi and D. J. Brady, “Coded aperture computed tomography,” Proc. SPIE 7468, 74680B (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

2003 (1)

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Aßmann, M.

M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3, 1545 (2013).
[Crossref]

Baldwin, K. G. H.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540, 100–103 (2017).
[Crossref]

Bayer, M.

M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3, 1545 (2013).
[Crossref]

Borodin, D.

A. Schori, D. Borodin, K. Tamasaku, and S. Shwartz, “Ghost imaging with paired x-ray photons,” Phys. Rev. A 97, 063804 (2018).
[Crossref]

Boyd, R. W.

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philos. Trans. R. Soc. London A 375, 20160233 (2017).
[Crossref]

Brady, D. J.

Bromberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Cantelli, V.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

Carin, L.

Ceddia, D.

D. Ceddia and D. M. Paganin, “Random-matrix bases, ghost imaging, and x-ray phase contrast computational ghost imaging,” Phys. Rev. A 97, 062119 (2018).
[Crossref]

Chen, L.-M.

Choi, K.

K. Choi and D. J. Brady, “Coded aperture computed tomography,” Proc. SPIE 7468, 74680B (2009).
[Crossref]

Cropp, F.

S. Li, F. Cropp, K. Kabra, T. J. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121, 114801 (2018).
[Crossref]

Dall, R. G.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540, 100–103 (2017).
[Crossref]

Du, G.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Edgar, M. P.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Elsässer, W.

Endo, Y.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

Gibson, G. M.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Gureyev, T. E.

T. E. Gureyev, D. M. Paganin, A. Kozlov, Y. I. Nesterets, and H. M. Quiney, “Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging,” Phys. Rev. A 97, 053819 (2018).
[Crossref]

Han, S.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Hasegawa, S.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).
[Crossref]

He, Y.-H.

Henson, B. M.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540, 100–103 (2017).
[Crossref]

Herdt, A.

Hirayama, R.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).
[Crossref]

Hodgman, S. S.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540, 100–103 (2017).
[Crossref]

Holmgren, A.

Ito, T.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).
[Crossref]

Jeon, H.

Kabra, K.

S. Li, F. Cropp, K. Kabra, T. J. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121, 114801 (2018).
[Crossref]

Kaganovsky, Y.

Kakue, T.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).
[Crossref]

Katz, O.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Khakimov, R. I.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540, 100–103 (2017).
[Crossref]

Kingston, A. M.

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” Int. Union Crystallogr. J. 5, 428–438 (2018).

A. M. Kingston, G. R. Myers, D. Pelliccia, I. D. Svalbe, and D. M. Paganin, “X-ray ghost-tomography: denoising, dose fractionation and mask considerations,” arXiv.org, https://arxiv.org/abs/1804.03370 (2018).

Kozlov, A.

T. E. Gureyev, D. M. Paganin, A. Kozlov, Y. I. Nesterets, and H. M. Quiney, “Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging,” Phys. Rev. A 97, 053819 (2018).
[Crossref]

Lamb, R.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Lane, T. J.

S. Li, F. Cropp, K. Kabra, T. J. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121, 114801 (2018).
[Crossref]

Li, D.

Li, S.

S. Li, F. Cropp, K. Kabra, T. J. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121, 114801 (2018).
[Crossref]

Llull, P.

Lu, R.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

MacCabe, K.

MacCabe, K. P.

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

Mohr, T.

Mrozack, A.

Musumeci, P.

S. Li, F. Cropp, K. Kabra, T. J. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121, 114801 (2018).
[Crossref]

Myers, G. R.

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” Int. Union Crystallogr. J. 5, 428–438 (2018).

A. M. Kingston, G. R. Myers, D. Pelliccia, I. D. Svalbe, and D. M. Paganin, “X-ray ghost-tomography: denoising, dose fractionation and mask considerations,” arXiv.org, https://arxiv.org/abs/1804.03370 (2018).

Nagahama, Y.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).
[Crossref]

Nasr, M. B.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

Nesterets, Y. I.

T. E. Gureyev, D. M. Paganin, A. Kozlov, Y. I. Nesterets, and H. M. Quiney, “Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging,” Phys. Rev. A 97, 053819 (2018).
[Crossref]

Nishitsuji, T.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).
[Crossref]

O’Sullivan, J. A.

Olbinado, M. P.

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” Int. Union Crystallogr. J. 5, 428–438 (2018).

Padgett, M. J.

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philos. Trans. R. Soc. London A 375, 20160233 (2017).
[Crossref]

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Paganin, D. M.

T. E. Gureyev, D. M. Paganin, A. Kozlov, Y. I. Nesterets, and H. M. Quiney, “Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging,” Phys. Rev. A 97, 053819 (2018).
[Crossref]

D. Ceddia and D. M. Paganin, “Random-matrix bases, ghost imaging, and x-ray phase contrast computational ghost imaging,” Phys. Rev. A 97, 062119 (2018).
[Crossref]

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” Int. Union Crystallogr. J. 5, 428–438 (2018).

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

A. M. Kingston, G. R. Myers, D. Pelliccia, I. D. Svalbe, and D. M. Paganin, “X-ray ghost-tomography: denoising, dose fractionation and mask considerations,” arXiv.org, https://arxiv.org/abs/1804.03370 (2018).

Pelliccia, D.

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” Int. Union Crystallogr. J. 5, 428–438 (2018).

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

A. M. Kingston, G. R. Myers, D. Pelliccia, I. D. Svalbe, and D. M. Paganin, “X-ray ghost-tomography: denoising, dose fractionation and mask considerations,” arXiv.org, https://arxiv.org/abs/1804.03370 (2018).

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Politte, D. G.

Quiney, H. M.

T. E. Gureyev, D. M. Paganin, A. Kozlov, Y. I. Nesterets, and H. M. Quiney, “Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging,” Phys. Rev. A 97, 053819 (2018).
[Crossref]

Rack, A.

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” Int. Union Crystallogr. J. 5, 428–438 (2018).

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

Radwell, N.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Ratner, D.

S. Li, F. Cropp, K. Kabra, T. J. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121, 114801 (2018).
[Crossref]

Saleh, B. E. A.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

Sano, M.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).
[Crossref]

Scheel, M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

Schori, A.

A. Schori, D. Borodin, K. Tamasaku, and S. Shwartz, “Ghost imaging with paired x-ray photons,” Phys. Rev. A 97, 063804 (2018).
[Crossref]

A. Schori and S. Schwartz, “X-ray ghost imaging with a laboratory source,” Opt. Express 25, 14822–14828 (2017).
[Crossref]

Schwartz, S.

Sergienko, A.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Sergienko, A. V.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Shimobaba, T.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).
[Crossref]

Shin, D. K.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540, 100–103 (2017).
[Crossref]

Shiraki, A.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).
[Crossref]

Shwartz, S.

A. Schori, D. Borodin, K. Tamasaku, and S. Shwartz, “Ghost imaging with paired x-ray photons,” Phys. Rev. A 97, 063804 (2018).
[Crossref]

Silberberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Sun, B.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Sun, M.-J.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Svalbe, I. D.

A. M. Kingston, G. R. Myers, D. Pelliccia, I. D. Svalbe, and D. M. Paganin, “X-ray ghost-tomography: denoising, dose fractionation and mask considerations,” arXiv.org, https://arxiv.org/abs/1804.03370 (2018).

Takahashi, T.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).
[Crossref]

Tamasaku, K.

A. Schori, D. Borodin, K. Tamasaku, and S. Shwartz, “Ghost imaging with paired x-ray photons,” Phys. Rev. A 97, 063804 (2018).
[Crossref]

Teich, M. C.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

Truscott, A. G.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540, 100–103 (2017).
[Crossref]

Wang, B.-B.

Wetzstein, G.

S. Li, F. Cropp, K. Kabra, T. J. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121, 114801 (2018).
[Crossref]

Wu, L.-A.

Xiao, T.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Xie, H.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Yu, H.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Zhang, A.-X.

Zhu, D.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Int. Union Crystallogr. J. (1)

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” Int. Union Crystallogr. J. 5, 428–438 (2018).

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Nature (1)

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540, 100–103 (2017).
[Crossref]

Opt. Commun. (1)

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).
[Crossref]

Opt. Express (2)

Optica (1)

Philos. Trans. R. Soc. London A (1)

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philos. Trans. R. Soc. London A 375, 20160233 (2017).
[Crossref]

Phys. Rev. A (5)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

A. Schori, D. Borodin, K. Tamasaku, and S. Shwartz, “Ghost imaging with paired x-ray photons,” Phys. Rev. A 97, 063804 (2018).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

D. Ceddia and D. M. Paganin, “Random-matrix bases, ghost imaging, and x-ray phase contrast computational ghost imaging,” Phys. Rev. A 97, 062119 (2018).
[Crossref]

T. E. Gureyev, D. M. Paganin, A. Kozlov, Y. I. Nesterets, and H. M. Quiney, “Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging,” Phys. Rev. A 97, 053819 (2018).
[Crossref]

Phys. Rev. Lett. (5)

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

S. Li, F. Cropp, K. Kabra, T. J. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121, 114801 (2018).
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref]

Proc. SPIE (1)

K. Choi and D. J. Brady, “Coded aperture computed tomography,” Proc. SPIE 7468, 74680B (2009).
[Crossref]

Sci. Rep. (1)

M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3, 1545 (2013).
[Crossref]

Other (2)

M. Berger, J. Hubbell, S. Seltzer, J. Chang, J. Coursey, R. Sukumar, D. Zucker, and K. Olsen, 2010, https://www.nist.gov/pml/xcom-photon-cross-sections-database .

A. M. Kingston, G. R. Myers, D. Pelliccia, I. D. Svalbe, and D. M. Paganin, “X-ray ghost-tomography: denoising, dose fractionation and mask considerations,” arXiv.org, https://arxiv.org/abs/1804.03370 (2018).

Supplementary Material (1)

NameDescription
» Supplement 1       supplementary manuscript

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Experimental setup for x-ray GT. Synchrotron x-rays from an undulator are passed through a spatially random mask (not shown). The resulting random 2D speckled beam is split into two copies by a crystal beam splitter working in a Laue diffraction condition. The diffracted beam, much weaker in intensity than the direct beam, is passed through the sample before being registered at the position-insensitive bucket detector. The direct beam, consisting of photons that never pass through the object, is measured over the position-sensitive detector. An ensemble of spatially random illuminating patterns is created by transversely displacing the mask. Note that only the spatially integrated signal (termed the “bucket signal”) for each bucket-beam measurement is utilized in the x-ray GT. The process is repeated for a variety of angular orientations θ of the sample.
Fig. 2.
Fig. 2. (A) Example of spatially random x-ray intensity illumination pattern; LHS, as measured; RHS, blurred to match motion artifacts in bucket image. Yellow box [coinciding with blue box in (D)] indicates region used for GI/GT. (B) Schematic of Al phantom sample; (C) PSF found as the normalized autocovariance of the set of illuminating spatially random fields; LHS, as measured; RHS, blurred to match motion artifacts in bucket image. Zoom ×4 presented in top-right corner. (D) Example bucket image with the blue box indicating the region over which the signal was accumulated to give the single-pixel bucket signal. (E) FRC results from registered image subsets, used to determine 3D GI resolution (determined as the reciprocal distance at which correlation drops below 1 bit). The relevant (spck/bckt) resolution result of 100 μm, was used to select the 3D discretization for the tomographic reconstructions in Fig. 3. Image pairs include: spck/spck–speckle images compared at θ=0° and θ=68.750°; spck/blur–speckle image at θ=0° compared to blurred speckle image at θ=68.750°; bckt/bckt–bucket images compared at θ=0° and θ=68.750°; spck/bckt–speckle image at θ=0° compared to bucket image at θ=0°.
Fig. 3.
Fig. 3. Horizontal (A) and vertical (B) 2D slices through the 3D x-ray GT reconstructed volume with a voxel pitch of 48 μm. The corresponding horizontal (C) and vertical (D) 2D slices through the conventional 3D tomography reconstructed volume obtained from the same set of experiments. (E) A semitransparent rendering of the 3D GT reconstructed object indicating the location of the slices (A) and (B). Horizontal (F) and vertical (G) cutaway images of the rendered ghost-tomogram volume showing the position of slices (A) and (B), respectively. Note that the blue lines in (A) and (C) indicate the position of the orthogonal slices (B) and (D); likewise, the red lines in (B) and (D) indicate the location of perpendicular slices (A) and (C).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δθ=π(ϕ1)
ϕ=(1+5)/2
T(x,y;θ)=1M(θ)j=1M(θ)Ij(x,y)(Bj,θBav,θ).
γ=0.01/(Jθσ2),