Abstract

Recently, the temporal control of graphene carrier density has emerged as a viable means to create various frequency shifting, modulation, and sensing photonic devices. Here we describe a general theoretical approach to calculate the graphene plasmon transformation after rapid changes of the Fermi level and carrier density. The approach is based on solving the Maxwell equations supplemented by the microscopic current equation. We derive formulas for the amplitudes of the transmitted and reflected plasmons after a rapid carrier density drop. The relation of these amplitudes and the Fourier transformed finite-difference time-domain (FDTD) fields is also established by introducing the concept of differential spectral transformation of wavepackets. The results of the analytical and FDTD approaches refute the claims of plasmon amplification under rapid carrier changes that appeared in recent theoretical studies. The presented theoretical and computational approaches form a basis of time-varying electromagnetics of graphene plasmonics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time reflection and refraction of graphene plasmons at a temporal discontinuity

Galaad Altares Menendez and Bjorn Maes
Opt. Lett. 42(23) 5006-5009 (2017)

Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons

Sheng-Xuan Xia, Xiang Zhai, Ling-Ling Wang, Qi Lin, and Shuang-Chun Wen
Opt. Express 24(1) 427-436 (2016)

Multilayer graphene based optical bistability

Mehdi Sadeghi and Vahid Ahmadi
J. Opt. Soc. Am. B 35(3) 528-532 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  2. F. J. García de Abajo, “Special issue “2D materials for nanophotonics”,” ACS Photon. 4, 2959–2961 (2017).
    [Crossref]
  3. Q. Guo, C. Li, B. Deng, S. Yuan, F. Guinea, and F. Xia, “Infrared nanophotonics based on graphene plasmonics,” ACS Photon. 4, 2989–2999 (2017).
    [Crossref]
  4. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
    [Crossref]
  5. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
    [Crossref]
  6. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
    [Crossref]
  7. T. M. Slipchenko, M. L. Nesterov, R. Hillenbrand, A. Y. Nikitin, and L. Martín-Moreno, “Graphene plasmon reflection by corrugations,” ACS Photon. 4, 3081–3088 (2017).
    [Crossref]
  8. D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
    [Crossref]
  9. D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, “Plasmonics of magnetic and topological graphene-based nanostructures,” Nanophotonics 7, 597–611 (2018).
    [Crossref]
  10. G. Lovat, P. Burghignoli, and R. Araneo, “Low-frequency dominant-mode propagation in spatially dispersive graphene nanowaveguides,” IEEE Trans. Electromagn. Compat. 55, 328–333 (2013).
    [Crossref]
  11. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
    [Crossref]
  12. J. D. Cox and F. J. García de Abajo, “Transient nonlinear plasmonics in nanostructured graphene,” Optica 5, 429–433 (2018).
    [Crossref]
  13. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
    [Crossref]
  14. T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
    [Crossref]
  15. J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photon. 10, 354–408 (2018).
    [Crossref]
  16. P.-Y. Chen, H. Huang, D. Akinwande, and A. Alù, “Graphene-based plasmonic platform for reconfigurable terahertz nanodevices,” ACS Photon. 1, 647–654 (2014).
    [Crossref]
  17. M. Jablan, M. Soljačić, and H. Buljan, “Plasmons in graphene: fundamental properties and potential applications,” Proc. IEEE 101, 1689–1704 (2013).
    [Crossref]
  18. A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
    [Crossref]
  19. A. Woessner, M. B. Lundeberg, Y. Gao, P. A.-G. A. Principi, M. Carrega, K. Watanabe, M. P. T. Taniguchi, G. Vignale, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
    [Crossref]
  20. J. D. Caldwell and K. S. Novoselov, “Mid-infrared nanophotonics,” Nat. Mater. 14, 364–366 (2015).
    [Crossref]
  21. I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
    [Crossref]
  22. S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
    [Crossref]
  23. M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida, “Ultrafast pseudospin dynamics in graphene,” Phys. Rev. B 92, 165429 (2015).
    [Crossref]
  24. M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, and J. Biegert, “Ultrafast nonlinear optical response of Dirac fermions in graphene,” Nat. Commun. 9, 1018 (2018).
    [Crossref]
  25. A. V. Maslov and D. S. Citrin, “Numerical calculation of the terahertz field-induced changes in the optical absorption in quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8, 457–463 (2002).
    [Crossref]
  26. S. G. Carter, V. Birkedal, C. S. Wang, L. A. Coldren, A. V. Maslov, D. S. Citrin, and M. S. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
    [Crossref]
  27. F. D. Morgenthaler, “Velocity modulation of electromagnetic waves,” IRE Trans. Microwave Theory Tech. 6, 167–172 (1958).
    [Crossref]
  28. D. K. Kalluri, Electromagnetics of Time Varying Complex Media: Frequency and Polarization Transformer, 2nd ed. (CRC Press, 2010).
  29. K. Qu, Q. Jia, M. R. Edwards, and N. J. Fisch, “Theory of electromagnetic wave frequency upconversion in dynamic media,” Phys. Rev. E 98, 023202 (2018).
    [Crossref]
  30. M. I. Bakunov and S. N. Zhukov, “Conversion of a surface electromagnetic wave at the boundary of a time-varying plasma,” Plasma Phys. Rep. 22, 649–658 (1996).
    [Crossref]
  31. M. I. Bakunov, A. V. Maslov, and S. N. Zhukov, “Time-dependent scattering of a standing surface plasmon by rapid ionization in a semiconductor,” Opt. Lett. 25, 926–928 (2000).
    [Crossref]
  32. M. I. Bakunov, A. V. Maslov, and S. N. Zhukov, “Scattering of a surface plasmon polariton by rapid plasma creation in a semiconductor slab,” J. Opt. Soc. Am. B 16, 1942–1950 (1999).
    [Crossref]
  33. M. I. Bakunov and A. V. Maslov, “Reflection and transmission of electromagnetic waves at a temporal boundary: comment,” Opt. Lett. 39, 6029 (2014).
    [Crossref]
  34. K. Huang and T. Hong, “Dielectric polarization and electric displacement in polar-molecule reactions,” J. Phys. Chem. A 119, 8898–8902 (2015).
    [Crossref]
  35. G. A. Menendez and B. Maes, “Time reflection and refraction of graphene plasmons at a temporal discontinuity,” Opt. Lett. 42, 5006–5009 (2017).
    [Crossref]
  36. J. Wilson, F. Santosa, M. Min, and T. Low, “Temporal control of graphene plasmons,” Phys. Rev. B 98, 081411 (2018).
    [Crossref]
  37. S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85, 035443 (2012).
    [Crossref]
  38. T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108, 167401 (2012).
    [Crossref]
  39. Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27, 1341001 (2013).
    [Crossref]
  40. A. V. Maslov, “Levitation and propulsion of a Mie-resonance particle by a surface plasmon,” Opt. Lett. 42, 3327–3330 (2017).
    [Crossref]
  41. M. I. Bakunov and A. V. Maslov, “Trapping of an electromagnetic wave by the boundary of a time-varying plasma,” Phys. Rev. E 57, 5978–5987 (1998).
    [Crossref]
  42. M. I. Bakunov and A. V. Maslov, “Trapping of electromagnetic wave by nonstationary plasma layer,” Phys. Rev. Lett. 79, 4585–4588 (1997).
    [Crossref]

2018 (7)

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, “Plasmonics of magnetic and topological graphene-based nanostructures,” Nanophotonics 7, 597–611 (2018).
[Crossref]

J. D. Cox and F. J. García de Abajo, “Transient nonlinear plasmonics in nanostructured graphene,” Optica 5, 429–433 (2018).
[Crossref]

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photon. 10, 354–408 (2018).
[Crossref]

M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, and J. Biegert, “Ultrafast nonlinear optical response of Dirac fermions in graphene,” Nat. Commun. 9, 1018 (2018).
[Crossref]

K. Qu, Q. Jia, M. R. Edwards, and N. J. Fisch, “Theory of electromagnetic wave frequency upconversion in dynamic media,” Phys. Rev. E 98, 023202 (2018).
[Crossref]

J. Wilson, F. Santosa, M. Min, and T. Low, “Temporal control of graphene plasmons,” Phys. Rev. B 98, 081411 (2018).
[Crossref]

2017 (5)

A. V. Maslov, “Levitation and propulsion of a Mie-resonance particle by a surface plasmon,” Opt. Lett. 42, 3327–3330 (2017).
[Crossref]

G. A. Menendez and B. Maes, “Time reflection and refraction of graphene plasmons at a temporal discontinuity,” Opt. Lett. 42, 5006–5009 (2017).
[Crossref]

T. M. Slipchenko, M. L. Nesterov, R. Hillenbrand, A. Y. Nikitin, and L. Martín-Moreno, “Graphene plasmon reflection by corrugations,” ACS Photon. 4, 3081–3088 (2017).
[Crossref]

F. J. García de Abajo, “Special issue “2D materials for nanophotonics”,” ACS Photon. 4, 2959–2961 (2017).
[Crossref]

Q. Guo, C. Li, B. Deng, S. Yuan, F. Guinea, and F. Xia, “Infrared nanophotonics based on graphene plasmonics,” ACS Photon. 4, 2989–2999 (2017).
[Crossref]

2016 (1)

D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
[Crossref]

2015 (4)

K. Huang and T. Hong, “Dielectric polarization and electric displacement in polar-molecule reactions,” J. Phys. Chem. A 119, 8898–8902 (2015).
[Crossref]

M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida, “Ultrafast pseudospin dynamics in graphene,” Phys. Rev. B 92, 165429 (2015).
[Crossref]

A. Woessner, M. B. Lundeberg, Y. Gao, P. A.-G. A. Principi, M. Carrega, K. Watanabe, M. P. T. Taniguchi, G. Vignale, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

J. D. Caldwell and K. S. Novoselov, “Mid-infrared nanophotonics,” Nat. Mater. 14, 364–366 (2015).
[Crossref]

2014 (5)

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

M. I. Bakunov and A. V. Maslov, “Reflection and transmission of electromagnetic waves at a temporal boundary: comment,” Opt. Lett. 39, 6029 (2014).
[Crossref]

P.-Y. Chen, H. Huang, D. Akinwande, and A. Alù, “Graphene-based plasmonic platform for reconfigurable terahertz nanodevices,” ACS Photon. 1, 647–654 (2014).
[Crossref]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

2013 (4)

M. Jablan, M. Soljačić, and H. Buljan, “Plasmons in graphene: fundamental properties and potential applications,” Proc. IEEE 101, 1689–1704 (2013).
[Crossref]

G. Lovat, P. Burghignoli, and R. Araneo, “Low-frequency dominant-mode propagation in spatially dispersive graphene nanowaveguides,” IEEE Trans. Electromagn. Compat. 55, 328–333 (2013).
[Crossref]

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27, 1341001 (2013).
[Crossref]

2012 (5)

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85, 035443 (2012).
[Crossref]

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108, 167401 (2012).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

2011 (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

2010 (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

2005 (1)

S. G. Carter, V. Birkedal, C. S. Wang, L. A. Coldren, A. V. Maslov, D. S. Citrin, and M. S. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

2002 (1)

A. V. Maslov and D. S. Citrin, “Numerical calculation of the terahertz field-induced changes in the optical absorption in quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8, 457–463 (2002).
[Crossref]

2000 (1)

1999 (1)

1998 (1)

M. I. Bakunov and A. V. Maslov, “Trapping of an electromagnetic wave by the boundary of a time-varying plasma,” Phys. Rev. E 57, 5978–5987 (1998).
[Crossref]

1997 (1)

M. I. Bakunov and A. V. Maslov, “Trapping of electromagnetic wave by nonstationary plasma layer,” Phys. Rev. Lett. 79, 4585–4588 (1997).
[Crossref]

1996 (1)

M. I. Bakunov and S. N. Zhukov, “Conversion of a surface electromagnetic wave at the boundary of a time-varying plasma,” Plasma Phys. Rep. 22, 649–658 (1996).
[Crossref]

1958 (1)

F. D. Morgenthaler, “Velocity modulation of electromagnetic waves,” IRE Trans. Microwave Theory Tech. 6, 167–172 (1958).
[Crossref]

Akinwande, D.

P.-Y. Chen, H. Huang, D. Akinwande, and A. Alù, “Graphene-based plasmonic platform for reconfigurable terahertz nanodevices,” ACS Photon. 1, 647–654 (2014).
[Crossref]

Alonso-González, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Alù, A.

P.-Y. Chen, H. Huang, D. Akinwande, and A. Alù, “Graphene-based plasmonic platform for reconfigurable terahertz nanodevices,” ACS Photon. 1, 647–654 (2014).
[Crossref]

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Araneo, R.

G. Lovat, P. Burghignoli, and R. Araneo, “Low-frequency dominant-mode propagation in spatially dispersive graphene nanowaveguides,” IEEE Trans. Electromagn. Compat. 55, 328–333 (2013).
[Crossref]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Bakunov, M. I.

M. I. Bakunov and A. V. Maslov, “Reflection and transmission of electromagnetic waves at a temporal boundary: comment,” Opt. Lett. 39, 6029 (2014).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. N. Zhukov, “Time-dependent scattering of a standing surface plasmon by rapid ionization in a semiconductor,” Opt. Lett. 25, 926–928 (2000).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. N. Zhukov, “Scattering of a surface plasmon polariton by rapid plasma creation in a semiconductor slab,” J. Opt. Soc. Am. B 16, 1942–1950 (1999).
[Crossref]

M. I. Bakunov and A. V. Maslov, “Trapping of an electromagnetic wave by the boundary of a time-varying plasma,” Phys. Rev. E 57, 5978–5987 (1998).
[Crossref]

M. I. Bakunov and A. V. Maslov, “Trapping of electromagnetic wave by nonstationary plasma layer,” Phys. Rev. Lett. 79, 4585–4588 (1997).
[Crossref]

M. I. Bakunov and S. N. Zhukov, “Conversion of a surface electromagnetic wave at the boundary of a time-varying plasma,” Plasma Phys. Rep. 22, 649–658 (1996).
[Crossref]

Bao, J.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Basov, D. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Baudisch, M.

M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, and J. Biegert, “Ultrafast nonlinear optical response of Dirac fermions in graphene,” Nat. Commun. 9, 1018 (2018).
[Crossref]

Belzig, W.

M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida, “Ultrafast pseudospin dynamics in graphene,” Phys. Rev. B 92, 165429 (2015).
[Crossref]

Biegert, J.

M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, and J. Biegert, “Ultrafast nonlinear optical response of Dirac fermions in graphene,” Nat. Commun. 9, 1018 (2018).
[Crossref]

Birkedal, V.

S. G. Carter, V. Birkedal, C. S. Wang, L. A. Coldren, A. V. Maslov, D. S. Citrin, and M. S. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

Blake, P.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Bludov, Y. V.

Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27, 1341001 (2013).
[Crossref]

Boubanga-Tombet, S.

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85, 035443 (2012).
[Crossref]

Brida, D.

M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida, “Ultrafast pseudospin dynamics in graphene,” Phys. Rev. B 92, 165429 (2015).
[Crossref]

Budweg, A.

M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida, “Ultrafast pseudospin dynamics in graphene,” Phys. Rev. B 92, 165429 (2015).
[Crossref]

Buljan, H.

M. Jablan, M. Soljačić, and H. Buljan, “Plasmons in graphene: fundamental properties and potential applications,” Proc. IEEE 101, 1689–1704 (2013).
[Crossref]

Burghignoli, P.

G. Lovat, P. Burghignoli, and R. Araneo, “Low-frequency dominant-mode propagation in spatially dispersive graphene nanowaveguides,” IEEE Trans. Electromagn. Compat. 55, 328–333 (2013).
[Crossref]

Bychkov, I. V.

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, “Plasmonics of magnetic and topological graphene-based nanostructures,” Nanophotonics 7, 597–611 (2018).
[Crossref]

Cacho, C.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Caldwell, J. D.

J. D. Caldwell and K. S. Novoselov, “Mid-infrared nanophotonics,” Nat. Mater. 14, 364–366 (2015).
[Crossref]

Camara, N.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Cao, Y.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Carrega, M.

A. Woessner, M. B. Lundeberg, Y. Gao, P. A.-G. A. Principi, M. Carrega, K. Watanabe, M. P. T. Taniguchi, G. Vignale, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Carter, S. G.

S. G. Carter, V. Birkedal, C. S. Wang, L. A. Coldren, A. V. Maslov, D. S. Citrin, and M. S. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

Cavalleri, A.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Centeno, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Chan, S.

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85, 035443 (2012).
[Crossref]

Chapman, R.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Chen, B.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

Chen, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Chen, P.-Y.

P.-Y. Chen, H. Huang, D. Akinwande, and A. Alù, “Graphene-based plasmonic platform for reconfigurable terahertz nanodevices,” ACS Photon. 1, 647–654 (2014).
[Crossref]

Chung, D. S.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Cilento, F.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Citrin, D. S.

S. G. Carter, V. Birkedal, C. S. Wang, L. A. Coldren, A. V. Maslov, D. S. Citrin, and M. S. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

A. V. Maslov and D. S. Citrin, “Numerical calculation of the terahertz field-induced changes in the optical absorption in quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8, 457–463 (2002).
[Crossref]

Coldren, L. A.

S. G. Carter, V. Birkedal, C. S. Wang, L. A. Coldren, A. V. Maslov, D. S. Citrin, and M. S. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

Cox, J. D.

M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, and J. Biegert, “Ultrafast nonlinear optical response of Dirac fermions in graphene,” Nat. Commun. 9, 1018 (2018).
[Crossref]

J. D. Cox and F. J. García de Abajo, “Transient nonlinear plasmonics in nanostructured graphene,” Optica 5, 429–433 (2018).
[Crossref]

Crepaldi, A.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

De Fazio, D.

M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida, “Ultrafast pseudospin dynamics in graphene,” Phys. Rev. B 92, 165429 (2015).
[Crossref]

Deng, B.

Q. Guo, C. Li, B. Deng, S. Yuan, F. Guinea, and F. Xia, “Infrared nanophotonics based on graphene plasmonics,” ACS Photon. 4, 2989–2999 (2017).
[Crossref]

Dominguez, G.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Eda, G.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Edwards, M. R.

K. Qu, Q. Jia, M. R. Edwards, and N. J. Fisch, “Theory of electromagnetic wave frequency upconversion in dynamic media,” Phys. Rev. E 98, 023202 (2018).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

Fainman, Y.

Fang, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

Fei, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Ferrari, A. C.

M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida, “Ultrafast pseudospin dynamics in graphene,” Phys. Rev. B 92, 165429 (2015).
[Crossref]

Ferreira, A.

Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27, 1341001 (2013).
[Crossref]

Fisch, N. J.

K. Qu, Q. Jia, M. R. Edwards, and N. J. Fisch, “Theory of electromagnetic wave frequency upconversion in dynamic media,” Phys. Rev. E 98, 023202 (2018).
[Crossref]

Fogler, M. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Fromm, F.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Gao, Y.

A. Woessner, M. B. Lundeberg, Y. Gao, P. A.-G. A. Principi, M. Carrega, K. Watanabe, M. P. T. Taniguchi, G. Vignale, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

García de Abajo, F. J.

M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, and J. Biegert, “Ultrafast nonlinear optical response of Dirac fermions in graphene,” Nat. Commun. 9, 1018 (2018).
[Crossref]

J. D. Cox and F. J. García de Abajo, “Transient nonlinear plasmonics in nanostructured graphene,” Optica 5, 429–433 (2018).
[Crossref]

F. J. García de Abajo, “Special issue “2D materials for nanophotonics”,” ACS Photon. 4, 2959–2961 (2017).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Geim, A. K.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Georgiou, T.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Gholinia, A.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Gierz, I.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Gorbachev, R. V.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Grioni, M.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Grupp, A.

M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida, “Ultrafast pseudospin dynamics in graphene,” Phys. Rev. B 92, 165429 (2015).
[Crossref]

Guinea, F.

Q. Guo, C. Li, B. Deng, S. Yuan, F. Guinea, and F. Xia, “Infrared nanophotonics based on graphene plasmonics,” ACS Photon. 4, 2989–2999 (2017).
[Crossref]

Guo, Q.

Q. Guo, C. Li, B. Deng, S. Yuan, F. Guinea, and F. Xia, “Infrared nanophotonics based on graphene plasmonics,” ACS Photon. 4, 2989–2999 (2017).
[Crossref]

Ha, T.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Haigh, S. J.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Hillenbrand, R.

T. M. Slipchenko, M. L. Nesterov, R. Hillenbrand, A. Y. Nikitin, and L. Martín-Moreno, “Graphene plasmon reflection by corrugations,” ACS Photon. 4, 3081–3088 (2017).
[Crossref]

A. Woessner, M. B. Lundeberg, Y. Gao, P. A.-G. A. Principi, M. Carrega, K. Watanabe, M. P. T. Taniguchi, G. Vignale, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Hofmann, P.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Hone, J.

A. Woessner, M. B. Lundeberg, Y. Gao, P. A.-G. A. Principi, M. Carrega, K. Watanabe, M. P. T. Taniguchi, G. Vignale, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Hong, T.

K. Huang and T. Hong, “Dielectric polarization and electric displacement in polar-molecule reactions,” J. Phys. Chem. A 119, 8898–8902 (2015).
[Crossref]

Hu, Z.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

Huang, H.

P.-Y. Chen, H. Huang, D. Akinwande, and A. Alù, “Graphene-based plasmonic platform for reconfigurable terahertz nanodevices,” ACS Photon. 1, 647–654 (2014).
[Crossref]

Huang, K.

K. Huang and T. Hong, “Dielectric polarization and electric displacement in polar-molecule reactions,” J. Phys. Chem. A 119, 8898–8902 (2015).
[Crossref]

Hucho, C.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Hupalo, M.

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108, 167401 (2012).
[Crossref]

Huth, F.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Jablan, M.

M. Jablan, M. Soljačić, and H. Buljan, “Plasmons in graphene: fundamental properties and potential applications,” Proc. IEEE 101, 1689–1704 (2013).
[Crossref]

Jalil, R.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Jia, Q.

K. Qu, Q. Jia, M. R. Edwards, and N. J. Fisch, “Theory of electromagnetic wave frequency upconversion in dynamic media,” Phys. Rev. E 98, 023202 (2018).
[Crossref]

Johannsen, J. C.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Kalluri, D. K.

D. K. Kalluri, Electromagnetics of Time Varying Complex Media: Frequency and Polarization Transformer, 2nd ed. (CRC Press, 2010).

Keilmann, F.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Khanikaev, A. B.

D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
[Crossref]

Kim, H.-D.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Kim, T.-T.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

King, P. D. C.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Kivshar, Y. S.

D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
[Crossref]

Köhler, A.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Koppens, F.

M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, and J. Biegert, “Ultrafast nonlinear optical response of Dirac fermions in graphene,” Nat. Commun. 9, 1018 (2018).
[Crossref]

Koppens, F. H. L.

A. Woessner, M. B. Lundeberg, Y. Gao, P. A.-G. A. Principi, M. Carrega, K. Watanabe, M. P. T. Taniguchi, G. Vignale, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Kretinin, A. V.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Kuzmin, D. A.

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, “Plasmonics of magnetic and topological graphene-based nanostructures,” Nanophotonics 7, 597–611 (2018).
[Crossref]

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Lee, Y. H.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Leitenstorfer, A.

M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida, “Ultrafast pseudospin dynamics in graphene,” Phys. Rev. B 92, 165429 (2015).
[Crossref]

Levitov, L. S.

M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, and J. Biegert, “Ultrafast nonlinear optical response of Dirac fermions in graphene,” Nat. Commun. 9, 1018 (2018).
[Crossref]

Li, C.

Q. Guo, C. Li, B. Deng, S. Yuan, F. Guinea, and F. Xia, “Infrared nanophotonics based on graphene plasmonics,” ACS Photon. 4, 2989–2999 (2017).
[Crossref]

Li, T.

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108, 167401 (2012).
[Crossref]

Li, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

Li, X.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

Liu, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

Lombardo, A.

M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida, “Ultrafast pseudospin dynamics in graphene,” Phys. Rev. B 92, 165429 (2015).
[Crossref]

Lovat, G.

G. Lovat, P. Burghignoli, and R. Araneo, “Low-frequency dominant-mode propagation in spatially dispersive graphene nanowaveguides,” IEEE Trans. Electromagn. Compat. 55, 328–333 (2013).
[Crossref]

Low, T.

J. Wilson, F. Santosa, M. Min, and T. Low, “Temporal control of graphene plasmons,” Phys. Rev. B 98, 081411 (2018).
[Crossref]

Lozada, M.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Lundeberg, M. B.

A. Woessner, M. B. Lundeberg, Y. Gao, P. A.-G. A. Principi, M. Carrega, K. Watanabe, M. P. T. Taniguchi, G. Vignale, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Luo, L.

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108, 167401 (2012).
[Crossref]

Maes, B.

Mammadov, S.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Marini, A.

M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, and J. Biegert, “Ultrafast nonlinear optical response of Dirac fermions in graphene,” Nat. Commun. 9, 1018 (2018).
[Crossref]

Martín-Moreno, L.

T. M. Slipchenko, M. L. Nesterov, R. Hillenbrand, A. Y. Nikitin, and L. Martín-Moreno, “Graphene plasmon reflection by corrugations,” ACS Photon. 4, 3081–3088 (2017).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Maslov, A. V.

A. V. Maslov, “Levitation and propulsion of a Mie-resonance particle by a surface plasmon,” Opt. Lett. 42, 3327–3330 (2017).
[Crossref]

M. I. Bakunov and A. V. Maslov, “Reflection and transmission of electromagnetic waves at a temporal boundary: comment,” Opt. Lett. 39, 6029 (2014).
[Crossref]

S. G. Carter, V. Birkedal, C. S. Wang, L. A. Coldren, A. V. Maslov, D. S. Citrin, and M. S. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

A. V. Maslov and D. S. Citrin, “Numerical calculation of the terahertz field-induced changes in the optical absorption in quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8, 457–463 (2002).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. N. Zhukov, “Time-dependent scattering of a standing surface plasmon by rapid ionization in a semiconductor,” Opt. Lett. 25, 926–928 (2000).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. N. Zhukov, “Scattering of a surface plasmon polariton by rapid plasma creation in a semiconductor slab,” J. Opt. Soc. Am. B 16, 1942–1950 (1999).
[Crossref]

M. I. Bakunov and A. V. Maslov, “Trapping of an electromagnetic wave by the boundary of a time-varying plasma,” Phys. Rev. E 57, 5978–5987 (1998).
[Crossref]

M. I. Bakunov and A. V. Maslov, “Trapping of electromagnetic wave by nonstationary plasma layer,” Phys. Rev. Lett. 79, 4585–4588 (1997).
[Crossref]

Massicotte, M.

M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, and J. Biegert, “Ultrafast nonlinear optical response of Dirac fermions in graphene,” Nat. Commun. 9, 1018 (2018).
[Crossref]

McLeod, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Menendez, G. A.

Meng, C.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

Min, B.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Min, M.

J. Wilson, F. Santosa, M. Min, and T. Low, “Temporal control of graphene plasmons,” Phys. Rev. B 98, 081411 (2018).
[Crossref]

Mishchenko, A.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Mitrano, M.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Miwa, J. A.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Morgenthaler, F. D.

F. D. Morgenthaler, “Velocity modulation of electromagnetic waves,” IRE Trans. Microwave Theory Tech. 6, 167–172 (1958).
[Crossref]

Mousavi, S. H.

D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
[Crossref]

Nesterov, M. L.

T. M. Slipchenko, M. L. Nesterov, R. Hillenbrand, A. Y. Nikitin, and L. Martín-Moreno, “Graphene plasmon reflection by corrugations,” ACS Photon. 4, 3081–3088 (2017).
[Crossref]

Neto, A. H. C.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Nikitin, A. Y.

T. M. Slipchenko, M. L. Nesterov, R. Hillenbrand, A. Y. Nikitin, and L. Martín-Moreno, “Graphene plasmon reflection by corrugations,” ACS Photon. 4, 3081–3088 (2017).
[Crossref]

Novoselov, K. S.

J. D. Caldwell and K. S. Novoselov, “Mid-infrared nanophotonics,” Nat. Mater. 14, 364–366 (2015).
[Crossref]

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Oh, S. S.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Osmond, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Otsuji, T.

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85, 035443 (2012).
[Crossref]

Parmigiani, F.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Peres, N. M. R.

Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27, 1341001 (2013).
[Crossref]

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Petersen, J. C.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Principi, P. A.-G. A.

A. Woessner, M. B. Lundeberg, Y. Gao, P. A.-G. A. Principi, M. Carrega, K. Watanabe, M. P. T. Taniguchi, G. Vignale, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Qu, K.

K. Qu, Q. Jia, M. R. Edwards, and N. J. Fisch, “Theory of electromagnetic wave frequency upconversion in dynamic media,” Phys. Rev. E 98, 023202 (2018).
[Crossref]

Raidel, C.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Rodin, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Ryzhii, V.

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85, 035443 (2012).
[Crossref]

Santosa, F.

J. Wilson, F. Santosa, M. Min, and T. Low, “Temporal control of graphene plasmons,” Phys. Rev. B 98, 081411 (2018).
[Crossref]

Sassi, U.

M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida, “Ultrafast pseudospin dynamics in graphene,” Phys. Rev. B 92, 165429 (2015).
[Crossref]

Satou, A.

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85, 035443 (2012).
[Crossref]

Schmalian, J.

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108, 167401 (2012).
[Crossref]

Seyller, T.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Shavrov, V. G.

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, “Plasmonics of magnetic and topological graphene-based nanostructures,” Nanophotonics 7, 597–611 (2018).
[Crossref]

Shen, Y. R.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

Sherwin, M. S.

S. G. Carter, V. Birkedal, C. S. Wang, L. A. Coldren, A. V. Maslov, D. S. Citrin, and M. S. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

Silva, F.

M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, and J. Biegert, “Ultrafast nonlinear optical response of Dirac fermions in graphene,” Nat. Commun. 9, 1018 (2018).
[Crossref]

Slipchenko, T. M.

T. M. Slipchenko, M. L. Nesterov, R. Hillenbrand, A. Y. Nikitin, and L. Martín-Moreno, “Graphene plasmon reflection by corrugations,” ACS Photon. 4, 3081–3088 (2017).
[Crossref]

Smalley, J. S. T.

Smirnova, D.

D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
[Crossref]

Soavi, G.

M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida, “Ultrafast pseudospin dynamics in graphene,” Phys. Rev. B 92, 165429 (2015).
[Crossref]

Soljacic, M.

M. Jablan, M. Soljačić, and H. Buljan, “Plasmons in graphene: fundamental properties and potential applications,” Proc. IEEE 101, 1689–1704 (2013).
[Crossref]

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Springate, E.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Starke, U.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Stöhr, A.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Taniguchi, M. P. T.

A. Woessner, M. B. Lundeberg, Y. Gao, P. A.-G. A. Principi, M. Carrega, K. Watanabe, M. P. T. Taniguchi, G. Vignale, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Taniguchi, T.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Teichmann, S.

M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, and J. Biegert, “Ultrafast nonlinear optical response of Dirac fermions in graphene,” Nat. Commun. 9, 1018 (2018).
[Crossref]

Temnov, V. V.

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, “Plasmonics of magnetic and topological graphene-based nanostructures,” Nanophotonics 7, 597–611 (2018).
[Crossref]

Thiemens, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Thongrattanasiri, S.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Tong, L.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

Tringides, M. C.

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108, 167401 (2012).
[Crossref]

Trushin, M.

M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida, “Ultrafast pseudospin dynamics in graphene,” Phys. Rev. B 92, 165429 (2015).
[Crossref]

Tu, J. S.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Turcu, I. C. E.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Ulstrup, S.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

Vallini, F.

Vasilevskiy, M. I.

Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27, 1341001 (2013).
[Crossref]

Vignale, G.

A. Woessner, M. B. Lundeberg, Y. Gao, P. A.-G. A. Principi, M. Carrega, K. Watanabe, M. P. T. Taniguchi, G. Vignale, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Wagner, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Wang, C. S.

S. G. Carter, V. Birkedal, C. S. Wang, L. A. Coldren, A. V. Maslov, D. S. Citrin, and M. S. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

Wang, H.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

Wang, J.

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108, 167401 (2012).
[Crossref]

Wang, Z.

D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
[Crossref]

Watanabe, K.

A. Woessner, M. B. Lundeberg, Y. Gao, P. A.-G. A. Principi, M. Carrega, K. Watanabe, M. P. T. Taniguchi, G. Vignale, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Watanabe, T.

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85, 035443 (2012).
[Crossref]

Wilson, J.

J. Wilson, F. Santosa, M. Min, and T. Low, “Temporal control of graphene plasmons,” Phys. Rev. B 98, 081411 (2018).
[Crossref]

Wirsig, A.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Withers, F.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Woessner, A.

A. Woessner, M. B. Lundeberg, Y. Gao, P. A.-G. A. Principi, M. Carrega, K. Watanabe, M. P. T. Taniguchi, G. Vignale, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Woods, C. R.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Xia, F.

Q. Guo, C. Li, B. Deng, S. Yuan, F. Guinea, and F. Xia, “Infrared nanophotonics based on graphene plasmonics,” ACS Photon. 4, 2989–2999 (2017).
[Crossref]

Xiao, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

Xu, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

Yu, G. L.

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Yuan, S.

Q. Guo, C. Li, B. Deng, S. Yuan, F. Guinea, and F. Xia, “Infrared nanophotonics based on graphene plasmonics,” ACS Photon. 4, 2989–2999 (2017).
[Crossref]

Zacchigna, M.

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Zhang, J.

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108, 167401 (2012).
[Crossref]

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Zhang, S.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Zhang, X.

Zhao, R.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Zhu, T.

M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, and J. Biegert, “Ultrafast nonlinear optical response of Dirac fermions in graphene,” Nat. Commun. 9, 1018 (2018).
[Crossref]

Zhukov, S. N.

ACS Photon. (6)

F. J. García de Abajo, “Special issue “2D materials for nanophotonics”,” ACS Photon. 4, 2959–2961 (2017).
[Crossref]

Q. Guo, C. Li, B. Deng, S. Yuan, F. Guinea, and F. Xia, “Infrared nanophotonics based on graphene plasmonics,” ACS Photon. 4, 2989–2999 (2017).
[Crossref]

T. M. Slipchenko, M. L. Nesterov, R. Hillenbrand, A. Y. Nikitin, and L. Martín-Moreno, “Graphene plasmon reflection by corrugations,” ACS Photon. 4, 3081–3088 (2017).
[Crossref]

D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
[Crossref]

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

P.-Y. Chen, H. Huang, D. Akinwande, and A. Alù, “Graphene-based plasmonic platform for reconfigurable terahertz nanodevices,” ACS Photon. 1, 647–654 (2014).
[Crossref]

Adv. Opt. Photon. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

A. V. Maslov and D. S. Citrin, “Numerical calculation of the terahertz field-induced changes in the optical absorption in quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8, 457–463 (2002).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

G. Lovat, P. Burghignoli, and R. Araneo, “Low-frequency dominant-mode propagation in spatially dispersive graphene nanowaveguides,” IEEE Trans. Electromagn. Compat. 55, 328–333 (2013).
[Crossref]

Int. J. Mod. Phys. B (1)

Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27, 1341001 (2013).
[Crossref]

IRE Trans. Microwave Theory Tech. (1)

F. D. Morgenthaler, “Velocity modulation of electromagnetic waves,” IRE Trans. Microwave Theory Tech. 6, 167–172 (1958).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

K. Huang and T. Hong, “Dielectric polarization and electric displacement in polar-molecule reactions,” J. Phys. Chem. A 119, 8898–8902 (2015).
[Crossref]

Nano Lett. (2)

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).
[Crossref]

A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).
[Crossref]

Nanophotonics (1)

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, “Plasmonics of magnetic and topological graphene-based nanostructures,” Nanophotonics 7, 597–611 (2018).
[Crossref]

Nat. Commun. (1)

M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, and J. Biegert, “Ultrafast nonlinear optical response of Dirac fermions in graphene,” Nat. Commun. 9, 1018 (2018).
[Crossref]

Nat. Mater. (3)

A. Woessner, M. B. Lundeberg, Y. Gao, P. A.-G. A. Principi, M. Carrega, K. Watanabe, M. P. T. Taniguchi, G. Vignale, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

J. D. Caldwell and K. S. Novoselov, “Mid-infrared nanophotonics,” Nat. Mater. 14, 364–366 (2015).
[Crossref]

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Nat. Photonics (2)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Nature (2)

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
[Crossref]

Opt. Lett. (4)

Optica (1)

Phys. Rev. B (3)

J. Wilson, F. Santosa, M. Min, and T. Low, “Temporal control of graphene plasmons,” Phys. Rev. B 98, 081411 (2018).
[Crossref]

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85, 035443 (2012).
[Crossref]

M. Trushin, A. Grupp, G. Soavi, A. Budweg, D. De Fazio, U. Sassi, A. Lombardo, A. C. Ferrari, W. Belzig, A. Leitenstorfer, and D. Brida, “Ultrafast pseudospin dynamics in graphene,” Phys. Rev. B 92, 165429 (2015).
[Crossref]

Phys. Rev. E (2)

K. Qu, Q. Jia, M. R. Edwards, and N. J. Fisch, “Theory of electromagnetic wave frequency upconversion in dynamic media,” Phys. Rev. E 98, 023202 (2018).
[Crossref]

M. I. Bakunov and A. V. Maslov, “Trapping of an electromagnetic wave by the boundary of a time-varying plasma,” Phys. Rev. E 57, 5978–5987 (1998).
[Crossref]

Phys. Rev. Lett. (3)

M. I. Bakunov and A. V. Maslov, “Trapping of electromagnetic wave by nonstationary plasma layer,” Phys. Rev. Lett. 79, 4585–4588 (1997).
[Crossref]

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108, 167401 (2012).
[Crossref]

S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fermions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).
[Crossref]

Plasma Phys. Rep. (1)

M. I. Bakunov and S. N. Zhukov, “Conversion of a surface electromagnetic wave at the boundary of a time-varying plasma,” Plasma Phys. Rep. 22, 649–658 (1996).
[Crossref]

Proc. IEEE (1)

M. Jablan, M. Soljačić, and H. Buljan, “Plasmons in graphene: fundamental properties and potential applications,” Proc. IEEE 101, 1689–1704 (2013).
[Crossref]

Science (2)

S. G. Carter, V. Birkedal, C. S. Wang, L. A. Coldren, A. V. Maslov, D. S. Citrin, and M. S. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

Other (1)

D. K. Kalluri, Electromagnetics of Time Varying Complex Media: Frequency and Polarization Transformer, 2nd ed. (CRC Press, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Illustration of a surface plasmon propagating along a graphene sheet at t<0. (b) Time dependence of the graphene carrier density. (c) Dispersion diagram showing the frequency transformation of the initial plasmon when the carrier density decreases from N1 to N2. The lines labeled by 1 and 2 are the dispersion curves for the plasmons at densities N1 and N2, respectively. The shaded region shows the continuous spectrum for bulk waves; the hatched region defines the spectrum of the generated transient radiation. The dashed lines h=ϵ|ω|/c are the light lines.
Fig. 2.
Fig. 2. (a) Phase nph and group ngr refractive indices for graphene plasmons. The dashed line shows the asymptotics nphω/(2πΩ). (b) Decomposition of the plasmon energy W0 into the electric WE, magnetic WH, and kinetic Wk parts.
Fig. 3.
Fig. 3. Frequency ω2 of the excited plasmon relative (a) to the initial frequency ω1 and (b) to the frequency parameter Ω2 as a function of Ω2/Ω1.
Fig. 4.
Fig. 4. Energy distribution after temporal scattering as a function of Ω2/Ω1 for (a) ω1/Ω1=15 and (b) ω1/Ω1=1.
Fig. 5.
Fig. 5. Far-field angular distribution wb(θ)/W0 for Ω2/Ω1=0.5 and several values of ω1/Ω1.
Fig. 6.
Fig. 6. Comparison of the plasmon transmission tH and reflection rH coefficients obtained here (general and quasi-static results) and available from the literature for ω1/Ω1=15. Equation (11) is the general formula and Eq. (18) is the quasi-static formula derived here. Equation (19) is from Ref. [35]. Equation (20) is from Ref. [36].
Fig. 7.
Fig. 7. Snapshots of the electric field distribution Ex(x,y,t) produced by a plasmon wavepacket with central frequency ω1/Ω1=10 at three time moments t=0, 0.15/Ω1, 7/Ω1. Initially the wavepacket propagates along the graphene sheet at y=0 in the +x direction (frame t=0). Soon after the carrier density jump Ω2/Ω1=0.2 at t=0, transient processes take place (frame t=0.15/Ω1). Finally, two propagating plasmons are formed (frame t=7/Ω1).
Fig. 8.
Fig. 8. Obtaining the transmission coefficients tE,H from the FDTD simulations. (a) Absolute value of the incident Exi(ω), Hzi(ω) and transmitted Ext(ω), Hzt(ω) field spectra for Ω2/Ω1=0.6. (b) Analytically calculated frequency ω2 of the excited plasmon as a function of the frequency ω1 of the incident plasmon. (c) Differential spectral transormation f=dω2/dω1, which is the derivative of ω2(ω1) shown in frame (b). (d) Comparison of the transmission coefficients obtained numerically from the FDTD simulations and analytically using Eqs. (11)–(13).

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

Ex(x,y,t)=E0eihxiωtϰ|y|,
jx=σEx,σ=icΩ/ω,
h(ω)=ωcϵ1+ϵω24π2Ω2,ϰ(ω)=ϵω22πcΩ.
WE,H=E02ϵ4πϰ(h2ϰ2±1),Wk=|j0|2cΩ,
γ=Ω2/Ω1=Ef2/Ef1<1
ih1EyExy=1cHzt,
Hzy=ϵcExt+4πcjxδ(y),
ih1Hz=ϵcEyt,
jx(t=0+)jx(t=0)=j1(2)j1(1)+j1(2)=Ω1(2)Ω1(1)+Ω1(2)=Ω2Ω1.
jxt=cΩ2Ex,jx(t=0+)=Ω2Ω1jx(t=0).
E˜x(x,y,p)=Ex(x,y,0)p+iω1+A(p)eih1xϰ(p)|y|,
A(p)=iϰp(Ω2Ω1)E0ω1Ω2(p+iω1)D(p),D(p)=ϰ(p)+ϵp22πcΩ2.
Ext,r=πcϰ2ω22(Ω2Ω1)ω1(ω1ω2)(ϵω22+2π2Ω22)E0.
tE=Ext/E0,rE=Exr/E0,
tH=Hzt/H0=ξtE,rH=Hzr/H0=ξrE.
W0=Wt+Wr+Wb+Wl.
Wb=02πdθwb(θ),wb(θ)=c2h14π2|A(iω(θ))|2cos2θ,
Ex(x,y,t)=E0(tEeiω2t+rEeiω2t)eih1xϰ2|y|.
tE=(1+γ)/2,rE=(1γ)/2.
tH=γ(1+γ)/2,rH=γ(1γ)/2.
|tH|=(1+γ)/(2γ),|rH|=|1γ|/(2γ).
tH=(1+γ)/2,rH=(1γ)/2.
Hzt(ω2)Δω2=tHHzi(ω1)Δω1,
tH=f·Hzt(ω2)Hzi(ω1),f=dω2(ω1)dω1,
dωHzt(ω)=tHdωHzi(ω).