Abstract

Whispering-gallery-mode (WGM) microresonators provide a high-performance platform for measuring single nanoparticles and viruses, as well as large molecules. However, there is still room for further improving their sensitivity and detection limit, towards their theoretical limit. Here, we present a new method that enhances the performance of WGM sensors based on the mode-splitting method. We show that scatterer-induced mode splitting is significantly enhanced in a rotating resonator. This enhancement originates from the different Sagnac frequency shifts that the clockwise and counterclockwise optical fields in the resonator experience due to the rotation of the resonator. Our approach, combining Sagnac shift and mode splitting, provides a new route for enhancing the coherent optical sensing of nanoparticles with single-particle resolution. In addition, our results shed light on the studies of, e.g., topological or optoacoustic effects with rotating devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design guidelines for nanoparticle chemical sensors based on mode-splitting silicon-on-insulator planar microcavities

C. M. Campanella, M. Dunai, L. Calabrese, and C. E. Campanella
J. Opt. Soc. Am. B 33(11) 2383-2394 (2016)

Detection and size measurement of individual hemozoin nanocrystals in aquatic environment using a whispering gallery mode resonator

Woosung Kim, Sahin Kaya Ozdemir, Jiangang Zhu, Faraz Monifi, Cevayir Coban, and Lan Yang
Opt. Express 20(28) 29426-29446 (2012)

Parity-time-symmetric whispering-gallery mode nanoparticle sensor [Invited]

Weijian Chen, Jing Zhang, Bo Peng, Şahin Kaya Özdemir, Xudong Fan, and Lan Yang
Photon. Res. 6(5) A23-A30 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  2. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode,” Adv. Opt. Photon. 7, 168–240 (2015).
    [Crossref]
  3. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
    [Crossref]
  4. R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for Heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5, 054019 (2016).
    [Crossref]
  5. S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
    [Crossref]
  6. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,”Science 317, 783–787 (2007).
    [Crossref]
  7. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
    [Crossref]
  8. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  9. L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
    [Crossref]
  10. Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whisperinggallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836 (2014).
    [Crossref]
  11. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
    [Crossref]
  12. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
    [Crossref]
  13. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
    [Crossref]
  14. B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
    [Crossref]
  15. J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901 (2014).
    [Crossref]
  16. J. Wiersig, “Sensors operating at exceptional points: general theory,” Phys. Rev. A 93, 033809 (2016).
    [Crossref]
  17. B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
    [Crossref]
  18. W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
    [Crossref]
  19. H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Nature 548, 187–191 (2017).
    [Crossref]
  20. E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–481 (1967).
    [Crossref]
  21. W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).
    [Crossref]
  22. J. Li, M.-G. Suh, and K. Vahala, “Microresonator Brillouin gyroscope,” Optica 4, 346–348 (2017).
    [Crossref]
  23. R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).
    [Crossref]
  24. M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341, 537–540 (2013).
    [Crossref]
  25. S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011).
    [Crossref]
  26. S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, and T. Carmon, “Flying couplers above spinning resonators generate irreversible refraction,” Nature 558, 569–572 (2018).
    [Crossref]
  27. R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, “Sound isolation and giant linear nonreciprocity in a compact acoustic circulator,” Science 343, 516–519 (2014).
    [Crossref]
  28. A. A. Wood, E. Lilette, Y. Y. Fein, A. Stacey, N. Tomek, L. P. McGuinness, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Quantum measurement of a rapidly rotating spin qubit in diamond,” Sci. Adv. 4, eaar7691 (2018).
    [Crossref]
  29. J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
    [Crossref]
  30. J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
    [Crossref]
  31. G. B. Malykin, “The Sagnac effect: correct and incorrect explanations,” Phys. Usp. 43, 1229–1252 (2000).
    [Crossref]
  32. Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
    [Crossref]
  33. A. A. Wood, E. Lilette, Y. Y. Fein, V. S. Perunicic, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Magnetic pseudo-fields in a rotating electron–nuclear spin system,” Nat. Phys. 13, 1070–1073 (2017).
    [Crossref]
  34. R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, and L. Novotny, “Enhanced sensitivity at higher-order exceptional points,” Phys. Rev. Lett. 121, 033602 (2018).
    [Crossref]
  35. J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, and T. Li, “GHz rotation of an optically trapped nanoparticle in vacuum,” Phys. Rev. Lett. 121, 033603 (2018).
    [Crossref]

2018 (4)

S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, and T. Carmon, “Flying couplers above spinning resonators generate irreversible refraction,” Nature 558, 569–572 (2018).
[Crossref]

A. A. Wood, E. Lilette, Y. Y. Fein, A. Stacey, N. Tomek, L. P. McGuinness, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Quantum measurement of a rapidly rotating spin qubit in diamond,” Sci. Adv. 4, eaar7691 (2018).
[Crossref]

R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, and L. Novotny, “Enhanced sensitivity at higher-order exceptional points,” Phys. Rev. Lett. 121, 033602 (2018).
[Crossref]

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, and T. Li, “GHz rotation of an optically trapped nanoparticle in vacuum,” Phys. Rev. Lett. 121, 033603 (2018).
[Crossref]

2017 (4)

A. A. Wood, E. Lilette, Y. Y. Fein, V. S. Perunicic, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Magnetic pseudo-fields in a rotating electron–nuclear spin system,” Nat. Phys. 13, 1070–1073 (2017).
[Crossref]

J. Li, M.-G. Suh, and K. Vahala, “Microresonator Brillouin gyroscope,” Optica 4, 346–348 (2017).
[Crossref]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Nature 548, 187–191 (2017).
[Crossref]

2016 (3)

J. Wiersig, “Sensors operating at exceptional points: general theory,” Phys. Rev. A 93, 033809 (2016).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for Heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5, 054019 (2016).
[Crossref]

2015 (2)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode,” Adv. Opt. Photon. 7, 168–240 (2015).
[Crossref]

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).
[Crossref]

2014 (5)

R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, “Sound isolation and giant linear nonreciprocity in a compact acoustic circulator,” Science 343, 516–519 (2014).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whisperinggallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901 (2014).
[Crossref]

2013 (4)

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341, 537–540 (2013).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

2012 (2)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

2011 (4)

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011).
[Crossref]

2010 (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

2008 (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

2007 (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,”Science 317, 783–787 (2007).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

2000 (1)

G. B. Malykin, “The Sagnac effect: correct and incorrect explanations,” Phys. Usp. 43, 1229–1252 (2000).
[Crossref]

1985 (1)

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).
[Crossref]

1967 (1)

E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–481 (1967).
[Crossref]

Ahn, J.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, and T. Li, “GHz rotation of an optically trapped nanoparticle in vacuum,” Phys. Rev. Lett. 121, 033603 (2018).
[Crossref]

Alù, A.

R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, “Sound isolation and giant linear nonreciprocity in a compact acoustic circulator,” Science 343, 516–519 (2014).
[Crossref]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,”Science 317, 783–787 (2007).
[Crossref]

Arnold, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Bang, J.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, and T. Li, “GHz rotation of an optically trapped nanoparticle in vacuum,” Phys. Rev. Lett. 121, 033603 (2018).
[Crossref]

Barbre, C.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Barnett, S. M.

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341, 537–540 (2013).
[Crossref]

Bowen, W. P.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Boyd, R. W.

S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011).
[Crossref]

Brawley, G. A.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

Cao, H.

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).
[Crossref]

Carmon, T.

S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, and T. Carmon, “Flying couplers above spinning resonators generate irreversible refraction,” Nature 558, 569–572 (2018).
[Crossref]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chen, W.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Chow, W. W.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).
[Crossref]

Christodoulides, D. N.

S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, and T. Carmon, “Flying couplers above spinning resonators generate irreversible refraction,” Nature 558, 569–572 (2018).
[Crossref]

H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Nature 548, 187–191 (2017).
[Crossref]

Clements, W. R.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Dahan, R.

S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, and T. Carmon, “Flying couplers above spinning resonators generate irreversible refraction,” Nature 558, 569–572 (2018).
[Crossref]

Dantham, V. R.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Deng, Y.-H.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, and T. Li, “GHz rotation of an optically trapped nanoparticle in vacuum,” Phys. Rev. Lett. 121, 033603 (2018).
[Crossref]

Diehl, R.

R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, and L. Novotny, “Enhanced sensitivity at higher-order exceptional points,” Phys. Rev. Lett. 121, 033602 (2018).
[Crossref]

Doderer, M.

R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, and L. Novotny, “Enhanced sensitivity at higher-order exceptional points,” Phys. Rev. Lett. 121, 033602 (2018).
[Crossref]

El-Ganainy, R.

H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Nature 548, 187–191 (2017).
[Crossref]

Fein, Y. Y.

A. A. Wood, E. Lilette, Y. Y. Fein, A. Stacey, N. Tomek, L. P. McGuinness, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Quantum measurement of a rapidly rotating spin qubit in diamond,” Sci. Adv. 4, eaar7691 (2018).
[Crossref]

A. A. Wood, E. Lilette, Y. Y. Fein, V. S. Perunicic, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Magnetic pseudo-fields in a rotating electron–nuclear spin system,” Nat. Phys. 13, 1070–1073 (2017).
[Crossref]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,”Science 317, 783–787 (2007).
[Crossref]

Fleury, R.

R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, “Sound isolation and giant linear nonreciprocity in a compact acoustic circulator,” Science 343, 516–519 (2014).
[Crossref]

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode,” Adv. Opt. Photon. 7, 168–240 (2015).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Forstner, S.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Franke-Arnold, S.

S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011).
[Crossref]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,”Science 317, 783–787 (2007).
[Crossref]

Frimmer, M.

R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, and L. Novotny, “Enhanced sensitivity at higher-order exceptional points,” Phys. Rev. Lett. 121, 033602 (2018).
[Crossref]

Garcia-Gracia, H.

H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Nature 548, 187–191 (2017).
[Crossref]

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

Ge, L.

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).
[Crossref]

Gea-Banacloche, J.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).
[Crossref]

Ghadimi, A. H.

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for Heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5, 054019 (2016).
[Crossref]

Gibson, G.

S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011).
[Crossref]

Gong, Q.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Haberman, M. R.

R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, “Sound isolation and giant linear nonreciprocity in a compact acoustic circulator,” Science 343, 516–519 (2014).
[Crossref]

Han, Q.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, and T. Li, “GHz rotation of an optically trapped nanoparticle in vacuum,” Phys. Rev. Lett. 121, 033603 (2018).
[Crossref]

Harris, G. I.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Hassan, A. U.

S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, and T. Carmon, “Flying couplers above spinning resonators generate irreversible refraction,” Nature 558, 569–572 (2018).
[Crossref]

H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Nature 548, 187–191 (2017).
[Crossref]

He, L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whisperinggallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Hebestreit, E.

R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, and L. Novotny, “Enhanced sensitivity at higher-order exceptional points,” Phys. Rev. Lett. 121, 033602 (2018).
[Crossref]

Hoang, T. M.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, and T. Li, “GHz rotation of an optically trapped nanoparticle in vacuum,” Phys. Rev. Lett. 121, 033603 (2018).
[Crossref]

Hodaei, H.

H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Nature 548, 187–191 (2017).
[Crossref]

Hollenberg, L. C. L.

A. A. Wood, E. Lilette, Y. Y. Fein, A. Stacey, N. Tomek, L. P. McGuinness, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Quantum measurement of a rapidly rotating spin qubit in diamond,” Sci. Adv. 4, eaar7691 (2018).
[Crossref]

A. A. Wood, E. Lilette, Y. Y. Fein, V. S. Perunicic, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Magnetic pseudo-fields in a rotating electron–nuclear spin system,” Nat. Phys. 13, 1070–1073 (2017).
[Crossref]

Holler, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Huang, S. H.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whisperinggallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

Jing, H.

S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, and T. Carmon, “Flying couplers above spinning resonators generate irreversible refraction,” Nature 558, 569–572 (2018).
[Crossref]

Keng, D.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Khajavikhan, M.

H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Nature 548, 187–191 (2017).
[Crossref]

Kim, W.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Kippenberg, T. J.

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for Heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5, 054019 (2016).
[Crossref]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

Kligerman, Y.

S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, and T. Carmon, “Flying couplers above spinning resonators generate irreversible refraction,” Nature 558, 569–572 (2018).
[Crossref]

Knittel, J.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Kolchenko, V.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Kramer, J.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,”Science 317, 783–787 (2007).
[Crossref]

Lavery, M. P. J.

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341, 537–540 (2013).
[Crossref]

Li, B.-B.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Li, J.

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, T.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, and T. Li, “GHz rotation of an optically trapped nanoparticle in vacuum,” Phys. Rev. Lett. 121, 033603 (2018).
[Crossref]

Liertzer, M.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Lilette, E.

A. A. Wood, E. Lilette, Y. Y. Fein, A. Stacey, N. Tomek, L. P. McGuinness, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Quantum measurement of a rapidly rotating spin qubit in diamond,” Sci. Adv. 4, eaar7691 (2018).
[Crossref]

A. A. Wood, E. Lilette, Y. Y. Fein, V. S. Perunicic, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Magnetic pseudo-fields in a rotating electron–nuclear spin system,” Nat. Phys. 13, 1070–1073 (2017).
[Crossref]

Long, G. L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whisperinggallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

Ma, R.-M.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, and T. Li, “GHz rotation of an optically trapped nanoparticle in vacuum,” Phys. Rev. Lett. 121, 033603 (2018).
[Crossref]

Maayani, S.

S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, and T. Carmon, “Flying couplers above spinning resonators generate irreversible refraction,” Nature 558, 569–572 (2018).
[Crossref]

Malykin, G. B.

G. B. Malykin, “The Sagnac effect: correct and incorrect explanations,” Phys. Usp. 43, 1229–1252 (2000).
[Crossref]

Martin, A. M.

A. A. Wood, E. Lilette, Y. Y. Fein, A. Stacey, N. Tomek, L. P. McGuinness, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Quantum measurement of a rapidly rotating spin qubit in diamond,” Sci. Adv. 4, eaar7691 (2018).
[Crossref]

A. A. Wood, E. Lilette, Y. Y. Fein, V. S. Perunicic, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Magnetic pseudo-fields in a rotating electron–nuclear spin system,” Nat. Phys. 13, 1070–1073 (2017).
[Crossref]

McAuslan, D. L.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

McGuinness, L. P.

A. A. Wood, E. Lilette, Y. Y. Fein, A. Stacey, N. Tomek, L. P. McGuinness, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Quantum measurement of a rapidly rotating spin qubit in diamond,” Sci. Adv. 4, eaar7691 (2018).
[Crossref]

Monifi, F.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whisperinggallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

Moses, E.

S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, and T. Carmon, “Flying couplers above spinning resonators generate irreversible refraction,” Nature 558, 569–572 (2018).
[Crossref]

Nori, F.

S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, and T. Carmon, “Flying couplers above spinning resonators generate irreversible refraction,” Nature 558, 569–572 (2018).
[Crossref]

Novotny, L.

R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, and L. Novotny, “Enhanced sensitivity at higher-order exceptional points,” Phys. Rev. Lett. 121, 033602 (2018).
[Crossref]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Özdemir, S. K.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whisperinggallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

Padgett, M. J.

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341, 537–540 (2013).
[Crossref]

S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011).
[Crossref]

Pedrotti, L. M.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).
[Crossref]

Peng, B.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whisperinggallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

Perunicic, V. S.

A. A. Wood, E. Lilette, Y. Y. Fein, V. S. Perunicic, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Magnetic pseudo-fields in a rotating electron–nuclear spin system,” Nat. Phys. 13, 1070–1073 (2017).
[Crossref]

Post, E. J.

E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–481 (1967).
[Crossref]

Prams, S.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Rajmangal, R.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Reimann, R.

R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, and L. Novotny, “Enhanced sensitivity at higher-order exceptional points,” Phys. Rev. Lett. 121, 033602 (2018).
[Crossref]

Rotter, S.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Rubinsztein-Dunlop, H.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Sanders, V. E.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).
[Crossref]

Sarma, R.

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).
[Crossref]

Schilling, R.

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for Heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5, 054019 (2016).
[Crossref]

Schleich, W.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).
[Crossref]

Scholten, R. E.

A. A. Wood, E. Lilette, Y. Y. Fein, A. Stacey, N. Tomek, L. P. McGuinness, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Quantum measurement of a rapidly rotating spin qubit in diamond,” Sci. Adv. 4, eaar7691 (2018).
[Crossref]

A. A. Wood, E. Lilette, Y. Y. Fein, V. S. Perunicic, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Magnetic pseudo-fields in a rotating electron–nuclear spin system,” Nat. Phys. 13, 1070–1073 (2017).
[Crossref]

Schütz, H.

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for Heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5, 054019 (2016).
[Crossref]

Scully, M. O.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).
[Crossref]

Shi, K.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Shopova, S. I.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Sieck, C. F.

R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, “Sound isolation and giant linear nonreciprocity in a compact acoustic circulator,” Science 343, 516–519 (2014).
[Crossref]

Sounas, D. L.

R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, “Sound isolation and giant linear nonreciprocity in a compact acoustic circulator,” Science 343, 516–519 (2014).
[Crossref]

Speirits, F. C.

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341, 537–540 (2013).
[Crossref]

Stacey, A.

A. A. Wood, E. Lilette, Y. Y. Fein, A. Stacey, N. Tomek, L. P. McGuinness, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Quantum measurement of a rapidly rotating spin qubit in diamond,” Sci. Adv. 4, eaar7691 (2018).
[Crossref]

Sudhir, V.

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for Heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5, 054019 (2016).
[Crossref]

Suh, M.-G.

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode,” Adv. Opt. Photon. 7, 168–240 (2015).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Szorkovszky, A.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Tebbenjohanns, F.

R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, and L. Novotny, “Enhanced sensitivity at higher-order exceptional points,” Phys. Rev. Lett. 121, 033602 (2018).
[Crossref]

Tomek, N.

A. A. Wood, E. Lilette, Y. Y. Fein, A. Stacey, N. Tomek, L. P. McGuinness, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Quantum measurement of a rapidly rotating spin qubit in diamond,” Sci. Adv. 4, eaar7691 (2018).
[Crossref]

Vahala, K.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,”Science 317, 783–787 (2007).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

van Ooijen, E. D.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

Vollmer, F.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode,” Adv. Opt. Photon. 7, 168–240 (2015).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Wiersig, J.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

J. Wiersig, “Sensors operating at exceptional points: general theory,” Phys. Rev. A 93, 033809 (2016).
[Crossref]

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).
[Crossref]

J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901 (2014).
[Crossref]

Wilson, D. J.

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for Heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5, 054019 (2016).
[Crossref]

Windey, D.

R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, and L. Novotny, “Enhanced sensitivity at higher-order exceptional points,” Phys. Rev. Lett. 121, 033602 (2018).
[Crossref]

Wittek, S.

H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Nature 548, 187–191 (2017).
[Crossref]

Wood, A. A.

A. A. Wood, E. Lilette, Y. Y. Fein, A. Stacey, N. Tomek, L. P. McGuinness, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Quantum measurement of a rapidly rotating spin qubit in diamond,” Sci. Adv. 4, eaar7691 (2018).
[Crossref]

A. A. Wood, E. Lilette, Y. Y. Fein, V. S. Perunicic, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Magnetic pseudo-fields in a rotating electron–nuclear spin system,” Nat. Phys. 13, 1070–1073 (2017).
[Crossref]

Xiao, Y.-F.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Xu, Z.

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, and T. Li, “GHz rotation of an optically trapped nanoparticle in vacuum,” Phys. Rev. Lett. 121, 033603 (2018).
[Crossref]

Yang, L.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whisperinggallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yang, X.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whisperinggallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

Yilmaz, H.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whisperinggallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

Yu, X.-C.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Zhao, G.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

Zhu, J.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whisperinggallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

Nano Lett. (1)

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Nat. Nanotechnol. (3)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Nat. Phys. (1)

A. A. Wood, E. Lilette, Y. Y. Fein, V. S. Perunicic, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Magnetic pseudo-fields in a rotating electron–nuclear spin system,” Nat. Phys. 13, 1070–1073 (2017).
[Crossref]

Nature (4)

S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, and T. Carmon, “Flying couplers above spinning resonators generate irreversible refraction,” Nature 558, 569–572 (2018).
[Crossref]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, “Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor,” Nature 548, 187–191 (2017).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Optica (1)

Phys. Rev. A (2)

J. Wiersig, “Sensors operating at exceptional points: general theory,” Phys. Rev. A 93, 033809 (2016).
[Crossref]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

Phys. Rev. Appl. (1)

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for Heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5, 054019 (2016).
[Crossref]

Phys. Rev. Lett. (5)

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901 (2014).
[Crossref]

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).
[Crossref]

R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, and L. Novotny, “Enhanced sensitivity at higher-order exceptional points,” Phys. Rev. Lett. 121, 033602 (2018).
[Crossref]

J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, and T. Li, “GHz rotation of an optically trapped nanoparticle in vacuum,” Phys. Rev. Lett. 121, 033603 (2018).
[Crossref]

Phys. Usp. (1)

G. B. Malykin, “The Sagnac effect: correct and incorrect explanations,” Phys. Usp. 43, 1229–1252 (2000).
[Crossref]

Proc. Natl. Acad. Sci. USA (4)

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whisperinggallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

Rev. Mod. Phys. (2)

E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–481 (1967).
[Crossref]

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).
[Crossref]

Sci. Adv. (1)

A. A. Wood, E. Lilette, Y. Y. Fein, A. Stacey, N. Tomek, L. P. McGuinness, L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, “Quantum measurement of a rapidly rotating spin qubit in diamond,” Sci. Adv. 4, eaar7691 (2018).
[Crossref]

Sci. Rep. (1)

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

Science (4)

R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, “Sound isolation and giant linear nonreciprocity in a compact acoustic circulator,” Science 343, 516–519 (2014).
[Crossref]

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341, 537–540 (2013).
[Crossref]

S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,”Science 317, 783–787 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic of a single nanoparticle sensor with a spinning resonator. The resonator with rotation speed Ω is driven by an optical field. A nanoparicle placed in the mode volume of the resonator induces a coupling with strength J between the CW and CCW modes. (b) Schematic of the energy levels of the optical eigenmodes. The frequency splitting of 2 J for a stationary resonator ( Ω = 0 ) is increased by the Sagnac effect to Δ ω > 2 J when the resonator is spinning ( Ω 0 ).
Fig. 2.
Fig. 2. Sensitivity enhancement factor η (a) and relative photon number β = | a ¯ cw | 2 / | a ¯ ccw | 2 (b) as a function of rotation speed Ω . We choose R = 1.1    mm , J / γ a = 1.5 , and γ c / γ a = 0.3 for case A, and R = 0.5    mm , J / γ a = 1.1 , and γ c / γ a = 0.065 for case B, as in recent experiments [8,17,18]. Also, J and γ c depend on the properties of the particle and the resonator [8,17,18].
Fig. 3.
Fig. 3. Transmission rate T as a function of optical detuning Δ a for Ω = 0 (i.e., a stationary resonator) (a), Ω = 6.6    kHz (b), and Ω = 30    kHz (d). (c) Transmission difference Δ T as a function of optical detuning Δ a . (e) Transmission rate T as a function of optical detuning Δ a and rotation speed Ω . (f) Transmission difference Δ T as a function of detuning Δ a and rotation speed Ω . We choose R = 1.1    mm , J / γ a = 1.5 , and γ c / γ a = 0.3 (i.e., case A in Fig. 2) in (a)–(c), and R = 0.5    mm , J / γ a = 1.1 , and γ c / γ a = 0.065 in (d)–(f) (i.e., case B in Fig. 2).
Fig. 4.
Fig. 4. Variation in frequency splitting for a spinning and a stationary WGM-based particle sensor as more than one particle is deposited on the resonators. The rotation speed is set as Ω = 6.6    kHz in (a) and 30 kHz in (b).

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Δ sag = n R Ω ω a c ( 1 1 n 2 λ n d n d λ ) ,
H eff = ( Δ + i γ ) a cw a cw + ( Δ i γ ) a ccw a ccw + ( J i γ c ) a cw a ccw + ( J i γ c ) a ccw a cw + i γ ex    a in ( a cw a cw ) ,
Δ ± = Δ a + J ± Δ sag , γ = ( γ a + γ ex ) / 2 + γ c ,
ω 1 , 2 = ω a + J ± ω i ( γ ± γ ) ,
2 ω = [ 2 ( D 2 + 4 J 2 γ c 2 ) 1 / 2 + 2 D ] 1 / 2 , 2 γ = [ 2 ( D 2 + 4 J 2 γ c 2 ) 1 / 2 2 D ] 1 / 2 ,
η = | Δ ω ( Ω 0 ) Δ ω ( Ω = 0 ) | = [ D 2 + 4 J 2 γ c 2 ( J 2 + γ c 2 ) 2 ] 1 / 4 > 1 .
a ¯ cw = γ ex    a in ( γ + i Δ ) ( γ + i Δ + ) ( γ + i Δ ) + ( J i γ c ) 2 , a ¯ ccw = γ ex    a in ( i J + γ c ) ( γ + i Δ + ) ( γ + i Δ ) + ( J i γ c ) 2 ,
β = | a ¯ cw | 2 | a ¯ ccw | 2 = γ 2 + ( Δ a + J Δ sag ) 2 J 2 + γ c 2 .
T = | a out a in | 2 = | 1 γ ex ( γ + i Δ ) ( γ + i Δ + ) ( γ + i Δ ) + ( J i γ c ) 2 | 2 .
Δ T ( Δ a = 0 ) J 2 + γ c 2 + 2 J Δ sag ( γ + γ c ) 2 + 4 J 2 .
a ¯ cw γ ex    a in γ + i ( Δ a + J + Δ sag )
H eff = ( Δ + i γ ) a cw a cw + ( Δ i γ ) a ccw a ccw + C 1 a cw a ccw + C 2 a ccw a cw + i γ ex    a in ( a cw a cw ) ,
Δ ± = Δ a + i = 1 N J i ± Δ sag , γ = ( γ a + γ ex ) / 2 + i = 1 N γ c , i , C 1 , 2 = i = 1 N ( J i i γ c , i ) exp ( i 2 m β j ) ,
J = α f 2 ( r ) ω c 2 V c , γ c = 2 π 2 α 2 f 2 ( r ) ω c 3 λ 3 V c ,
γ c / J = 4 π 2 α / ( 3 λ 3 ) .
H = ( ω a + Δ sag ) a cw a cw + ( ω a Δ sag ) a ccw a ccw + J ( a cw a ccw + a ccw a cw ) + γ ex    a in ( a cw e i ω l t a cw e i ω l t ) ,
U = exp [ i ω l t ( a cw a cw + a ccw a ccw ) ] ,
H = U H U i U U t , = ( Δ a + Δ sag ) a cw a cw + ( Δ a Δ sag ) a ccw a ccw + J ( a cw a ccw + a ccw a cw ) + γ ex a in ( a cw a cw ) ,
H eff = ( Δ + i γ ) a cw a cw + ( Δ i γ ) a ccw a ccw + ( J i γ c ) a cw a ccw + ( J i γ c ) a ccw a cw + i γ ex    a in ( a cw a cw ) ,
( ω a + Δ sag i γ ω ) ( ω a Δ sag i γ ω ) ( J i γ c ) 2 = 0 ,
ω = ω a i γ ± D 2 i J γ c , D = Δ sag 2 + J 2 γ c 2 .
ω = [ ( D 2 + 4 J 2 γ c 2 ) 1 / 2 / 2 + D / 2 ] 1 / 2 , γ = [ ( D 2 + 4 J 2 γ c 2 ) 1 / 2 / 2 D / 2 ] 1 / 2 .