Abstract

The development of high-power laser sources with narrow emission, tunable within the water transmission window around 1.7 μm, is of interest for applications as diverse as medical imaging and atmospheric sensing. Where suitable laser gain media are not available, operation in this spectral region is often achieved via nonlinear frequency conversion, and optical parametric oscillators (OPOs) are a common solution. A practical alternative to OPOs, to avoid birefringent- or quasi-phase-matching requirements, is the use of stimulated Raman scattering within a suitable material to convert a pump source to longer wavelengths via one or more Stokes shifts; however, as this is a χ(3) nonlinear process, such frequency conversion is usually the preserve of high-energy pulsed lasers. Semiconductor disk lasers (SDLs), on the other hand, have very high-finesse external resonators, suitable for efficient intracavity nonlinear conversion even in continuous-wave (CW) operation. Here we report, to the best of our knowledge, the first continuous-wave third-Stokes crystalline Raman laser and the longest emission wavelength from an SDL-pumped Raman laser, achieving high power, CW output, and broad wavelength tuning around 1.73 μm. The KGd(WO4)2 (KGW) Raman laser, which was intracavity-pumped by a 1.18 μm InGaAs-based SDL, demonstrated cascaded CW Stokes oscillation at 1.32 μm, 1.50 μm, and 1.73 μm with watt-level output achievable at each wavelength. The 1.73 μm Stokes emission was diffraction limited (M2<1.01) and narrow linewidth (<46  pm FWHM; measurement limited). By rotation of a birefringent filter placed within the fundamental resonator, we attained three tunable emission wavelength bands, one centred at each Stokes component, and achieved up to 65 nm tuning for the third-Stokes Raman laser from 1696 nm to 1761 nm. We have thus demonstrated a platform laser technology that takes well-developed InGaAs-based SDLs and provides spectral coverage and high performance in the near-infrared water transmission windows using commercially available components.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave Raman laser pumped within a semiconductor disk laser cavity

Daniele C. Parrotta, Walter Lubeigt, Alan J. Kemp, David Burns, Martin D. Dawson, and Jennifer E. Hastie
Opt. Lett. 36(7) 1083-1085 (2011)

Tunable continuous-wave diamond Raman laser

Daniele C. Parrotta, Alan J. Kemp, Martin D. Dawson, and Jennifer E. Hastie
Opt. Express 19(24) 24165-24170 (2011)

1.4 µm continuous-wave diamond Raman laser

Riccardo Casula, Jussi-Pekka Penttinen, Alan J. Kemp, Mircea Guina, and Jennifer E. Hastie
Opt. Express 25(25) 31377-31383 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25, 2998–3005 (2017).
    [Crossref]
  2. M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
    [Crossref]
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [Crossref]
  4. B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
    [Crossref]
  5. S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700  nm wavelength region,” Biomed. Opt. Express 3, 282–294 (2012).
    [Crossref]
  6. L. Shi, L. A. Sordillo, A. Rodriguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophoton. 9, 38–43 (2016).
    [Crossref]
  7. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (<0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999).
    [Crossref]
  8. M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D 50, 383001 (2017).
    [Crossref]
  9. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
    [Crossref]
  10. S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180  nm VECSEL with output power beyond 20 W,” Electron. Lett. 49, 59–60 (2013).
    [Crossref]
  11. A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “Multi-watt 1.25  μm quantum dot VECSEL,” Electron. Lett. 46, 856–857 (2010).
    [Crossref]
  12. J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouthi, and M. Pessa, “0.6  W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32  μm,” Electron. Lett. 40, 30–31 (2004).
    [Crossref]
  13. V.-M. Korpijärvi, T. Leinonen, J. Puustinen, A. Härkönen, and M. D. Guina, “11  W single gain-chip dilute nitride disk laser emitting around 1180  nm,” Opt. Express 18, 25633–25641 (2010).
    [Crossref]
  14. A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
    [Crossref]
  15. A. Sirbu, A. Rantamaki, E. J. Saarinen, V. Iakovlev, A. Mereuta, J. Lyytikainen, A. Caliman, N. Volet, O. G. Okhotnikov, and E. Kapon, “High performance wafer-fused semiconductor disk lasers emitting in the 1300  nm waveband,” Opt. Express 22, 29398–29403 (2014).
    [Crossref]
  16. D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Tunable continuous-wave diamond Raman laser,” Opt. Express 19, 24165–24170 (2011).
    [Crossref]
  17. D. C. Parrotta, W. Lubeigt, A. J. Kemp, D. Burns, M. D. Dawson, and J. E. Hastie, “Continuous-wave Raman laser pumped within a semiconductor disk laser cavity,” Opt. Lett. 36, 1083–1085 (2011).
    [Crossref]
  18. D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19, 1400108 (2013).
    [Crossref]
  19. P. Holl, M. Rattunde, S. Adler, S. Kaspar, W. Bronner, A. Bachle, R. Aidam, and J. Wagner, “Recent advances in power scaling of GaSb-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 324–335 (2015).
    [Crossref]
  20. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 3–56 (2003).
    [Crossref]
  21. S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. Z. Fan, Z. J. Liu, J. Chang, S. S. Zhang, S. M. Wang, and Y. R. Liu, “Theoretical and experimental research on the multi-frequency Raman converter with KGd(WO4)(2) crystal,” Opt. Express 13, 10120–10128 (2005).
    [Crossref]
  22. A. McKay, O. Kitzler, and R. P. Mildren, “High power tungstate-crystal Raman laser operating in the strong thermal lensing regime,” Opt. Express 22, 707–715 (2014).
    [Crossref]
  23. O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24, 27812–27820 (2016).
    [Crossref]
  24. D. C. Parrotta, R. Casula, J. Penttinen, T. Leinonen, A. J. Kemp, M. Guina, and J. E. Hastie, “InGaAs-QW VECSEL emitting 1300-nm via intracavity Raman conversion,” Proc. SPIE 9734, 97340O (2016).
    [Crossref]
  25. R. J. Williams, D. J. Spence, O. Lux, and R. P. Mildren, “High-power continuous-wave Raman frequency conversion from 1.06  μm to 1.49  μm in diamond,” Opt. Express 25, 749–757 (2017).
    [Crossref]
  26. R. Casula, J.-P. Penttinen, A. J. Kemp, M. Guina, and J. E. Hastie, “1.4  μm continuous-wave diamond Raman laser,” Opt. Express 25, 31377–31383 (2017).
    [Crossref]
  27. I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
    [Crossref]
  28. R. P. Mildren, D. W. Coutts, and D. J. Spence, “All-solid-state parametric Raman anti-Stokes laser at 508  nm,” Opt. Express 17, 810–818 (2009).
    [Crossref]
  29. X. Wang, W. Kang, X. Song, P. Xie, N. Zong, and W. Tu, “Theoretical and experimental research on high-order stimulated Raman scattering in KGd(WO4)2,” Opt. Commun. 385, 9–14 (2017).
    [Crossref]
  30. E. Kantola, T. Leinonen, S. Ranta, M. Tavast, and M. Guina, “High-efficiency 20  W yellow VECSEL,” Opt. Express 22, 6372–6380 (2014).
    [Crossref]
  31. Z. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77, 651–653 (2000).
    [Crossref]
  32. H. M. Pask and J. A. Piper, “Raman lasers,” in Handbook of Solid-State Lasers (Elsevier, 2013), pp. 493–524.
  33. J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
    [Crossref]
  34. A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, “Stimulated Raman scattering in Nd:KGW laser with diode pumping,” J. Alloys Compd. 300, 300–302 (2000).
    [Crossref]
  35. L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33, 92–103 (2002).
    [Crossref]
  36. J. J. Neto, C. Artlett, A. Lee, J. Lin, D. Spence, J. Piper, N. U. Wetter, and H. Pask, “Investigation of blue emission from Raman-active crystals: its origin and impact on laser performance,” Opt. Mater. Express 4, 889–902 (2014).
    [Crossref]
  37. R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1602214 (2018).
    [Crossref]
  38. V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48, 328–337 (2012).
    [Crossref]
  39. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
    [Crossref]
  40. A. Senthil Kumaran, S. Moorthy Babu, S. Ganesamoorthy, I. Bhaumik, and A. K. Karnal, “Crystal growth and characterization of KY(WO4)2 and KGd(WO4)2 for laser applications,” J. Cryst. Growth 292, 368–372 (2006).
    [Crossref]
  41. D. Kasprowicz, T. Runka, A. Majchrowski, E. Michalski, and M. Drozdowski, “Vibrational properties of Nd3+, Eu3+, Er3+ and Ho3+ doped KGd(WO4)2 single crystals studied by Raman scattering method,” Phys. Procedia 2, 539–550 (2009).
    [Crossref]
  42. J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
    [Crossref]
  43. http://dx.doi.org/10.15129/c0974aad-0284-4980-9c2f-690923708203 .

2018 (1)

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1602214 (2018).
[Crossref]

2017 (5)

2016 (3)

O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24, 27812–27820 (2016).
[Crossref]

D. C. Parrotta, R. Casula, J. Penttinen, T. Leinonen, A. J. Kemp, M. Guina, and J. E. Hastie, “InGaAs-QW VECSEL emitting 1300-nm via intracavity Raman conversion,” Proc. SPIE 9734, 97340O (2016).
[Crossref]

L. Shi, L. A. Sordillo, A. Rodriguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophoton. 9, 38–43 (2016).
[Crossref]

2015 (1)

P. Holl, M. Rattunde, S. Adler, S. Kaspar, W. Bronner, A. Bachle, R. Aidam, and J. Wagner, “Recent advances in power scaling of GaSb-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 324–335 (2015).
[Crossref]

2014 (4)

2013 (2)

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19, 1400108 (2013).
[Crossref]

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180  nm VECSEL with output power beyond 20 W,” Electron. Lett. 49, 59–60 (2013).
[Crossref]

2012 (4)

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700  nm wavelength region,” Biomed. Opt. Express 3, 282–294 (2012).
[Crossref]

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48, 328–337 (2012).
[Crossref]

2011 (3)

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Tunable continuous-wave diamond Raman laser,” Opt. Express 19, 24165–24170 (2011).
[Crossref]

D. C. Parrotta, W. Lubeigt, A. J. Kemp, D. Burns, M. D. Dawson, and J. E. Hastie, “Continuous-wave Raman laser pumped within a semiconductor disk laser cavity,” Opt. Lett. 36, 1083–1085 (2011).
[Crossref]

2010 (2)

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “Multi-watt 1.25  μm quantum dot VECSEL,” Electron. Lett. 46, 856–857 (2010).
[Crossref]

V.-M. Korpijärvi, T. Leinonen, J. Puustinen, A. Härkönen, and M. D. Guina, “11  W single gain-chip dilute nitride disk laser emitting around 1180  nm,” Opt. Express 18, 25633–25641 (2010).
[Crossref]

2009 (2)

R. P. Mildren, D. W. Coutts, and D. J. Spence, “All-solid-state parametric Raman anti-Stokes laser at 508  nm,” Opt. Express 17, 810–818 (2009).
[Crossref]

D. Kasprowicz, T. Runka, A. Majchrowski, E. Michalski, and M. Drozdowski, “Vibrational properties of Nd3+, Eu3+, Er3+ and Ho3+ doped KGd(WO4)2 single crystals studied by Raman scattering method,” Phys. Procedia 2, 539–550 (2009).
[Crossref]

2007 (1)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

2006 (1)

A. Senthil Kumaran, S. Moorthy Babu, S. Ganesamoorthy, I. Bhaumik, and A. K. Karnal, “Crystal growth and characterization of KY(WO4)2 and KGd(WO4)2 for laser applications,” J. Cryst. Growth 292, 368–372 (2006).
[Crossref]

2005 (1)

2004 (1)

J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouthi, and M. Pessa, “0.6  W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32  μm,” Electron. Lett. 40, 30–31 (2004).
[Crossref]

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 3–56 (2003).
[Crossref]

2002 (1)

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33, 92–103 (2002).
[Crossref]

2001 (1)

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

2000 (2)

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, “Stimulated Raman scattering in Nd:KGW laser with diode pumping,” J. Alloys Compd. 300, 300–302 (2000).
[Crossref]

Z. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77, 651–653 (2000).
[Crossref]

1999 (2)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (<0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999).
[Crossref]

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

1997 (1)

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
[Crossref]

1988 (1)

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Adler, S.

P. Holl, M. Rattunde, S. Adler, S. Kaspar, W. Bronner, A. Bachle, R. Aidam, and J. Wagner, “Recent advances in power scaling of GaSb-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 324–335 (2015).
[Crossref]

Aidam, R.

P. Holl, M. Rattunde, S. Adler, S. Kaspar, W. Bronner, A. Bachle, R. Aidam, and J. Wagner, “Recent advances in power scaling of GaSb-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 324–335 (2015).
[Crossref]

Albrecht, A. R.

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “Multi-watt 1.25  μm quantum dot VECSEL,” Electron. Lett. 46, 856–857 (2010).
[Crossref]

Alfano, R.

L. Shi, L. A. Sordillo, A. Rodriguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophoton. 9, 38–43 (2016).
[Crossref]

Amann, M.-C.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Ambrosius, H. P. M. M.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

Antipov, S.

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1602214 (2018).
[Crossref]

Artlett, C.

Austin, W. L.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

Bachle, A.

P. Holl, M. Rattunde, S. Adler, S. Kaspar, W. Bronner, A. Bachle, R. Aidam, and J. Wagner, “Recent advances in power scaling of GaSb-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 324–335 (2015).
[Crossref]

Bai, Z.

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1602214 (2018).
[Crossref]

Balakrishnan, G.

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “Multi-watt 1.25  μm quantum dot VECSEL,” Electron. Lett. 46, 856–857 (2010).
[Crossref]

Bente, E. A. J. M.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

Bhaumik, I.

A. Senthil Kumaran, S. Moorthy Babu, S. Ganesamoorthy, I. Bhaumik, and A. K. Karnal, “Crystal growth and characterization of KY(WO4)2 and KGd(WO4)2 for laser applications,” J. Cryst. Growth 292, 368–372 (2006).
[Crossref]

Bosch, T. M.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Bronner, W.

P. Holl, M. Rattunde, S. Adler, S. Kaspar, W. Bronner, A. Bachle, R. Aidam, and J. Wagner, “Recent advances in power scaling of GaSb-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 324–335 (2015).
[Crossref]

Burns, D.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48, 328–337 (2012).
[Crossref]

D. C. Parrotta, W. Lubeigt, A. J. Kemp, D. Burns, M. D. Dawson, and J. E. Hastie, “Continuous-wave Raman laser pumped within a semiconductor disk laser cavity,” Opt. Lett. 36, 1083–1085 (2011).
[Crossref]

J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouthi, and M. Pessa, “0.6  W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32  μm,” Electron. Lett. 40, 30–31 (2004).
[Crossref]

Caird, J. A.

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Caliman, A.

A. Sirbu, A. Rantamaki, E. J. Saarinen, V. Iakovlev, A. Mereuta, J. Lyytikainen, A. Caliman, N. Volet, O. G. Okhotnikov, and E. Kapon, “High performance wafer-fused semiconductor disk lasers emitting in the 1300  nm waveband,” Opt. Express 22, 29398–29403 (2014).
[Crossref]

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

Calvez, S.

J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouthi, and M. Pessa, “0.6  W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32  μm,” Electron. Lett. 40, 30–31 (2004).
[Crossref]

Casula, R.

R. Casula, J.-P. Penttinen, A. J. Kemp, M. Guina, and J. E. Hastie, “1.4  μm continuous-wave diamond Raman laser,” Opt. Express 25, 31377–31383 (2017).
[Crossref]

D. C. Parrotta, R. Casula, J. Penttinen, T. Leinonen, A. J. Kemp, M. Guina, and J. E. Hastie, “InGaAs-QW VECSEL emitting 1300-nm via intracavity Raman conversion,” Proc. SPIE 9734, 97340O (2016).
[Crossref]

Chang, J.

Chase, L. L.

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Coutts, D. W.

Czyszanowski, T.

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

Dawson, M. D.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19, 1400108 (2013).
[Crossref]

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48, 328–337 (2012).
[Crossref]

D. C. Parrotta, W. Lubeigt, A. J. Kemp, D. Burns, M. D. Dawson, and J. E. Hastie, “Continuous-wave Raman laser pumped within a semiconductor disk laser cavity,” Opt. Lett. 36, 1083–1085 (2011).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Tunable continuous-wave diamond Raman laser,” Opt. Express 19, 24165–24170 (2011).
[Crossref]

J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouthi, and M. Pessa, “0.6  W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32  μm,” Electron. Lett. 40, 30–31 (2004).
[Crossref]

Demidovich, A. A.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, “Stimulated Raman scattering in Nd:KGW laser with diode pumping,” J. Alloys Compd. 300, 300–302 (2000).
[Crossref]

Ding, S. H.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Drozdowski, M.

D. Kasprowicz, T. Runka, A. Majchrowski, E. Michalski, and M. Drozdowski, “Vibrational properties of Nd3+, Eu3+, Er3+ and Ho3+ doped KGd(WO4)2 single crystals studied by Raman scattering method,” Phys. Procedia 2, 539–550 (2009).
[Crossref]

Edgar, M. P.

Fan, S. Z.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Fetzer, G.

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180  nm VECSEL with output power beyond 20 W,” Electron. Lett. 49, 59–60 (2013).
[Crossref]

Friel, I.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48, 328–337 (2012).
[Crossref]

Ganesamoorthy, S.

A. Senthil Kumaran, S. Moorthy Babu, S. Ganesamoorthy, I. Bhaumik, and A. K. Karnal, “Crystal growth and characterization of KY(WO4)2 and KGd(WO4)2 for laser applications,” J. Cryst. Growth 292, 368–372 (2006).
[Crossref]

Gibson, G. M.

Grabtchikov, A. S.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, “Stimulated Raman scattering in Nd:KGW laser with diode pumping,” J. Alloys Compd. 300, 300–302 (2000).
[Crossref]

Guina, M.

M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D 50, 383001 (2017).
[Crossref]

R. Casula, J.-P. Penttinen, A. J. Kemp, M. Guina, and J. E. Hastie, “1.4  μm continuous-wave diamond Raman laser,” Opt. Express 25, 31377–31383 (2017).
[Crossref]

D. C. Parrotta, R. Casula, J. Penttinen, T. Leinonen, A. J. Kemp, M. Guina, and J. E. Hastie, “InGaAs-QW VECSEL emitting 1300-nm via intracavity Raman conversion,” Proc. SPIE 9734, 97340O (2016).
[Crossref]

E. Kantola, T. Leinonen, S. Ranta, M. Tavast, and M. Guina, “High-efficiency 20  W yellow VECSEL,” Opt. Express 22, 6372–6380 (2014).
[Crossref]

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180  nm VECSEL with output power beyond 20 W,” Electron. Lett. 49, 59–60 (2013).
[Crossref]

Guina, M. D.

Hader, J.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Hains, C. P.

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “Multi-watt 1.25  μm quantum dot VECSEL,” Electron. Lett. 46, 856–857 (2010).
[Crossref]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (<0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999).
[Crossref]

Hanuza, J.

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33, 92–103 (2002).
[Crossref]

Härkönen, A.

Hastie, J. E.

R. Casula, J.-P. Penttinen, A. J. Kemp, M. Guina, and J. E. Hastie, “1.4  μm continuous-wave diamond Raman laser,” Opt. Express 25, 31377–31383 (2017).
[Crossref]

D. C. Parrotta, R. Casula, J. Penttinen, T. Leinonen, A. J. Kemp, M. Guina, and J. E. Hastie, “InGaAs-QW VECSEL emitting 1300-nm via intracavity Raman conversion,” Proc. SPIE 9734, 97340O (2016).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19, 1400108 (2013).
[Crossref]

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48, 328–337 (2012).
[Crossref]

D. C. Parrotta, W. Lubeigt, A. J. Kemp, D. Burns, M. D. Dawson, and J. E. Hastie, “Continuous-wave Raman laser pumped within a semiconductor disk laser cavity,” Opt. Lett. 36, 1083–1085 (2011).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Tunable continuous-wave diamond Raman laser,” Opt. Express 19, 24165–24170 (2011).
[Crossref]

Heinen, B.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Hempler, N.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Holl, P.

P. Holl, M. Rattunde, S. Adler, S. Kaspar, W. Bronner, A. Bachle, R. Aidam, and J. Wagner, “Recent advances in power scaling of GaSb-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 324–335 (2015).
[Crossref]

Hopkins, J.-M.

J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouthi, and M. Pessa, “0.6  W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32  μm,” Electron. Lett. 40, 30–31 (2004).
[Crossref]

Iakovlev, V.

A. Sirbu, A. Rantamaki, E. J. Saarinen, V. Iakovlev, A. Mereuta, J. Lyytikainen, A. Caliman, N. Volet, O. G. Okhotnikov, and E. Kapon, “High performance wafer-fused semiconductor disk lasers emitting in the 1300  nm waveband,” Opt. Express 22, 29398–29403 (2014).
[Crossref]

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

Ishida, S.

Jasbeer, H.

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1602214 (2018).
[Crossref]

Jeon, C. W.

J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouthi, and M. Pessa, “0.6  W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32  μm,” Electron. Lett. 40, 30–31 (2004).
[Crossref]

Jiao, Y.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

Jouthi, T.

J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouthi, and M. Pessa, “0.6  W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32  μm,” Electron. Lett. 40, 30–31 (2004).
[Crossref]

Kaminskii, A. A.

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33, 92–103 (2002).
[Crossref]

Kang, W.

X. Wang, W. Kang, X. Song, P. Xie, N. Zong, and W. Tu, “Theoretical and experimental research on high-order stimulated Raman scattering in KGd(WO4)2,” Opt. Commun. 385, 9–14 (2017).
[Crossref]

Kantola, E.

Kapon, E.

A. Sirbu, A. Rantamaki, E. J. Saarinen, V. Iakovlev, A. Mereuta, J. Lyytikainen, A. Caliman, N. Volet, O. G. Okhotnikov, and E. Kapon, “High performance wafer-fused semiconductor disk lasers emitting in the 1300  nm waveband,” Opt. Express 22, 29398–29403 (2014).
[Crossref]

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

Karnal, A. K.

A. Senthil Kumaran, S. Moorthy Babu, S. Ganesamoorthy, I. Bhaumik, and A. K. Karnal, “Crystal growth and characterization of KY(WO4)2 and KGd(WO4)2 for laser applications,” J. Cryst. Growth 292, 368–372 (2006).
[Crossref]

Kaspar, S.

P. Holl, M. Rattunde, S. Adler, S. Kaspar, W. Bronner, A. Bachle, R. Aidam, and J. Wagner, “Recent advances in power scaling of GaSb-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 324–335 (2015).
[Crossref]

Kasprowicz, D.

D. Kasprowicz, T. Runka, A. Majchrowski, E. Michalski, and M. Drozdowski, “Vibrational properties of Nd3+, Eu3+, Er3+ and Ho3+ doped KGd(WO4)2 single crystals studied by Raman scattering method,” Phys. Procedia 2, 539–550 (2009).
[Crossref]

Kemp, A. J.

R. Casula, J.-P. Penttinen, A. J. Kemp, M. Guina, and J. E. Hastie, “1.4  μm continuous-wave diamond Raman laser,” Opt. Express 25, 31377–31383 (2017).
[Crossref]

D. C. Parrotta, R. Casula, J. Penttinen, T. Leinonen, A. J. Kemp, M. Guina, and J. E. Hastie, “InGaAs-QW VECSEL emitting 1300-nm via intracavity Raman conversion,” Proc. SPIE 9734, 97340O (2016).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19, 1400108 (2013).
[Crossref]

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48, 328–337 (2012).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Tunable continuous-wave diamond Raman laser,” Opt. Express 19, 24165–24170 (2011).
[Crossref]

D. C. Parrotta, W. Lubeigt, A. J. Kemp, D. Burns, M. D. Dawson, and J. E. Hastie, “Continuous-wave Raman laser pumped within a semiconductor disk laser cavity,” Opt. Lett. 36, 1083–1085 (2011).
[Crossref]

Kitzler, O.

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1602214 (2018).
[Crossref]

A. McKay, O. Kitzler, and R. P. Mildren, “High power tungstate-crystal Raman laser operating in the strong thermal lensing regime,” Opt. Express 22, 707–715 (2014).
[Crossref]

Koch, M.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Koch, S. W.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Korpijärvi, V.-M.

Kotani, J.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

Krupke, W. F.

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Kunert, B.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Kuzmin, A. N.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, “Stimulated Raman scattering in Nd:KGW laser with diode pumping,” J. Alloys Compd. 300, 300–302 (2000).
[Crossref]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (<0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999).
[Crossref]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Lee, A.

Leinonen, T.

D. C. Parrotta, R. Casula, J. Penttinen, T. Leinonen, A. J. Kemp, M. Guina, and J. E. Hastie, “InGaAs-QW VECSEL emitting 1300-nm via intracavity Raman conversion,” Proc. SPIE 9734, 97340O (2016).
[Crossref]

E. Kantola, T. Leinonen, S. Ranta, M. Tavast, and M. Guina, “High-efficiency 20  W yellow VECSEL,” Opt. Express 22, 6372–6380 (2014).
[Crossref]

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180  nm VECSEL with output power beyond 20 W,” Electron. Lett. 49, 59–60 (2013).
[Crossref]

V.-M. Korpijärvi, T. Leinonen, J. Puustinen, A. Härkönen, and M. D. Guina, “11  W single gain-chip dilute nitride disk laser emitting around 1180  nm,” Opt. Express 18, 25633–25641 (2010).
[Crossref]

Lescure, M.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Li, S. T.

Liau, Z.

Z. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77, 651–653 (2000).
[Crossref]

Lin, J.

Lisinetskii, V. A.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, “Stimulated Raman scattering in Nd:KGW laser with diode pumping,” J. Alloys Compd. 300, 300–302 (2000).
[Crossref]

Liu, Y. R.

Liu, Z. J.

Lubeigt, W.

Lux, O.

Lyytikainen, J.

Lyytikäinen, J.

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

Macalik, L.

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33, 92–103 (2002).
[Crossref]

Majchrowski, A.

D. Kasprowicz, T. Runka, A. Majchrowski, E. Michalski, and M. Drozdowski, “Vibrational properties of Nd3+, Eu3+, Er3+ and Ho3+ doped KGd(WO4)2 single crystals studied by Raman scattering method,” Phys. Procedia 2, 539–550 (2009).
[Crossref]

Maker, G. T.

Malcolm, G. P. A.

Malloy, K. J.

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “Multi-watt 1.25  μm quantum dot VECSEL,” Electron. Lett. 46, 856–857 (2010).
[Crossref]

McKay, A.

Mereuta, A.

A. Sirbu, A. Rantamaki, E. J. Saarinen, V. Iakovlev, A. Mereuta, J. Lyytikainen, A. Caliman, N. Volet, O. G. Okhotnikov, and E. Kapon, “High performance wafer-fused semiconductor disk lasers emitting in the 1300  nm waveband,” Opt. Express 22, 29398–29403 (2014).
[Crossref]

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

Michalski, E.

D. Kasprowicz, T. Runka, A. Majchrowski, E. Michalski, and M. Drozdowski, “Vibrational properties of Nd3+, Eu3+, Er3+ and Ho3+ doped KGd(WO4)2 single crystals studied by Raman scattering method,” Phys. Procedia 2, 539–550 (2009).
[Crossref]

Mildren, R. P.

Mochalov, I. V.

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
[Crossref]

Moloney, J. V.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “Multi-watt 1.25  μm quantum dot VECSEL,” Electron. Lett. 46, 856–857 (2010).
[Crossref]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (<0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999).
[Crossref]

Moorthy Babu, S.

A. Senthil Kumaran, S. Moorthy Babu, S. Ganesamoorthy, I. Bhaumik, and A. K. Karnal, “Crystal growth and characterization of KY(WO4)2 and KGd(WO4)2 for laser applications,” J. Cryst. Growth 292, 368–372 (2006).
[Crossref]

Murray, J. T.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

Myllylae, R. A.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Neto, J. J.

Nishizawa, N.

Okhotnikov, O.

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

Okhotnikov, O. G.

Orlovich, V. A.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, “Stimulated Raman scattering in Nd:KGW laser with diode pumping,” J. Alloys Compd. 300, 300–302 (2000).
[Crossref]

Padgett, M. J.

Parrotta, D. C.

D. C. Parrotta, R. Casula, J. Penttinen, T. Leinonen, A. J. Kemp, M. Guina, and J. E. Hastie, “InGaAs-QW VECSEL emitting 1300-nm via intracavity Raman conversion,” Proc. SPIE 9734, 97340O (2016).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19, 1400108 (2013).
[Crossref]

D. C. Parrotta, W. Lubeigt, A. J. Kemp, D. Burns, M. D. Dawson, and J. E. Hastie, “Continuous-wave Raman laser pumped within a semiconductor disk laser cavity,” Opt. Lett. 36, 1083–1085 (2011).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Tunable continuous-wave diamond Raman laser,” Opt. Express 19, 24165–24170 (2011).
[Crossref]

Pask, H.

Pask, H. M.

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 3–56 (2003).
[Crossref]

H. M. Pask and J. A. Piper, “Raman lasers,” in Handbook of Solid-State Lasers (Elsevier, 2013), pp. 493–524.

Payne, S. A.

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Penttinen, J.

D. C. Parrotta, R. Casula, J. Penttinen, T. Leinonen, A. J. Kemp, M. Guina, and J. E. Hastie, “InGaAs-QW VECSEL emitting 1300-nm via intracavity Raman conversion,” Proc. SPIE 9734, 97340O (2016).
[Crossref]

Penttinen, J.-P.

Pessa, M.

J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouthi, and M. Pessa, “0.6  W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32  μm,” Electron. Lett. 40, 30–31 (2004).
[Crossref]

Phillips, D. B.

Piper, J.

Piper, J. A.

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

H. M. Pask and J. A. Piper, “Raman lasers,” in Handbook of Solid-State Lasers (Elsevier, 2013), pp. 493–524.

Powell, R. C.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

Puustinen, J.

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Randall Staver, P.

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Ranta, S.

E. Kantola, T. Leinonen, S. Ranta, M. Tavast, and M. Guina, “High-efficiency 20  W yellow VECSEL,” Opt. Express 22, 6372–6380 (2014).
[Crossref]

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180  nm VECSEL with output power beyond 20 W,” Electron. Lett. 49, 59–60 (2013).
[Crossref]

Rantamaki, A.

Rantamäki, A.

M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D 50, 383001 (2017).
[Crossref]

Rattunde, M.

P. Holl, M. Rattunde, S. Adler, S. Kaspar, W. Bronner, A. Bachle, R. Aidam, and J. Wagner, “Recent advances in power scaling of GaSb-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 324–335 (2015).
[Crossref]

Rautiainen, J.

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

Rioux, M.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Rodriguez-Contreras, A.

L. Shi, L. A. Sordillo, A. Rodriguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophoton. 9, 38–43 (2016).
[Crossref]

Rotter, T. J.

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “Multi-watt 1.25  μm quantum dot VECSEL,” Electron. Lett. 46, 856–857 (2010).
[Crossref]

Runka, T.

D. Kasprowicz, T. Runka, A. Majchrowski, E. Michalski, and M. Drozdowski, “Vibrational properties of Nd3+, Eu3+, Er3+ and Ho3+ doped KGd(WO4)2 single crystals studied by Raman scattering method,” Phys. Procedia 2, 539–550 (2009).
[Crossref]

Ryabtsev, G. I.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, “Stimulated Raman scattering in Nd:KGW laser with diode pumping,” J. Alloys Compd. 300, 300–302 (2000).
[Crossref]

Saarinen, E. J.

Sabella, A.

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1602214 (2018).
[Crossref]

Sarang, S.

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1602214 (2018).
[Crossref]

O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24, 27812–27820 (2016).
[Crossref]

Savitski, V. G.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48, 328–337 (2012).
[Crossref]

Senthil Kumaran, A.

A. Senthil Kumaran, S. Moorthy Babu, S. Ganesamoorthy, I. Bhaumik, and A. K. Karnal, “Crystal growth and characterization of KY(WO4)2 and KGd(WO4)2 for laser applications,” J. Cryst. Growth 292, 368–372 (2006).
[Crossref]

Shi, L.

L. Shi, L. A. Sordillo, A. Rodriguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophoton. 9, 38–43 (2016).
[Crossref]

Sirbu, A.

A. Sirbu, A. Rantamaki, E. J. Saarinen, V. Iakovlev, A. Mereuta, J. Lyytikainen, A. Caliman, N. Volet, O. G. Okhotnikov, and E. Kapon, “High performance wafer-fused semiconductor disk lasers emitting in the 1300  nm waveband,” Opt. Express 22, 29398–29403 (2014).
[Crossref]

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

Smalbrugge, B.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

Smith, S. A.

J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouthi, and M. Pessa, “0.6  W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32  μm,” Electron. Lett. 40, 30–31 (2004).
[Crossref]

Song, X.

X. Wang, W. Kang, X. Song, P. Xie, N. Zong, and W. Tu, “Theoretical and experimental research on high-order stimulated Raman scattering in KGd(WO4)2,” Opt. Commun. 385, 9–14 (2017).
[Crossref]

Sordillo, L. A.

L. Shi, L. A. Sordillo, A. Rodriguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophoton. 9, 38–43 (2016).
[Crossref]

Sparenberg, M.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Spence, D.

Spence, D. J.

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (<0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999).
[Crossref]

Stintz, A.

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “Multi-watt 1.25  μm quantum dot VECSEL,” Electron. Lett. 46, 856–857 (2010).
[Crossref]

Stolz, W.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Su, F. F.

Sun, B.

Sun, H. D.

J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouthi, and M. Pessa, “0.6  W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32  μm,” Electron. Lett. 40, 30–31 (2004).
[Crossref]

Tavast, M.

E. Kantola, T. Leinonen, S. Ranta, M. Tavast, and M. Guina, “High-efficiency 20  W yellow VECSEL,” Opt. Express 22, 6372–6380 (2014).
[Crossref]

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180  nm VECSEL with output power beyond 20 W,” Electron. Lett. 49, 59–60 (2013).
[Crossref]

Tilma, B. W.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

Tu, W.

X. Wang, W. Kang, X. Song, P. Xie, N. Zong, and W. Tu, “Theoretical and experimental research on high-order stimulated Raman scattering in KGd(WO4)2,” Opt. Commun. 385, 9–14 (2017).
[Crossref]

Van Lieu, N.

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180  nm VECSEL with output power beyond 20 W,” Electron. Lett. 49, 59–60 (2013).
[Crossref]

Volet, N.

A. Sirbu, A. Rantamaki, E. J. Saarinen, V. Iakovlev, A. Mereuta, J. Lyytikainen, A. Caliman, N. Volet, O. G. Okhotnikov, and E. Kapon, “High performance wafer-fused semiconductor disk lasers emitting in the 1300  nm waveband,” Opt. Express 22, 29398–29403 (2014).
[Crossref]

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

Wagner, J.

P. Holl, M. Rattunde, S. Adler, S. Kaspar, W. Bronner, A. Bachle, R. Aidam, and J. Wagner, “Recent advances in power scaling of GaSb-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 324–335 (2015).
[Crossref]

Walczak, J.

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

Wang, Q. P.

Wang, S. M.

Wang, T.-L.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Wang, X.

X. Wang, W. Kang, X. Song, P. Xie, N. Zong, and W. Tu, “Theoretical and experimental research on high-order stimulated Raman scattering in KGd(WO4)2,” Opt. Commun. 385, 9–14 (2017).
[Crossref]

Wasiak, M.

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

Weber, A.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Wetter, N. U.

Williams, R. J.

Xie, P.

X. Wang, W. Kang, X. Song, P. Xie, N. Zong, and W. Tu, “Theoretical and experimental research on high-order stimulated Raman scattering in KGd(WO4)2,” Opt. Commun. 385, 9–14 (2017).
[Crossref]

Zhang, S. S.

Zhang, X. Y.

Zhu, Q.

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

Zong, N.

X. Wang, W. Kang, X. Song, P. Xie, N. Zong, and W. Tu, “Theoretical and experimental research on high-order stimulated Raman scattering in KGd(WO4)2,” Opt. Commun. 385, 9–14 (2017).
[Crossref]

Adv. Opt. Technol. (1)

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol. 2011, 209093 (2011).
[Crossref]

Appl. Phys. Lett. (1)

Z. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77, 651–653 (2000).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (4)

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180  nm VECSEL with output power beyond 20 W,” Electron. Lett. 49, 59–60 (2013).
[Crossref]

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “Multi-watt 1.25  μm quantum dot VECSEL,” Electron. Lett. 46, 856–857 (2010).
[Crossref]

J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouthi, and M. Pessa, “0.6  W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32  μm,” Electron. Lett. 40, 30–31 (2004).
[Crossref]

IEEE J. Quantum Electron. (3)

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48, 328–337 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

R. J. Williams, O. Kitzler, Z. Bai, S. Sarang, H. Jasbeer, A. McKay, S. Antipov, A. Sabella, O. Lux, D. J. Spence, and R. P. Mildren, “High power diamond Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1602214 (2018).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19, 1400108 (2013).
[Crossref]

P. Holl, M. Rattunde, S. Adler, S. Kaspar, W. Bronner, A. Bachle, R. Aidam, and J. Wagner, “Recent advances in power scaling of GaSb-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 324–335 (2015).
[Crossref]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (<0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999).
[Crossref]

J. Alloys Compd. (1)

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, “Stimulated Raman scattering in Nd:KGW laser with diode pumping,” J. Alloys Compd. 300, 300–302 (2000).
[Crossref]

J. Biophoton. (1)

L. Shi, L. A. Sordillo, A. Rodriguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophoton. 9, 38–43 (2016).
[Crossref]

J. Cryst. Growth (1)

A. Senthil Kumaran, S. Moorthy Babu, S. Ganesamoorthy, I. Bhaumik, and A. K. Karnal, “Crystal growth and characterization of KY(WO4)2 and KGd(WO4)2 for laser applications,” J. Cryst. Growth 292, 368–372 (2006).
[Crossref]

J. Phys. D (1)

M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D 50, 383001 (2017).
[Crossref]

J. Raman Spectrosc. (1)

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33, 92–103 (2002).
[Crossref]

Opt. Commun. (1)

X. Wang, W. Kang, X. Song, P. Xie, N. Zong, and W. Tu, “Theoretical and experimental research on high-order stimulated Raman scattering in KGd(WO4)2,” Opt. Commun. 385, 9–14 (2017).
[Crossref]

Opt. Eng. (2)

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
[Crossref]

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Opt. Express (11)

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25, 2998–3005 (2017).
[Crossref]

V.-M. Korpijärvi, T. Leinonen, J. Puustinen, A. Härkönen, and M. D. Guina, “11  W single gain-chip dilute nitride disk laser emitting around 1180  nm,” Opt. Express 18, 25633–25641 (2010).
[Crossref]

A. Sirbu, A. Rantamaki, E. J. Saarinen, V. Iakovlev, A. Mereuta, J. Lyytikainen, A. Caliman, N. Volet, O. G. Okhotnikov, and E. Kapon, “High performance wafer-fused semiconductor disk lasers emitting in the 1300  nm waveband,” Opt. Express 22, 29398–29403 (2014).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Tunable continuous-wave diamond Raman laser,” Opt. Express 19, 24165–24170 (2011).
[Crossref]

R. P. Mildren, D. W. Coutts, and D. J. Spence, “All-solid-state parametric Raman anti-Stokes laser at 508  nm,” Opt. Express 17, 810–818 (2009).
[Crossref]

E. Kantola, T. Leinonen, S. Ranta, M. Tavast, and M. Guina, “High-efficiency 20  W yellow VECSEL,” Opt. Express 22, 6372–6380 (2014).
[Crossref]

R. J. Williams, D. J. Spence, O. Lux, and R. P. Mildren, “High-power continuous-wave Raman frequency conversion from 1.06  μm to 1.49  μm in diamond,” Opt. Express 25, 749–757 (2017).
[Crossref]

R. Casula, J.-P. Penttinen, A. J. Kemp, M. Guina, and J. E. Hastie, “1.4  μm continuous-wave diamond Raman laser,” Opt. Express 25, 31377–31383 (2017).
[Crossref]

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. Z. Fan, Z. J. Liu, J. Chang, S. S. Zhang, S. M. Wang, and Y. R. Liu, “Theoretical and experimental research on the multi-frequency Raman converter with KGd(WO4)(2) crystal,” Opt. Express 13, 10120–10128 (2005).
[Crossref]

A. McKay, O. Kitzler, and R. P. Mildren, “High power tungstate-crystal Raman laser operating in the strong thermal lensing regime,” Opt. Express 22, 707–715 (2014).
[Crossref]

O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24, 27812–27820 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

Opt. Mater. Express (1)

Phys. Procedia (1)

D. Kasprowicz, T. Runka, A. Majchrowski, E. Michalski, and M. Drozdowski, “Vibrational properties of Nd3+, Eu3+, Er3+ and Ho3+ doped KGd(WO4)2 single crystals studied by Raman scattering method,” Phys. Procedia 2, 539–550 (2009).
[Crossref]

Proc. SPIE (1)

D. C. Parrotta, R. Casula, J. Penttinen, T. Leinonen, A. J. Kemp, M. Guina, and J. E. Hastie, “InGaAs-QW VECSEL emitting 1300-nm via intracavity Raman conversion,” Proc. SPIE 9734, 97340O (2016).
[Crossref]

Prog. Quantum Electron. (1)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 3–56 (2003).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Other (2)

http://dx.doi.org/10.15129/c0974aad-0284-4980-9c2f-690923708203 .

H. M. Pask and J. A. Piper, “Raman lasers,” in Handbook of Solid-State Lasers (Elsevier, 2013), pp. 493–524.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Tuning curve of the SDL for 95 W absorbed pump power and 1.6% output coupling, obtained via rotation of an intracavity birefringent filter. Inset: SDL emission spectrum at the highest output power.
Fig. 2.
Fig. 2. Schematic of the SDL-pumped KGW Raman laser. HR, high reflector; OC, output coupler; DBR, distributed Bragg reflector; HS, heat spreader.
Fig. 3.
Fig. 3. Section of an emission spectrum of the intracavity-pumped KGW Raman laser obtained at high pump power.
Fig. 4.
Fig. 4. Emission spectrum (0.2 nm resolution) of the SDL-pumped Raman laser for 92 W of absorbed diode pump power and an all-HR cavity. AS, anti-Stokes; F, fundamental; “1” and “3,” first- and third-Stokes lasers. Top insets: 0.05 nm resolution.
Fig. 5.
Fig. 5. Power transfer characteristic of the Raman laser and the fundamental intracavity power.
Fig. 6.
Fig. 6. Wavelength tuning of the fundamental laser (blue circles) with related tuning of the first-Stokes Raman laser (orange) at 70 W of absorbed diode pump power and corresponding log-scaled output spectra.
Fig. 7.
Fig. 7. Output power of the cascaded Raman at the first- and second-Stokes radiation (orange and purple spheres, respectively), and dependency of the fundamental intracavity power on the absorbed diode pump power (blue circles). Inset: Fundamental, first- and second-Stokes Raman spectra at different absorbed pump powers.
Fig. 8.
Fig. 8. (a) Power transfer of the third-Stokes Raman laser (red spheres); and intracavity power of the fundamental (blue squares), first-Stokes (orange circles), and second-Stokes (purple triangles). (b) Evolution of the emission spectra of the Raman laser taken with 0.2 nm resolution.
Fig. 9.
Fig. 9. Spectra of the cascaded Raman lasers collected by an optical spectrum analyzer with 50 pm resolution limit, with 1 W third-Stokes output power. Insets: spatial profiles of the filtered output beams at the fundamental and Raman wavelengths.
Fig. 10.
Fig. 10. Tuning of the fundamental and the cascaded Raman laser for an absorbed diode pump power of 84 W and corresponding log-intensity emission spectra (varying from green to red for increasing fundamental wavelength) measured with 0.2 nm resolution. Red stars: calculated wavelength as out of range of the optical spectrum analyzer.