Abstract

Birefringence offers an intrinsic contrast mechanism related to the microstructure and arrangement of fibrillary tissue components. Here we present a reconstruction strategy to recover not only the scalar amount of birefringence, but also its optic axis orientation as a function of depth in tissue from measurements with catheter-based polarization-sensitive optical coherence tomography. A polarization symmetry constraint, intrinsic to imaging in the backscatter direction, facilitates the required compensation for wavelength-dependent transmission through the system elements, the rotating catheter, and overlying tissue layers. Applied to the intravascular imaging of coronary atherosclerosis in human patients, the optic axis affords refined interpretation of plaque architecture.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography

Qingyun Li, Karol Karnowski, Peter B. Noble, Alvenia Cairncross, Alan James, Martin Villiger, and David D. Sampson
Biomed. Opt. Express 9(11) 5437-5455 (2018)

Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging

Martin Villiger, Ellen Ziyi Zhang, Seemantini K. Nadkarni, Wang-Yuhl Oh, Benjamin J. Vakoc, and Brett E. Bouma
Opt. Express 21(14) 16353-16369 (2013)

Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions

Boy Braaf, Koenraad A. Vermeer, Mattijs de Groot, Kari V. Vienola, and Johannes F. de Boer
Biomed. Opt. Express 5(8) 2736-2758 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
    [Crossref]
  2. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [Crossref]
  3. J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography—a review [Invited],” Biomed. Opt. Express 8, 1838–1873 (2017).
    [Crossref]
  4. S. G. Guo, J. Zhang, L. Wang, J. S. Nelson, and Z. P. Chen, “Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett. 29, 2025–2027 (2004).
    [Crossref]
  5. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
    [Crossref]
  6. M. Todorovic, S. L. Jiao, and L. V. Wang, “Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography,” Opt. Lett. 29, 2402–2404 (2004).
    [Crossref]
  7. C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 4, 460–465 (2013).
    [Crossref]
  8. E. Z. Zhang and B. J. Vakoc, “Polarimetry noise in fiber-based optical coherence tomography instrumentation,” Opt. Express 19, 16830–16842 (2011).
    [Crossref]
  9. M. Villiger, E. Z. Zhang, S. Nadkarni, W.-Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett. 38, 923–925 (2013).
    [Crossref]
  10. M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21, 16353–16369 (2013).
    [Crossref]
  11. M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
    [Crossref]
  12. M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
    [Crossref]
  13. N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40, 3954–3957 (2015).
    [Crossref]
  14. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. 40, 1–47 (2007).
    [Crossref]
  15. S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995).
    [Crossref]
  16. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
    [Crossref]
  17. R. Simon, “The connection between Mueller and Jones matrices of polarization optics,” Opt. Commun. 42, 293–297 (1982).
    [Crossref]
  18. B. N. Simon, S. Simon, N. Mukunda, F. Gori, M. Santarsiero, R. Borghi, and R. Simon, “A complete characterization of pre-Mueller and Mueller matrices in polarization optics,” J. Opt. Soc. Am. A 27, 188–199 (2010).
    [Crossref]
  19. M. Moakher, “Means and averaging in the group of rotations,” SIAM J. Matrix Anal. Appl. 24, 1–16 (2002).
    [Crossref]
  20. I. Sharf, A. Wolf, and M. B. Rubin, “Arithmetic and geometric solutions for average rigid-body rotation,” Mech. Mach. Theory 45, 1239–1251 (2010).
    [Crossref]
  21. O. K. Smith, “Eigenvalues of a symmetric 3 × 3 matrix,” Commun. ACM 4, 168 (1961).
    [Crossref]
  22. D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
    [Crossref]
  23. P. Kovesi, “Good colour maps: how to design them,” arXiv:1509.03700 (2015).
  24. X. Liu, K. Beaudette, X. Wang, L. Liu, B. E. Bouma, and M. Villiger, “Tissue-like phantoms for quantitative birefringence imaging,” Biomed. Opt. Express 8, 4454–4465 (2017).
    [Crossref]
  25. S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
    [Crossref]
  26. P. B. Canham, H. M. Finlay, J. G. Dixon, D. R. Boughner, and A. Chen, “Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure,” Cardiovasc. Res. 23, 973–982 (1989).
    [Crossref]
  27. A. P. Burke, F. D. Kolodgie, A. Farb, D. K. Weber, G. T. Malcom, J. Smialek, and R. Virmani, “Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression,” Circulation 103, 934–940 (2001).
    [Crossref]
  28. F. Otsuka, M. Joner, F. Prati, R. Virmani, and J. Narula, “Clinical classification of plaque morphology in coronary disease,” Nat. Rev. Cardiol. 11, 379–389 (2014).
    [Crossref]
  29. M. Wolman, “Polarized light microscopy as a tool of diagnostic pathology,” J. Histochem. Cytochem. 23, 21–50 (1975).
    [Crossref]
  30. D. K. Kasaragod, Z. Lu, J. Jacobs, and S. J. Matcher, “Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 3, 378–387 (2012).
    [Crossref]
  31. Y. Wang, M. Ravanfar, K. Zhang, D. Duan, and G. Yao, “Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography,” Biomed. Opt. Express 7, 3855–3870 (2016).
    [Crossref]
  32. B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5, 2736–2758 (2014).
    [Crossref]
  33. M. Villiger, D. Adams, A. S. Nam, N. Lippok, N. Uribe-Patarroyo, B. Vakoc, M. Suter, and B. E. Bouma, “Reciprocity constraints in catheter-based polarimetry,” in IEEE Photonics Conference (2016), pp. 136–137.

2018 (1)

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

2017 (2)

2016 (2)

Y. Wang, M. Ravanfar, K. Zhang, D. Duan, and G. Yao, “Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography,” Biomed. Opt. Express 7, 3855–3870 (2016).
[Crossref]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

2015 (1)

2014 (2)

B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5, 2736–2758 (2014).
[Crossref]

F. Otsuka, M. Joner, F. Prati, R. Virmani, and J. Narula, “Clinical classification of plaque morphology in coronary disease,” Nat. Rev. Cardiol. 11, 379–389 (2014).
[Crossref]

2013 (3)

2012 (1)

2011 (1)

2010 (3)

2007 (2)

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref]

J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. 40, 1–47 (2007).
[Crossref]

2004 (2)

2002 (2)

M. Moakher, “Means and averaging in the group of rotations,” SIAM J. Matrix Anal. Appl. 24, 1–16 (2002).
[Crossref]

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[Crossref]

2001 (1)

A. P. Burke, F. D. Kolodgie, A. Farb, D. K. Weber, G. T. Malcom, J. Smialek, and R. Virmani, “Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression,” Circulation 103, 934–940 (2001).
[Crossref]

1997 (1)

1995 (1)

S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995).
[Crossref]

1992 (1)

1989 (1)

P. B. Canham, H. M. Finlay, J. G. Dixon, D. R. Boughner, and A. Chen, “Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure,” Cardiovasc. Res. 23, 973–982 (1989).
[Crossref]

1982 (1)

R. Simon, “The connection between Mueller and Jones matrices of polarization optics,” Opt. Commun. 42, 293–297 (1982).
[Crossref]

1975 (1)

M. Wolman, “Polarized light microscopy as a tool of diagnostic pathology,” J. Histochem. Cytochem. 23, 21–50 (1975).
[Crossref]

1961 (1)

O. K. Smith, “Eigenvalues of a symmetric 3 × 3 matrix,” Commun. ACM 4, 168 (1961).
[Crossref]

Adams, D.

M. Villiger, D. Adams, A. S. Nam, N. Lippok, N. Uribe-Patarroyo, B. Vakoc, M. Suter, and B. E. Bouma, “Reciprocity constraints in catheter-based polarimetry,” in IEEE Photonics Conference (2016), pp. 136–137.

Adams, D. C.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

Beaudette, K.

Borghi, R.

Boughner, D. R.

P. B. Canham, H. M. Finlay, J. G. Dixon, D. R. Boughner, and A. Chen, “Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure,” Cardiovasc. Res. 23, 973–982 (1989).
[Crossref]

Bouma, B. E.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

X. Liu, K. Beaudette, X. Wang, L. Liu, B. E. Bouma, and M. Villiger, “Tissue-like phantoms for quantitative birefringence imaging,” Biomed. Opt. Express 8, 4454–4465 (2017).
[Crossref]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40, 3954–3957 (2015).
[Crossref]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21, 16353–16369 (2013).
[Crossref]

M. Villiger, E. Z. Zhang, S. Nadkarni, W.-Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett. 38, 923–925 (2013).
[Crossref]

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

M. Villiger, D. Adams, A. S. Nam, N. Lippok, N. Uribe-Patarroyo, B. Vakoc, M. Suter, and B. E. Bouma, “Reciprocity constraints in catheter-based polarimetry,” in IEEE Photonics Conference (2016), pp. 136–137.

Braaf, B.

Bressner, J. E.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref]

Burke, A. P.

A. P. Burke, F. D. Kolodgie, A. Farb, D. K. Weber, G. T. Malcom, J. Smialek, and R. Virmani, “Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression,” Circulation 103, 934–940 (2001).
[Crossref]

Canham, P. B.

P. B. Canham, H. M. Finlay, J. G. Dixon, D. R. Boughner, and A. Chen, “Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure,” Cardiovasc. Res. 23, 973–982 (1989).
[Crossref]

Chen, A.

P. B. Canham, H. M. Finlay, J. G. Dixon, D. R. Boughner, and A. Chen, “Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure,” Cardiovasc. Res. 23, 973–982 (1989).
[Crossref]

Chen, Z. P.

Cho, J. L.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

Cloude, S. R.

S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995).
[Crossref]

Daemen, J.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

de Boer, J. F.

de Groot, M.

Dijkstra, J.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

Diletti, R.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

Dixon, J. G.

P. B. Canham, H. M. Finlay, J. G. Dixon, D. R. Boughner, and A. Chen, “Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure,” Cardiovasc. Res. 23, 973–982 (1989).
[Crossref]

Doradla, P.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

Duan, D.

Fan, C.

Farb, A.

A. P. Burke, F. D. Kolodgie, A. Farb, D. K. Weber, G. T. Malcom, J. Smialek, and R. Virmani, “Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression,” Circulation 103, 934–940 (2001).
[Crossref]

Finlay, H. M.

P. B. Canham, H. M. Finlay, J. G. Dixon, D. R. Boughner, and A. Chen, “Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure,” Cardiovasc. Res. 23, 973–982 (1989).
[Crossref]

Fujimoto, J. G.

Gil, J. J.

J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. 40, 1–47 (2007).
[Crossref]

Gori, F.

Griffith, J. W.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

Guo, S. G.

Halpern, E.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref]

Hamilos, D. L.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

Hariri, L. P.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

Hee, M. R.

Hitzenberger, C. K.

Holz, J. A.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

Houser, S. L.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref]

Huang, D.

Jacobs, J.

Jiao, S.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[Crossref]

Jiao, S. L.

Joner, M.

F. Otsuka, M. Joner, F. Prati, R. Virmani, and J. Narula, “Clinical classification of plaque morphology in coronary disease,” Nat. Rev. Cardiol. 11, 379–389 (2014).
[Crossref]

Karanasos, A.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

Kasaragod, D. K.

Kolodgie, F. D.

A. P. Burke, F. D. Kolodgie, A. Farb, D. K. Weber, G. T. Malcom, J. Smialek, and R. Virmani, “Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression,” Circulation 103, 934–940 (2001).
[Crossref]

Kovesi, P.

P. Kovesi, “Good colour maps: how to design them,” arXiv:1509.03700 (2015).

Libby, P.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

Lippok, N.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40, 3954–3957 (2015).
[Crossref]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

M. Villiger, D. Adams, A. S. Nam, N. Lippok, N. Uribe-Patarroyo, B. Vakoc, M. Suter, and B. E. Bouma, “Reciprocity constraints in catheter-based polarimetry,” in IEEE Photonics Conference (2016), pp. 136–137.

Liu, L.

Liu, X.

Lu, Z.

Luster, A. D.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

Makita, S.

Malcom, G. T.

A. P. Burke, F. D. Kolodgie, A. Farb, D. K. Weber, G. T. Malcom, J. Smialek, and R. Virmani, “Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression,” Circulation 103, 934–940 (2001).
[Crossref]

Matcher, S. J.

Medoff, B. D.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

Miller, A. J.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

Milner, T. E.

Moakher, M.

M. Moakher, “Means and averaging in the group of rotations,” SIAM J. Matrix Anal. Appl. 24, 1–16 (2002).
[Crossref]

Mukunda, N.

Nadkarni, S.

Nadkarni, S. K.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21, 16353–16369 (2013).
[Crossref]

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

Nam, A. S.

M. Villiger, D. Adams, A. S. Nam, N. Lippok, N. Uribe-Patarroyo, B. Vakoc, M. Suter, and B. E. Bouma, “Reciprocity constraints in catheter-based polarimetry,” in IEEE Photonics Conference (2016), pp. 136–137.

Narula, J.

F. Otsuka, M. Joner, F. Prati, R. Virmani, and J. Narula, “Clinical classification of plaque morphology in coronary disease,” Nat. Rev. Cardiol. 11, 379–389 (2014).
[Crossref]

Nelson, J. S.

Oh, W.-Y.

Otsuka, F.

F. Otsuka, M. Joner, F. Prati, R. Virmani, and J. Narula, “Clinical classification of plaque morphology in coronary disease,” Nat. Rev. Cardiol. 11, 379–389 (2014).
[Crossref]

Otsuka, K.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

Park, B. H.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref]

Pierce, M. C.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref]

Pottier, E.

S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995).
[Crossref]

Prati, F.

F. Otsuka, M. Joner, F. Prati, R. Virmani, and J. Narula, “Clinical classification of plaque morphology in coronary disease,” Nat. Rev. Cardiol. 11, 379–389 (2014).
[Crossref]

Ravanfar, M.

Regar, E.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

Ren, J.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

Rubin, M. B.

I. Sharf, A. Wolf, and M. B. Rubin, “Arithmetic and geometric solutions for average rigid-body rotation,” Mech. Mach. Theory 45, 1239–1251 (2010).
[Crossref]

Santarsiero, M.

Scott Harris, R.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

Sharf, I.

I. Sharf, A. Wolf, and M. B. Rubin, “Arithmetic and geometric solutions for average rigid-body rotation,” Mech. Mach. Theory 45, 1239–1251 (2010).
[Crossref]

Shishkov, M.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

Simon, B. N.

Simon, R.

Simon, S.

Smialek, J.

A. P. Burke, F. D. Kolodgie, A. Farb, D. K. Weber, G. T. Malcom, J. Smialek, and R. Virmani, “Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression,” Circulation 103, 934–940 (2001).
[Crossref]

Smith, O. K.

O. K. Smith, “Eigenvalues of a symmetric 3 × 3 matrix,” Commun. ACM 4, 168 (1961).
[Crossref]

Suter, M.

M. Villiger, D. Adams, A. S. Nam, N. Lippok, N. Uribe-Patarroyo, B. Vakoc, M. Suter, and B. E. Bouma, “Reciprocity constraints in catheter-based polarimetry,” in IEEE Photonics Conference (2016), pp. 136–137.

Suter, M. J.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

Swanson, E. A.

Szabari, M. V.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

Tearney, G. J.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref]

Todorovic, M.

Uribe-Patarroyo, N.

M. Villiger, D. Adams, A. S. Nam, N. Lippok, N. Uribe-Patarroyo, B. Vakoc, M. Suter, and B. E. Bouma, “Reciprocity constraints in catheter-based polarimetry,” in IEEE Photonics Conference (2016), pp. 136–137.

Vakoc, B.

M. Villiger, D. Adams, A. S. Nam, N. Lippok, N. Uribe-Patarroyo, B. Vakoc, M. Suter, and B. E. Bouma, “Reciprocity constraints in catheter-based polarimetry,” in IEEE Photonics Conference (2016), pp. 136–137.

Vakoc, B. J.

van Gemert, M. J. C.

van Geuns, R.-J.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

van Soest, G.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

Vermeer, K. A.

Vienola, K. V.

Villiger, M.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

X. Liu, K. Beaudette, X. Wang, L. Liu, B. E. Bouma, and M. Villiger, “Tissue-like phantoms for quantitative birefringence imaging,” Biomed. Opt. Express 8, 4454–4465 (2017).
[Crossref]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40, 3954–3957 (2015).
[Crossref]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21, 16353–16369 (2013).
[Crossref]

M. Villiger, E. Z. Zhang, S. Nadkarni, W.-Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett. 38, 923–925 (2013).
[Crossref]

M. Villiger, D. Adams, A. S. Nam, N. Lippok, N. Uribe-Patarroyo, B. Vakoc, M. Suter, and B. E. Bouma, “Reciprocity constraints in catheter-based polarimetry,” in IEEE Photonics Conference (2016), pp. 136–137.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

Virmani, R.

F. Otsuka, M. Joner, F. Prati, R. Virmani, and J. Narula, “Clinical classification of plaque morphology in coronary disease,” Nat. Rev. Cardiol. 11, 379–389 (2014).
[Crossref]

A. P. Burke, F. D. Kolodgie, A. Farb, D. K. Weber, G. T. Malcom, J. Smialek, and R. Virmani, “Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression,” Circulation 103, 934–940 (2001).
[Crossref]

Wang, L.

Wang, L. V.

Wang, X.

Wang, Y.

Y. Wang, M. Ravanfar, K. Zhang, D. Duan, and G. Yao, “Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography,” Biomed. Opt. Express 7, 3855–3870 (2016).
[Crossref]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

Weber, D. K.

A. P. Burke, F. D. Kolodgie, A. Farb, D. K. Weber, G. T. Malcom, J. Smialek, and R. Virmani, “Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression,” Circulation 103, 934–940 (2001).
[Crossref]

Whittaker, P.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref]

Wolf, A.

I. Sharf, A. Wolf, and M. B. Rubin, “Arithmetic and geometric solutions for average rigid-body rotation,” Mech. Mach. Theory 45, 1239–1251 (2010).
[Crossref]

Wolman, M.

M. Wolman, “Polarized light microscopy as a tool of diagnostic pathology,” J. Histochem. Cytochem. 23, 21–50 (1975).
[Crossref]

Yamanari, M.

Yao, G.

Yasuno, Y.

Zhang, E. Z.

Zhang, J.

Zhang, K.

Zijlstra, F.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

Biomed. Opt. Express (6)

Cardiovasc. Res. (1)

P. B. Canham, H. M. Finlay, J. G. Dixon, D. R. Boughner, and A. Chen, “Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure,” Cardiovasc. Res. 23, 973–982 (1989).
[Crossref]

Circulation (1)

A. P. Burke, F. D. Kolodgie, A. Farb, D. K. Weber, G. T. Malcom, J. Smialek, and R. Virmani, “Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression,” Circulation 103, 934–940 (2001).
[Crossref]

Commun. ACM (1)

O. K. Smith, “Eigenvalues of a symmetric 3 × 3 matrix,” Commun. ACM 4, 168 (1961).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. 40, 1–47 (2007).
[Crossref]

IEEE Trans. Med. Imaging (1)

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, J. Dijkstra, G. van Soest, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Repeatability assessment of intravascular polarimetry in patients,” IEEE Trans. Med. Imaging 37, 1618–1625 (2018).
[Crossref]

J. Am. Coll. Cardiol. (1)

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref]

J. Biomed. Opt. (1)

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[Crossref]

J. Histochem. Cytochem. (1)

M. Wolman, “Polarized light microscopy as a tool of diagnostic pathology,” J. Histochem. Cytochem. 23, 21–50 (1975).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Mech. Mach. Theory (1)

I. Sharf, A. Wolf, and M. B. Rubin, “Arithmetic and geometric solutions for average rigid-body rotation,” Mech. Mach. Theory 45, 1239–1251 (2010).
[Crossref]

Nat. Rev. Cardiol. (1)

F. Otsuka, M. Joner, F. Prati, R. Virmani, and J. Narula, “Clinical classification of plaque morphology in coronary disease,” Nat. Rev. Cardiol. 11, 379–389 (2014).
[Crossref]

Opt. Commun. (1)

R. Simon, “The connection between Mueller and Jones matrices of polarization optics,” Opt. Commun. 42, 293–297 (1982).
[Crossref]

Opt. Eng. (1)

S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Sci. Trans. Med. (1)

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Trans. Med. 8, 359ra131 (2016).
[Crossref]

SIAM J. Matrix Anal. Appl. (1)

M. Moakher, “Means and averaging in the group of rotations,” SIAM J. Matrix Anal. Appl. 24, 1–16 (2002).
[Crossref]

Other (3)

P. Kovesi, “Good colour maps: how to design them,” arXiv:1509.03700 (2015).

M. Villiger, D. Adams, A. S. Nam, N. Lippok, N. Uribe-Patarroyo, B. Vakoc, M. Suter, and B. E. Bouma, “Reciprocity constraints in catheter-based polarimetry,” in IEEE Photonics Conference (2016), pp. 136–137.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC Cardiovasc. Imaging (2017).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Processing steps, setup schematic, and imaging geometry for optic axis reconstruction. (a) Cross section of the conventional backscatter signal in the right coronary artery of a human patient, and required processing steps to obtain the optic axis orientation map, with color indicating axis orientation (ϕ) and brightness specifying birefringence (Δn). Scale bar: 1 mm. (b) Schematic of the polarization-modulated PS-OCT system. (c) At the catheter tip, total internal reflection directs the probing beam into the tissue, mapping the local coordinates of the longitudinal and circumferential directions into the static laboratory frame.
Fig. 2.
Fig. 2. Polarization measurements are intrinsically symmetric. (a) Original anti-symmetric measurement components for the central spectral bin. (b) Obtained correction retardation vectors as functions of the spectral bin. (c) Anti-symmetric measurement components for the central spectral bin after applying the correction matrix. (d) Histograms of average anti-symmetric components before and after correction for a total of 344 independent cross sections.
Fig. 3.
Fig. 3. Correction for PMD. (a) Cumulative retardation of the symmetric measurement matrices of the indicated spectral bins in RGB-color overlay. (b) Angle between the cumulative optic axes of the first and central spectral bins. (c) After PMD correction, the variation between spectral bins is removed, and the angle offset is compensated for (d). The inset between (b) and (d) shows histograms of the angle offset before (blue) and after (red) compensation. (e) Retardation vector of the correction matrix L·V as a function of the spectral bin. (f) Mean squared difference of the retardation matrices in each spectral bin with their aligned and averaged versions for 344 independent cross sections, before and after alignment.
Fig. 4.
Fig. 4. Estimation of system and catheter transmission. (a) Cumulative optic axis map, indicating the reflection signal on the inner side of the catheter sheath. (b) Cumulative optic axis map after compensation for system and catheter transmission, indicating the surface axis orientation. (c) Cumulative optic axes of the double-pass transmission through the catheter. The blue points indicate the original measurements. The red line corresponds to unwrapped and filtered data points. Removal of the static component isolates the catheter transmission (yellow line). (d) Centered catheter transmission, and compensated axis orientation of the tissue surface (color encodes axis orientation), together with fitted reference orientation (offset angle).
Fig. 5.
Fig. 5. Depth-resolved optic axis maps in the coronary arteries of human patients. (a, e) Right coronary artery of a 69-year-old man presenting with unstable angina. (b, f) Right coronary artery of a 73-year-old man with stable angina. (c, g) Right coronary artery of a 69-year-old man with stable angina. (d, h) Left anterior descending coronary artery in a 61-year-old man with stable angina. The three layers of the coronary arterial wall are indicated with white arrowheads in (d). The media layer is highlighted with purple arrowheads in (e)–(h). Scale bars, 1 mm.
Fig. 6.
Fig. 6. Validation of optic axis mapping with a two-layer birefringence phantom. (a) Schematic drawing of the phantom. The optic axis (OA) orientations of both the top and bottom layers were varied over 180˚ in steps of 22.5˚. (b) A conventional OCT cross section depicting the two layers. The white dashed line indicates the region visualized in (c) for the various optic axis orientations. The red and blue rectangles indicate the region of interest (ROI) used for the quantitative evaluation of the axis orientation. (c) Color-coded OA maps for the selected axis orientations. The color of the ROI frame corresponds to the set angle orientation. (d) Quantitative evaluation of OA orientation within the ROIs when correcting for depth-resolved OA orientation (top panel), and without this correction step (w/o correction; bottom panel). The two traces are offset in the horizontal direction by 4˚ for visualization.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

[v1(k,θ)v2(k,θ)]=Jtot(k,θ)·[u1u2].
t1,2(z,m)=FT{w(k,m)·v1,2(k)};
sp(z,m)=[tpht¯ph+tpvt¯pvtpht¯phtpvt¯pv2Re{tpht¯pv}2Im{tpht¯pv}]=[IpQpUpVp]=Ip[1s^p];
DOP(z)=p=12m=12N1Qp,m2+Up,m2+Vp,m2Ip,m.
M(z,m)=[s^1s^2s^1×s^2];
s^1,2=s^1+s^22s^1+s^2±s^1s^22s^1s^2.
M(z,m)=D·BT(m)·FT·ST(z)·D·S(z)·F·A(m).
minCJ(m)B-scanJT(z,m)·CJT(m)CJ(m)·J(z,m)22,
minc(m)cT·(B-scanj·j)·c¯=cT·H·c¯,
M(z,m)=D·AT(m)·FT·ST(z)·D·S(z)·F·A(m).
minL(m)B-scan(Tr(L(m)·M(z,m)·L(m))Tr(M(z,q)))2,
M=12N1m=12N1M(m)=M·P;
M(z)=D·AT·FT·ST(z)·D·S(z)·F·A;
M(zcath,θ)=D·AT·FT(θ)·D·F(θ)·AMcath(θ)=AL·W(θ)·TQ·TQ·W1(θ)·AL.
TQ=W1(θ)·AL·M(zcath)·AL1·W(θ)
TQ1·W1(θ)·AL·M(z,θ)·AL1·W(θ)·TQ1=TV1·D·ST(z,θ)·D·S(z,θ)·TV=TV1·M(z,θ)·TV.
Mn=N1·N2··Nn·Nn··N2·N1.
N1=M1N2=N11·M2·N11Nn=N11·N21··Nn11·Mn·Nn11··N21·N11=D·Sn1T1·D·Mn·Sn11.