Abstract

Mitigation of optical losses is of prime importance for the performance of integrated micro-photonic devices. In this paper, we demonstrate strip-loaded guiding optical components realized on a 27 nm ultra-thin silicon-on-insulator (SOI) platform. The absence of physically etched boundaries within the guiding core majorly suppresses the scattering loss, as shown by us previously for a silicon nitride (Si3N4) platform. Unexpectedly, the freshly fabricated Si devices showed large losses of 5.1 dB/cm originating from absorption by free carriers, accumulated under the positively charged Si3N4 loading layer. We show how ultraviolet (UV, 254 nm) light exposure can progressively and permanently neutralize Si3N4’s bulk charge, associated with diamagnetic K+ defects. Consequently, the net decrease of electron concentration in the SOI layer reduces the propagation loss down to 0.9 dB/cm. Accurate cavity linewidth measurements demonstrate how the intrinsic cavity’s Q boosts from 70,000 up to 500,000 after UV illumination. Our results may open routes towards engineering of new functionalities in photonic devices employing UV modification of space-charge-associated local electric fields, unveil the origin of induced optical nonlinearities in Si3N4/Si micro-photonic systems, as well as envisage possible integration of these with both standard and ultra-thin SOI electronics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-energy MOS depletion modulators in silicon-on-insulator micro-donut resonators coupled to bus waveguides

Richard Soref, Junpeng Guo, and Greg Sun
Opt. Express 19(19) 18122-18134 (2011)

60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform

Zhi Zou, Linjie Zhou, Xinwan Li, and Jianping Chen
Opt. Express 23(16) 20784-20795 (2015)

Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold

Xingchen Ji, Felippe A. S. Barbosa, Samantha P. Roberts, Avik Dutt, Jaime Cardenas, Yoshitomo Okawachi, Alex Bryant, Alexander L. Gaeta, and Michal Lipson
Optica 4(6) 619-624 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. G. Rabus, Integrated Ring Resonators (Springer, 2007).
  2. J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).
  3. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
    [Crossref]
  4. A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
    [Crossref]
  5. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
    [Crossref]
  6. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
    [Crossref]
  7. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
    [Crossref]
  8. J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
    [Crossref]
  9. J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
    [Crossref]
  10. J. B. Christensen, J. G. Koefoed, K. Rottwitt, and C. McKinstrie, “Engineering spectrally unentangled photon pairs from nonlinear microring resonators by pump manipulation,” Opt. Lett. 43, 859–862 (2018).
  11. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  12. A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Opt. Express 21, 13333–13341 (2013).
    [Crossref]
  13. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
    [Crossref]
  14. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  15. A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
    [Crossref]
  16. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
    [Crossref]
  17. D. T. Spencer, J. F. Bauters, M. J. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
    [Crossref]
  18. L. Stefan, M. Bernard, R. Guider, G. Pucker, L. Pavesi, and M. Ghulinyan, “Ultra-high-Q thin-silicon nitride strip-loaded ring resonators,” Opt. Lett. 40, 3316–3319 (2015).
    [Crossref]
  19. M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, and Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011).
    [Crossref]
  20. X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
    [Crossref]
  21. F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express 20, 22934–22942 (2012).
    [Crossref]
  22. L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
    [Crossref]
  23. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37, 4236–4238 (2012).
    [Crossref]
  24. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  25. L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).
  26. T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
    [Crossref]
  27. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005).
    [Crossref]
  28. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  29. J. Milek, Silicon Nitride for Microelectronic Applications: Part 1 Preparation and Properties (Springer, 2013).
  30. J. Kanicki, Amorphous and Microcrystalline Semiconductor Devices: Materials and Device Physics (Artech House, 1992), Vol. 2.
  31. R. E. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Springer, 1998).
  32. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16, 13509–13516 (2008).
    [Crossref]
  33. S. Romero-Garca, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21, 14036–14046 (2013).
    [Crossref]
  34. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
    [Crossref]
  35. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
    [Crossref]
  36. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  37. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
    [Crossref]
  38. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
    [Crossref]
  39. C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
    [Crossref]
  40. S. S. Azadeh, F. Merget, M. Nezhad, and J. Witzens, “On the measurement of the Pockels effect in strained silicon,” Opt. Lett. 40, 1877–1880 (2015).
    [Crossref]
  41. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
    [Crossref]
  42. W. Kern and D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187–206 (1970).
  43. D. Krick, P. Lenahan, and J. Kanicki, “Electrically active point defects in amorphous silicon nitride: an illumination and charge injection study,” J. Appl. Phys. 64, 3558–3563 (1988).
    [Crossref]
  44. M. Kumeda, H. Yokomichi, and T. Shimizu, “Photo-induced ESR in amorphous Si1-xNx: H films,” Jpn. J. Appl. Phys. 23, L502–L504 (1984).
    [Crossref]
  45. W. L. Warren, P. Lenahan, and S. E. Curry, “First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride,” Phys. Rev. Lett. 65, 207–210 (1990).
    [Crossref]
  46. W. Warren, P. Lenahan, and J. Kanicki, “Electrically neutral nitrogen dangling-bond defects in amorphous hydrogenated silicon nitride thin films,” J. Appl. Phys. 70, 2220–2225 (1991).
    [Crossref]
  47. K. Kobayashi and K. Ishikawa, “Ultraviolet light-induced conduction current in silicon nitride films,” Jpn. J. Appl. Phys. 50, 031501 (2011).
    [Crossref]
  48. W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
    [Crossref]
  49. P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
    [Crossref]
  50. A. Beer, “Determination of the absorption of red light in colored liquids,” Ann. Phys. Chem. 86, 78–88 (1852).
    [Crossref]
  51. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  52. J. Degallaix, R. Flaminio, D. Forest, M. Granata, C. Michel, L. Pinard, T. Bertrand, and G. Cagnoli, “Bulk optical absorption of high resistivity silicon at 1550  nm,” Opt. Lett. 38, 2047–2049 (2013).
    [Crossref]
  53. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14  μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
    [Crossref]
  54. S. Taebi, M. Khorasaninejad, and S. S. Saini, “Modified Fabry–Perot interferometric method for waveguide loss measurement,” Appl. Opt. 47, 6625–6630 (2008).
    [Crossref]
  55. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [Crossref]

2018 (1)

2017 (1)

2016 (3)

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

2015 (5)

L. Stefan, M. Bernard, R. Guider, G. Pucker, L. Pavesi, and M. Ghulinyan, “Ultra-high-Q thin-silicon nitride strip-loaded ring resonators,” Opt. Lett. 40, 3316–3319 (2015).
[Crossref]

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

S. S. Azadeh, F. Merget, M. Nezhad, and J. Witzens, “On the measurement of the Pockels effect in strained silicon,” Opt. Lett. 40, 1877–1880 (2015).
[Crossref]

2014 (1)

2013 (6)

S. Romero-Garca, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21, 14036–14046 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Opt. Express 21, 13333–13341 (2013).
[Crossref]

J. Degallaix, R. Flaminio, D. Forest, M. Granata, C. Michel, L. Pinard, T. Bertrand, and G. Cagnoli, “Bulk optical absorption of high resistivity silicon at 1550  nm,” Opt. Lett. 38, 2047–2049 (2013).
[Crossref]

2012 (5)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express 20, 22934–22942 (2012).
[Crossref]

A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37, 4236–4238 (2012).
[Crossref]

2011 (8)

L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, and Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011).
[Crossref]

K. Kobayashi and K. Ishikawa, “Ultraviolet light-induced conduction current in silicon nitride films,” Jpn. J. Appl. Phys. 50, 031501 (2011).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14  μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

2010 (2)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

2008 (2)

2006 (4)

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
[Crossref]

2005 (2)

2004 (1)

T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

1993 (1)

W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
[Crossref]

1991 (1)

W. Warren, P. Lenahan, and J. Kanicki, “Electrically neutral nitrogen dangling-bond defects in amorphous hydrogenated silicon nitride thin films,” J. Appl. Phys. 70, 2220–2225 (1991).
[Crossref]

1990 (1)

W. L. Warren, P. Lenahan, and S. E. Curry, “First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride,” Phys. Rev. Lett. 65, 207–210 (1990).
[Crossref]

1988 (1)

D. Krick, P. Lenahan, and J. Kanicki, “Electrically active point defects in amorphous silicon nitride: an illumination and charge injection study,” J. Appl. Phys. 64, 3558–3563 (1988).
[Crossref]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

1984 (1)

M. Kumeda, H. Yokomichi, and T. Shimizu, “Photo-induced ESR in amorphous Si1-xNx: H films,” Jpn. J. Appl. Phys. 23, L502–L504 (1984).
[Crossref]

1970 (1)

W. Kern and D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187–206 (1970).

1852 (1)

A. Beer, “Determination of the absorption of red light in colored liquids,” Ann. Phys. Chem. 86, 78–88 (1852).
[Crossref]

Aimez, V.

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Armani, A. M.

Azadeh, S. S.

Azzini, S.

Baets, R.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005).
[Crossref]

Bajoni, D.

Barbosa, F. A.

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

Bauters, J. F.

Beeker, W.

Beer, A.

A. Beer, “Determination of the absorption of red light in colored liquids,” Ann. Phys. Chem. 86, 78–88 (1852).
[Crossref]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Bernard, M.

Bertrand, T.

Bianco, F.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Biberman, A.

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Bogaerts, W.

Bondarenko, O.

Bonneau, D.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Borselli, M.

Bowers, J. E.

Bryant, A.

Burla, M.

Cagnoli, G.

Cardenas, J.

Caspani, L.

Cazzanelli, M.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Celler, G. K.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Chalyan, T.

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

Chang, L.

Charette, P.

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Christensen, J. B.

Chu, S. T.

Claes, T.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Clark, A. S.

Clerici, M.

Curry, S. E.

W. L. Warren, P. Lenahan, and S. E. Curry, “First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride,” Phys. Rev. Lett. 65, 207–210 (1990).
[Crossref]

Dai, D.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

de Boor, J.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Degallaix, J.

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Deshpande, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Dhakal, A.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Dorenbos, S. N.

Du Bois, B.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Duchesne, D.

Dumon, P.

Dutt, A.

Eisenschmidt, C.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Engin, E.

Eriksson, M. A.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Evans, P. G.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Ezaki, M.

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Fainman, Y.

Ferrera, M.

Finkelstein, H.

Flaminio, R.

Forest, D.

Foster, M. A.

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Gaeta, A. L.

Galli, M.

Gandolfi, D.

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

Ghulinyan, M.

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

L. Stefan, M. Bernard, R. Guider, G. Pucker, L. Pavesi, and M. Ghulinyan, “Ultra-high-Q thin-silicon nitride strip-loaded ring resonators,” Opt. Lett. 40, 3316–3319 (2015).
[Crossref]

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express 20, 22934–22942 (2012).
[Crossref]

Gorin, A.

Granata, M.

Grassani, D.

Grondin, E.

Grover, R.

J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).

Guider, R.

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

L. Stefan, M. Bernard, R. Guider, G. Pucker, L. Pavesi, and M. Ghulinyan, “Ultra-high-Q thin-silicon nitride strip-loaded ring resonators,” Opt. Lett. 40, 3316–3319 (2015).
[Crossref]

Hadfield, R.

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Heck, M. J.

Heebner, J.

J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).

Heitmann, J.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Helin, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Ibrahim, T.

J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).

Ibrahim, T. A.

J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).

Iizuka, N.

Ishikawa, K.

K. Kobayashi and K. Ishikawa, “Ultraviolet light-induced conduction current in silicon nitride films,” Jpn. J. Appl. Phys. 50, 031501 (2011).
[Crossref]

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Jansen, R.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Jaouad, A.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Ji, X.

Johnson, T. J.

Kanicki, J.

W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
[Crossref]

W. Warren, P. Lenahan, and J. Kanicki, “Electrically neutral nitrogen dangling-bond defects in amorphous hydrogenated silicon nitride thin films,” J. Appl. Phys. 70, 2220–2225 (1991).
[Crossref]

D. Krick, P. Lenahan, and J. Kanicki, “Electrically active point defects in amorphous silicon nitride: an illumination and charge injection study,” J. Appl. Phys. 64, 3558–3563 (1988).
[Crossref]

J. Kanicki, Amorphous and Microcrystalline Semiconductor Devices: Materials and Device Physics (Artech House, 1992), Vol. 2.

Kern, W.

W. Kern and D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187–206 (1970).

Khajavikhan, M.

Khorasaninejad, M.

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Knezevic, I.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Kobayashi, K.

K. Kobayashi and K. Ishikawa, “Ultraviolet light-induced conduction current in silicon nitride films,” Jpn. J. Appl. Phys. 50, 031501 (2011).
[Crossref]

Koefoed, J. G.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Krick, D.

D. Krick, P. Lenahan, and J. Kanicki, “Electrically active point defects in amorphous silicon nitride: an illumination and charge injection study,” J. Appl. Phys. 64, 3558–3563 (1988).
[Crossref]

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Kumeda, M.

M. Kumeda, H. Yokomichi, and T. Shimizu, “Photo-induced ESR in amorphous Si1-xNx: H films,” Jpn. J. Appl. Phys. 23, L502–L504 (1984).
[Crossref]

Lagally, M. G.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Leinse, A.

Lenahan, P.

W. Warren, P. Lenahan, and J. Kanicki, “Electrically neutral nitrogen dangling-bond defects in amorphous hydrogenated silicon nitride thin films,” J. Appl. Phys. 70, 2220–2225 (1991).
[Crossref]

W. L. Warren, P. Lenahan, and S. E. Curry, “First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride,” Phys. Rev. Lett. 65, 207–210 (1990).
[Crossref]

D. Krick, P. Lenahan, and J. Kanicki, “Electrically active point defects in amorphous silicon nitride: an illumination and charge injection study,” J. Appl. Phys. 64, 3558–3563 (1988).
[Crossref]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Levy, J. S.

Leyssens, K.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, Y.

Liang, T.

T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

Lipson, M.

Liscidini, M.

Little, B. E.

Luo, L.-W.

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Marpaung, D.

Mashanovich, G. Z.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14  μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

McKinstrie, C.

McWhorter, P.

W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
[Crossref]

Merget, F.

Michel, C.

Milek, J.

J. Milek, Silicon Nitride for Microelectronic Applications: Part 1 Preparation and Properties (Springer, 2013).

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Morandotti, R.

Morthier, G.

Moss, D. J.

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Natarajan, C. M.

Nedeljkovic, M.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14  μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

Neutens, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Nezhad, M.

Nezhad, M. P.

O’Brien, J. L.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Ohira, K.

Okawachi, Y.

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref]

Park, B.-N.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Pasquazi, A.

Pavesi, L.

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

L. Stefan, M. Bernard, R. Guider, G. Pucker, L. Pavesi, and M. Ghulinyan, “Ultra-high-Q thin-silicon nitride strip-loaded ring resonators,” Opt. Lett. 40, 3316–3319 (2015).
[Crossref]

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express 20, 22934–22942 (2012).
[Crossref]

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

Peccianti, M.

Peters, J.

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Peyskens, F.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Pinard, L.

Poindexter, E.

W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
[Crossref]

Poitras, C.

Priem, G.

Prtljaga, N.

Pucker, G.

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

L. Stefan, M. Bernard, R. Guider, G. Pucker, L. Pavesi, and M. Ghulinyan, “Ultra-high-Q thin-silicon nitride strip-loaded ring resonators,” Opt. Lett. 40, 3316–3319 (2015).
[Crossref]

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express 20, 22934–22942 (2012).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Puotinen, D. A.

W. Kern and D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187–206 (1970).

Rabus, D. G.

D. G. Rabus, Integrated Ring Resonators (Springer, 2007).

Ramiro-Manzano, F.

Razzari, L.

Roberts, S. P.

Robertson, J.

W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
[Crossref]

Roeloffzen, C.

Romero-Garca, S.

Rottenberg, X.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Rottwitt, K.

Saha, K.

Saini, S. S.

Samusenko, A.

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

Santagati, R.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

Savage, D. E.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Schilling, J.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Schmid, A.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Schriever, C.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Schropp, R. E.

R. E. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Springer, 1998).

Selvaraja, S.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Severi, S.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Shaw, M. J.

Shimizu, T.

M. Kumeda, H. Yokomichi, and T. Shimizu, “Photo-induced ESR in amorphous Si1-xNx: H films,” Jpn. J. Appl. Phys. 23, L502–L504 (1984).
[Crossref]

Silverstone, J. W.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

Simic, A.

Sipe, J.

Soref, R.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14  μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Sorel, M.

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

Spencer, D. T.

Stefan, L.

Strain, M. J.

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

Subramanian, A.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Suzuki, N.

Taebi, S.

Tanner, M.

Tevaarwerk, E.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Thompson, M. G.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Timurdogan, E.

Tsang, H.

T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
[Crossref]

Van Dorpe, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Van Thourhout, D.

Véniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Vivien, L.

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

Volet, N.

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Wang, L.

Warren, W.

W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
[Crossref]

W. Warren, P. Lenahan, and J. Kanicki, “Electrically neutral nitrogen dangling-bond defects in amorphous hydrogenated silicon nitride thin films,” J. Appl. Phys. 70, 2220–2225 (1991).
[Crossref]

Warren, W. L.

W. L. Warren, P. Lenahan, and S. E. Curry, “First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride,” Phys. Rev. Lett. 65, 207–210 (1990).
[Crossref]

Watts, M. R.

Wen, Y. H.

Wiederhecker, G. S.

Witzens, J.

Wright, J. B.

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Yang, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yokomichi, H.

M. Kumeda, H. Yokomichi, and T. Shimizu, “Photo-induced ESR in amorphous Si1-xNx: H films,” Jpn. J. Appl. Phys. 23, L502–L504 (1984).
[Crossref]

Yoshida, H.

Zeman, M.

R. E. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Springer, 1998).

Zhang, P.

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Zhong, F.

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Zhuang, L.

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Zwiller, V.

Adv. Opt. Mater. (1)

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Ann. Phys. Chem. (1)

A. Beer, “Determination of the absorption of red light in colored liquids,” Ann. Phys. Chem. 86, 78–88 (1852).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

IEEE Photon. J. (2)

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14  μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

J. Appl. Phys. (3)

W. Warren, P. Lenahan, and J. Kanicki, “Electrically neutral nitrogen dangling-bond defects in amorphous hydrogenated silicon nitride thin films,” J. Appl. Phys. 70, 2220–2225 (1991).
[Crossref]

W. Warren, J. Kanicki, J. Robertson, E. Poindexter, and P. McWhorter, “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films,” J. Appl. Phys. 74, 4034–4046 (1993).
[Crossref]

D. Krick, P. Lenahan, and J. Kanicki, “Electrically active point defects in amorphous silicon nitride: an illumination and charge injection study,” J. Appl. Phys. 64, 3558–3563 (1988).
[Crossref]

J. Lightwave. Technol. (1)

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SION microring resonator-based platform for biosensing at 850 nm,” J. Lightwave. Technol. 34, 969–977 (2016).
[Crossref]

Jpn. J. Appl. Phys. (2)

M. Kumeda, H. Yokomichi, and T. Shimizu, “Photo-induced ESR in amorphous Si1-xNx: H films,” Jpn. J. Appl. Phys. 23, L502–L504 (1984).
[Crossref]

K. Kobayashi and K. Ishikawa, “Ultraviolet light-induced conduction current in silicon nitride films,” Jpn. J. Appl. Phys. 50, 031501 (2011).
[Crossref]

Light Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

Nat. Commun. (1)

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref]

Nat. Mater. (1)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Nat. Photonics (4)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Nature (2)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

P. Zhang, E. Tevaarwerk, B.-N. Park, D. E. Savage, G. K. Celler, I. Knezevic, P. G. Evans, M. A. Eriksson, and M. G. Lagally, “Electronic transport in nanometre-scale silicon-on-insulator membranes,” Nature 439, 703–706 (2006).
[Crossref]

Opt. Express (11)

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref]

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16, 13509–13516 (2008).
[Crossref]

S. Romero-Garca, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21, 14036–14046 (2013).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref]

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005).
[Crossref]

M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, and Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011).
[Crossref]

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express 20, 22934–22942 (2012).
[Crossref]

L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
[Crossref]

A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Opt. Express 21, 13333–13341 (2013).
[Crossref]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Opt. Lett. (7)

Optica (4)

Phys. Rev. Lett. (1)

W. L. Warren, P. Lenahan, and S. E. Curry, “First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride,” Phys. Rev. Lett. 65, 207–210 (1990).
[Crossref]

RCA Rev. (1)

W. Kern and D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187–206 (1970).

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Other (6)

D. G. Rabus, Integrated Ring Resonators (Springer, 2007).

J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

J. Milek, Silicon Nitride for Microelectronic Applications: Part 1 Preparation and Properties (Springer, 2013).

J. Kanicki, Amorphous and Microcrystalline Semiconductor Devices: Materials and Device Physics (Artech House, 1992), Vol. 2.

R. E. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Springer, 1998).

Supplementary Material (1)

NameDescription
» Supplement 1       Modal characteristics of devices. Method of analysis of experimental spectra of rings.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Top: cross-sectional schematics of the nitride-loaded ultra-thin SOI device. Bottom: numerical FEM calculation of fundamental TE-mode intensity profile at a wavelength of 1550 nm. (b) Top-view optical micrograph of a ring-resonator device. A blow-up of the image on right shows the optical coupling region. (c) Optical micrograph of a spiral waveguide used for propagation loss measurements. The waveguide width is 1.3 μm, and the shown spiral has a total length of 3 cm.
Fig. 2.
Fig. 2. (a) Cross-sectional schematics of the MOS device for C-V measurements. A 145 nm Si3N4 layer was deposited on top of a p-type silicon substrate with a resistivity of 15  Ω·cm. A thin 5 nm SiOx layer, grown during the RCA clean, is present between the Si3N4 film and the substrate. The gate contact is formed by a Hg droplet of 787 μm diameter. (b) Selected low-frequency (10 kHz, quasi-static) C-V curves, measured after UV exposures of different duration. The C-V response of the reference (UV-untreated) device indicates the presence of a net positive charge and is in the conditions of strong inversion at 0 V bias. (c) The extracted flat-band voltage as a function of UV exposure time shows a monotonic shift towards lower voltages, which is an indication of significant charge neutralization. The shift of Vfb saturates, approaching the metal-semiconductor work function potential at ϕi0.52  V. (d) The corresponding charge density variation shows a 3-orders-of-magnitude decrease with respect to the initial situation. The solid line is a linear fit to σ(Vfb) with an absolute slope value of 2.5×1011  cm2V1.
Fig. 3.
Fig. 3. Attenuation of propagating optical power was measured for waveguides of different lengths prior to (red squares) and after UV exposure for 21 h (blue diamonds). The error bars represent the statistical error over similar devices. A Lambert–Beer fit (lines) to the experimental data reveals a net improvement of the propagation loss due to reduced free-carrier absorption as a result of neutralization of positive charge in Si3N4. Note that the UV treatment does not affect the insertion loss of waveguides.
Fig. 4.
Fig. 4. (a) Calculated spectral visibility of resonances of a 60 μm radius resonator with an external coupling Qe=8×106 to the waveguide. The model takes into account the background Fabry–Perot fringes due to waveguide-facet reflections. Modal splitting due to backscattering is also considered in order to evidence the effect of peak visibility change when the intrinsic loss of the resonator improves. (b) The peak visibility is near-zero in the as-deposited samples with Qe=8×106 (black dots), while a similar resonator is at critical coupling for a Qe=7×104, revealing an intrinsic loss of about 5.1 dB/cm (blue dots and red fit curve). An exposure to UV light progressively cancels the net positive charge in the nitride, which consequently decreases the free-electron concentration in the guiding Si layer. In conditions of fixed external coupling (8×106), the resulting lower loss increases peak visibility. Example spectra (dots) and their fits (red line) are shown for (c) 5 h UV, (d) 23 h UV, and (e) 23 h UV, plus sintering in forming gas at 350°C plus an additional 2 h of UV.
Fig. 5.
Fig. 5. (a) Free-carrier-related intrinsic Q as a function of the UV-modified flat-band voltage for p-type Si (blue continuous line). Empty circles represent Q-factors, calculated by plugging into Eq. (4a) the experimental values of Cmax and Vfb, estimated from MOS capacitance measurements. The results from ring resonators are shown as diamonds, with vertical error bars indicating the statistical error over a large number of analyzed resonances. The red, dashed-dotted curve is a fit to the three rightmost data points by considering an additional residual Qad of 6×105. (b) The intrinsic loss αi, corresponding to that extracted from the rings’ Qs (diamonds), is plotted against the calculated one, considering the residual loss (dashed-dotted line).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f(ω)αe(αi+αe)/2ι(ωω0)ng/c0,
Cfb=Cmaxεsε0A/LDCmax+εsε0A/LD,
T(ω)=|FP+αe/2(ms+mc)|2,
Qi=2πngαi(Vfb)λ=2πngλ×0.939ΔP(Vfb)1.085,
ΔP(Vfb)=|Cmax(Vfbϕi)|qdSiA,

Metrics