Abstract

High power mid-infrared supercontinuum (SC) laser sources are important for a wide range of applications in sensing, spectroscopy, imaging, defense, and security. Despite recent advances on high power mid-infrared SC laser sources using fluoride fibers, the lack of mid-infrared fibers with good chemical and thermal stability remains a significant technological challenge. Here we show that all solid fluorotellurite fibers we developed can be used as the nonlinear media for constructing 10-W-level mid-infrared SC laser sources. All solid fluorotellurite fibers are fabricated by using a rod-in-tube method. The core and cladding materials are TeO2-BaF2-Y2O3 and TeO2 modified fluoroaluminate glasses with good water resistance and high transition temperature (424°C). By using a 60 cm long fluorotellurite fiber with a core diameter of 6.8 μm as the nonlinear medium and a high power 1980 nm femtosecond fiber laser as the pump source, we obtain 10.4 W SC generation from 947 to 3934 nm in the fiber for a pump power of 15.9  W, and the corresponding optical-to-optical conversion efficiency is about 65%. The spectral broadening is caused by self-phase modulation, soliton fission, soliton self-frequency shift, and dispersive wave generation. Our results show that all solid fluorotellurite fiber can be used for constructing high power mid-infrared SC laser sources for real applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber

Hongxing Shi, Xian Feng, Fangzhou Tan, Peng Wang, and Pu Wang
Opt. Mater. Express 6(12) 3967-3976 (2016)

Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6  μm

Simon Duval, Jean-Christophe Gauthier, Louis-Rafaël Robichaud, Pascal Paradis, Michel Olivier, Vincent Fortin, Martin Bernier, Michel Piché, and Réal Vallée
Opt. Lett. 41(22) 5294-5297 (2016)

Towards power scaling of 2.8  μm fiber lasers

Yigit Ozan Aydin, Vincent Fortin, Réal Vallée, and Martin Bernier
Opt. Lett. 43(18) 4542-4545 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  2. F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Fevrier, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica 5, 378–381 (2018).
    [Crossref]
  3. A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
    [Crossref]
  4. S. Dupont, C. Petersen, J. Thogersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
    [Crossref]
  5. M. Sinobad, C. Monat, B. Luther-Davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J. M. Hartmann, J. M. Fedeli, and C. Grillet, “Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides,” Optica 5, 360–366 (2018).
    [Crossref]
  6. L. Orsila, J. Sand, M. Narhi, G. Genty, and G. Steinmeyer, “Supercontinuum generation as a signal amplifier,” Optica 2, 757–764 (2015).
    [Crossref]
  7. D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8, 083557 (2014).
    [Crossref]
  8. Q. Nguyen, M. Matsuura, and N. Kishi, “WDM-to-OTDM conversion using supercontinuum generation in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 26, 1882–1885 (2014).
    [Crossref]
  9. M. N. Islam, C. Xia, M. J. Freeman, J. Mauricio, A. Zakel, K. Ke, Z. Xu, and F. L. Terry, “Mid-IR super-continuum generation,” Proc. SPIE 7195, 71950W (2009).
    [Crossref]
  10. Y. Li, X. Xiao, L. Kong, and C. Yang, “Fiber supercontinuum source for broadband-CARS microspectroscopy based on a dissipative soliton laser,” IEEE Photon. J. 9, 3900807 (2017).
    [Crossref]
  11. C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422 (2009).
    [Crossref]
  12. W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber midinfrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
    [Crossref]
  13. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8  W average output power,” Opt. Express 22, 24384–24391 (2014).
    [Crossref]
  14. K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2  W spectrally flat all-fiber supercontinuum laser source with >1  W power beyond 3.8  μm,” Opt. Lett. 42, 2334–2337 (2017).
    [Crossref]
  15. Y. O. Aydin, V. Fortin, R. Vallée, and M. Bernier, “Towards power scaling of 2.8 microns fiber lasers,” Opt. Lett. 43, 4542–4545 (2018).
    [Crossref]
  16. G. Frischat, B. Hueber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3-based heavy metal fluoride glasses in water,” J. Non-Crystalline Solids 284, 105–109 (2001).
    [Crossref]
  17. M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71, 219–224 (1988).
    [Crossref]
  18. C. G. Pantano and R. K. Brow, “Hydrolysis reactions at the surface of fluorozirconate glass,” J. Am. Ceram. Soc. 71, 577–581 (1988).
    [Crossref]
  19. R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
    [Crossref]
  20. H. Shi, X. Feng, F. Tan, P. Wang, and P. Wang, “Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber,” Opt. Mater. Express 6, 3967–3976 (2016).
    [Crossref]
  21. C. Yao, C. He, Z. Jia, S. Wang, G. Qin, Y. Ohishi, and W. Qin, “Holmiumdoped fluorotellurite microstructured fibers for 2.1  μm lasing,” Opt. Lett. 40, 4695–4698 (2015).
    [Crossref]
  22. X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germano tellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
    [Crossref]
  23. S. Wang, C. Li, C. Yao, S. Jia, Z. Jia, G. Qin, and W. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2  μm laser applications,” Opt. Mater. 64, 421–426 (2017).
    [Crossref]
  24. F. Wang, K. K. Wang, C. F. Yao, Z. X. Jia, S. B. Wang, C. F. Wu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation,” Opt. Lett. 41, 634–637 (2016).
    [Crossref]
  25. N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4  μm in a tapered fluorotellurite microstructured fiber pumped by a 1980  nm femtosecond fiber laser,” Appl. Phys. Lett. 110, 061102 (2017).
    [Crossref]
  26. S. V. Adichtchev, V. K. Malinovsky, L. N. Ignatieva, E. B. Merkulov, and N. V. Surovtsev, “Low-frequency inelastic light scattering in a ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass,” J. Chem. Phys. 140, 184508 (2014).
    [Crossref]
  27. A. Boutarfaia and M. Poulain, “New stable fluoroindate glasses,” Solid State Ionics 144, 117 (2001).
    [Crossref]
  28. V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
    [Crossref]
  29. A. Tverjanovich and E. Vagizova, “Thermal expansion of glasses in the As2Se3-AsI3 system,” J. Non-Cryst. Solids 243, 277–280 (1999).
    [Crossref]
  30. J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for highenergy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
    [Crossref]
  31. E. H. Penilla, L. F. Devia-Cruz, M. A. Duarte, C. L. Hardin, Y. Kodera, and J. E. Garay, “Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials,” Light Sci. Appl. 7, 33 (2018).
    [Crossref]
  32. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers:review and prospect,” Adv. OptoElectron. 2010, 501956 (2010).
    [Crossref]
  33. https://www.fiberlabs-inc.com/fiber_index/ .
  34. J. Bei, H. T. C. Foo, G. Qian, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water,” Opt. Mater. Express 4, 1213–1226 (2014).
    [Crossref]
  35. N. Caron, M. Bernier, D. Faucher, and R. Vallée, “Understanding the fiber tip thermal runaway present in 3  μm fluoride glass fiber lasers,” Opt. Express 20, 22188–22194 (2012).
    [Crossref]

2018 (4)

2017 (4)

S. Wang, C. Li, C. Yao, S. Jia, Z. Jia, G. Qin, and W. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2  μm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4  μm in a tapered fluorotellurite microstructured fiber pumped by a 1980  nm femtosecond fiber laser,” Appl. Phys. Lett. 110, 061102 (2017).
[Crossref]

K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2  W spectrally flat all-fiber supercontinuum laser source with >1  W power beyond 3.8  μm,” Opt. Lett. 42, 2334–2337 (2017).
[Crossref]

Y. Li, X. Xiao, L. Kong, and C. Yang, “Fiber supercontinuum source for broadband-CARS microspectroscopy based on a dissipative soliton laser,” IEEE Photon. J. 9, 3900807 (2017).
[Crossref]

2016 (2)

2015 (2)

2014 (6)

D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8, 083557 (2014).
[Crossref]

Q. Nguyen, M. Matsuura, and N. Kishi, “WDM-to-OTDM conversion using supercontinuum generation in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 26, 1882–1885 (2014).
[Crossref]

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber midinfrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
[Crossref]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8  W average output power,” Opt. Express 22, 24384–24391 (2014).
[Crossref]

S. V. Adichtchev, V. K. Malinovsky, L. N. Ignatieva, E. B. Merkulov, and N. V. Surovtsev, “Low-frequency inelastic light scattering in a ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass,” J. Chem. Phys. 140, 184508 (2014).
[Crossref]

J. Bei, H. T. C. Foo, G. Qian, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water,” Opt. Mater. Express 4, 1213–1226 (2014).
[Crossref]

2013 (2)

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

2012 (3)

2010 (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers:review and prospect,” Adv. OptoElectron. 2010, 501956 (2010).
[Crossref]

2009 (2)

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422 (2009).
[Crossref]

M. N. Islam, C. Xia, M. J. Freeman, J. Mauricio, A. Zakel, K. Ke, Z. Xu, and F. L. Terry, “Mid-IR super-continuum generation,” Proc. SPIE 7195, 71950W (2009).
[Crossref]

2001 (3)

G. Frischat, B. Hueber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3-based heavy metal fluoride glasses in water,” J. Non-Crystalline Solids 284, 105–109 (2001).
[Crossref]

A. Boutarfaia and M. Poulain, “New stable fluoroindate glasses,” Solid State Ionics 144, 117 (2001).
[Crossref]

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germano tellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[Crossref]

2000 (1)

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for highenergy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[Crossref]

1999 (1)

A. Tverjanovich and E. Vagizova, “Thermal expansion of glasses in the As2Se3-AsI3 system,” J. Non-Cryst. Solids 243, 277–280 (1999).
[Crossref]

1988 (2)

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71, 219–224 (1988).
[Crossref]

C. G. Pantano and R. K. Brow, “Hydrolysis reactions at the surface of fluorozirconate glass,” J. Am. Ceram. Soc. 71, 577–581 (1988).
[Crossref]

Adichtchev, S. V.

S. V. Adichtchev, V. K. Malinovsky, L. N. Ignatieva, E. B. Merkulov, and N. V. Surovtsev, “Low-frequency inelastic light scattering in a ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass,” J. Chem. Phys. 140, 184508 (2014).
[Crossref]

Agger, C.

Allioux, D.

Aydin, Y. O.

Bang, O.

Bei, J.

Bernier, M.

Borondics, F.

Boutami, S.

Boutarfaia, A.

A. Boutarfaia and M. Poulain, “New stable fluoroindate glasses,” Solid State Ionics 144, 117 (2001).
[Crossref]

Brow, R. K.

C. G. Pantano and R. K. Brow, “Hydrolysis reactions at the surface of fluorozirconate glass,” J. Am. Ceram. Soc. 71, 577–581 (1988).
[Crossref]

Brown, A. M.

D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8, 083557 (2014).
[Crossref]

Brown, D. M.

D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8, 083557 (2014).
[Crossref]

Campbell, J. H.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for highenergy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[Crossref]

Caron, N.

Chavez-Pirson, A.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Churbanov, M.

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

Couderc, V.

A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Devia-Cruz, L. F.

E. H. Penilla, L. F. Devia-Cruz, M. A. Duarte, C. L. Hardin, Y. Kodera, and J. E. Garay, “Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials,” Light Sci. Appl. 7, 33 (2018).
[Crossref]

Duarte, M. A.

E. H. Penilla, L. F. Devia-Cruz, M. A. Duarte, C. L. Hardin, Y. Kodera, and J. E. Garay, “Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials,” Light Sci. Appl. 7, 33 (2018).
[Crossref]

Dudley, J. M.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Dumas, P.

Dupont, S.

Ebendorff-Heidepriem, H.

Edwards, P. S.

D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8, 083557 (2014).
[Crossref]

Faucher, D.

Fedeli, J. M.

Feng, X.

H. Shi, X. Feng, F. Tan, P. Wang, and P. Wang, “Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber,” Opt. Mater. Express 6, 3967–3976 (2016).
[Crossref]

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germano tellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[Crossref]

Feng, Y.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4  μm in a tapered fluorotellurite microstructured fiber pumped by a 1980  nm femtosecond fiber laser,” Appl. Phys. Lett. 110, 061102 (2017).
[Crossref]

Fevrier, S.

Foo, H. T. C.

Fortin, V.

Freeman, M. J.

M. N. Islam, C. Xia, M. J. Freeman, J. Mauricio, A. Zakel, K. Ke, Z. Xu, and F. L. Terry, “Mid-IR super-continuum generation,” Proc. SPIE 7195, 71950W (2009).
[Crossref]

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422 (2009).
[Crossref]

Frischat, G.

G. Frischat, B. Hueber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3-based heavy metal fluoride glasses in water,” J. Non-Crystalline Solids 284, 105–109 (2001).
[Crossref]

Gaponov, D.

Garay, J. E.

E. H. Penilla, L. F. Devia-Cruz, M. A. Duarte, C. L. Hardin, Y. Kodera, and J. E. Garay, “Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials,” Light Sci. Appl. 7, 33 (2018).
[Crossref]

Genty, G.

Grillet, C.

Hanada, T.

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germano tellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[Crossref]

Hardin, C. L.

E. H. Penilla, L. F. Devia-Cruz, M. A. Duarte, C. L. Hardin, Y. Kodera, and J. E. Garay, “Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials,” Light Sci. Appl. 7, 33 (2018).
[Crossref]

Hartmann, J. M.

He, C.

Hemming, A.

Hideur, A.

Hou, J.

Hu, M.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4  μm in a tapered fluorotellurite microstructured fiber pumped by a 1980  nm femtosecond fiber laser,” Appl. Phys. Lett. 110, 061102 (2017).
[Crossref]

Hueber, B.

G. Frischat, B. Hueber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3-based heavy metal fluoride glasses in water,” J. Non-Crystalline Solids 284, 105–109 (2001).
[Crossref]

Huss, G.

A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Ignatieva, L. N.

S. V. Adichtchev, V. K. Malinovsky, L. N. Ignatieva, E. B. Merkulov, and N. V. Surovtsev, “Low-frequency inelastic light scattering in a ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass,” J. Chem. Phys. 140, 184508 (2014).
[Crossref]

Islam, M. N.

M. N. Islam, C. Xia, M. J. Freeman, J. Mauricio, A. Zakel, K. Ke, Z. Xu, and F. L. Terry, “Mid-IR super-continuum generation,” Proc. SPIE 7195, 71950W (2009).
[Crossref]

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422 (2009).
[Crossref]

Jia, S.

S. Wang, C. Li, C. Yao, S. Jia, Z. Jia, G. Qin, and W. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2  μm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

Jia, Z.

S. Wang, C. Li, C. Yao, S. Jia, Z. Jia, G. Qin, and W. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2  μm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4  μm in a tapered fluorotellurite microstructured fiber pumped by a 1980  nm femtosecond fiber laser,” Appl. Phys. Lett. 110, 061102 (2017).
[Crossref]

C. Yao, C. He, Z. Jia, S. Wang, G. Qin, Y. Ohishi, and W. Qin, “Holmiumdoped fluorotellurite microstructured fibers for 2.1  μm lasing,” Opt. Lett. 40, 4695–4698 (2015).
[Crossref]

Jia, Z. X.

Jossent, M.

Ke, K.

M. N. Islam, C. Xia, M. J. Freeman, J. Mauricio, A. Zakel, K. Ke, Z. Xu, and F. L. Terry, “Mid-IR super-continuum generation,” Proc. SPIE 7195, 71950W (2009).
[Crossref]

Keiding, S. R.

Kishi, N.

Q. Nguyen, M. Matsuura, and N. Kishi, “WDM-to-OTDM conversion using supercontinuum generation in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 26, 1882–1885 (2014).
[Crossref]

Kodera, Y.

E. H. Penilla, L. F. Devia-Cruz, M. A. Duarte, C. L. Hardin, Y. Kodera, and J. E. Garay, “Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials,” Light Sci. Appl. 7, 33 (2018).
[Crossref]

Kong, L.

Y. Li, X. Xiao, L. Kong, and C. Yang, “Fiber supercontinuum source for broadband-CARS microspectroscopy based on a dissipative soliton laser,” IEEE Photon. J. 9, 3900807 (2017).
[Crossref]

Labruyere, A.

A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Lavoute, L.

Le Toullec, M.

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71, 219–224 (1988).
[Crossref]

Leproux, P.

A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Li, C.

S. Wang, C. Li, C. Yao, S. Jia, Z. Jia, G. Qin, and W. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2  μm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

Li, N.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4  μm in a tapered fluorotellurite microstructured fiber pumped by a 1980  nm femtosecond fiber laser,” Appl. Phys. Lett. 110, 061102 (2017).
[Crossref]

Li, Y.

Y. Li, X. Xiao, L. Kong, and C. Yang, “Fiber supercontinuum source for broadband-CARS microspectroscopy based on a dissipative soliton laser,” IEEE Photon. J. 9, 3900807 (2017).
[Crossref]

Liu, J.

Liu, K.

Liu, Z.

D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8, 083557 (2014).
[Crossref]

Luther-Davies, B.

Ma, P.

Madden, S.

Malinovsky, V. K.

S. V. Adichtchev, V. K. Malinovsky, L. N. Ignatieva, E. B. Merkulov, and N. V. Surovtsev, “Low-frequency inelastic light scattering in a ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass,” J. Chem. Phys. 140, 184508 (2014).
[Crossref]

Matsuura, M.

Q. Nguyen, M. Matsuura, and N. Kishi, “WDM-to-OTDM conversion using supercontinuum generation in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 26, 1882–1885 (2014).
[Crossref]

Mauricio, J.

M. N. Islam, C. Xia, M. J. Freeman, J. Mauricio, A. Zakel, K. Ke, Z. Xu, and F. L. Terry, “Mid-IR super-continuum generation,” Proc. SPIE 7195, 71950W (2009).
[Crossref]

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422 (2009).
[Crossref]

Merkulov, E. B.

S. V. Adichtchev, V. K. Malinovsky, L. N. Ignatieva, E. B. Merkulov, and N. V. Surovtsev, “Low-frequency inelastic light scattering in a ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass,” J. Chem. Phys. 140, 184508 (2014).
[Crossref]

Mitchell, A.

Monat, C.

Monro, T. M.

Moss, D. J.

Narhi, M.

Nguyen, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Nguyen, Q.

Q. Nguyen, M. Matsuura, and N. Kishi, “WDM-to-OTDM conversion using supercontinuum generation in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 26, 1882–1885 (2014).
[Crossref]

Ohishi, Y.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4  μm in a tapered fluorotellurite microstructured fiber pumped by a 1980  nm femtosecond fiber laser,” Appl. Phys. Lett. 110, 061102 (2017).
[Crossref]

F. Wang, K. K. Wang, C. F. Yao, Z. X. Jia, S. B. Wang, C. F. Wu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation,” Opt. Lett. 41, 634–637 (2016).
[Crossref]

C. Yao, C. He, Z. Jia, S. Wang, G. Qin, Y. Ohishi, and W. Qin, “Holmiumdoped fluorotellurite microstructured fibers for 2.1  μm lasing,” Opt. Lett. 40, 4695–4698 (2015).
[Crossref]

Orobtchouk, R.

Orsila, L.

Pantano, C. G.

C. G. Pantano and R. K. Brow, “Hydrolysis reactions at the surface of fluorozirconate glass,” J. Am. Ceram. Soc. 71, 577–581 (1988).
[Crossref]

Penilla, E. H.

E. H. Penilla, L. F. Devia-Cruz, M. A. Duarte, C. L. Hardin, Y. Kodera, and J. E. Garay, “Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials,” Light Sci. Appl. 7, 33 (2018).
[Crossref]

Petersen, C.

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers:review and prospect,” Adv. OptoElectron. 2010, 501956 (2010).
[Crossref]

Philbrick, C. R.

D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8, 083557 (2014).
[Crossref]

Poulain, M.

A. Boutarfaia and M. Poulain, “New stable fluoroindate glasses,” Solid State Ionics 144, 117 (2001).
[Crossref]

Qian, G.

Qin, G.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4  μm in a tapered fluorotellurite microstructured fiber pumped by a 1980  nm femtosecond fiber laser,” Appl. Phys. Lett. 110, 061102 (2017).
[Crossref]

S. Wang, C. Li, C. Yao, S. Jia, Z. Jia, G. Qin, and W. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2  μm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

C. Yao, C. He, Z. Jia, S. Wang, G. Qin, Y. Ohishi, and W. Qin, “Holmiumdoped fluorotellurite microstructured fibers for 2.1  μm lasing,” Opt. Lett. 40, 4695–4698 (2015).
[Crossref]

Qin, G. S.

Qin, W.

S. Wang, C. Li, C. Yao, S. Jia, Z. Jia, G. Qin, and W. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2  μm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4  μm in a tapered fluorotellurite microstructured fiber pumped by a 1980  nm femtosecond fiber laser,” Appl. Phys. Lett. 110, 061102 (2017).
[Crossref]

C. Yao, C. He, Z. Jia, S. Wang, G. Qin, Y. Ohishi, and W. Qin, “Holmiumdoped fluorotellurite microstructured fibers for 2.1  μm lasing,” Opt. Lett. 40, 4695–4698 (2015).
[Crossref]

Qin, W. P.

Ramdohr, B.

G. Frischat, B. Hueber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3-based heavy metal fluoride glasses in water,” J. Non-Crystalline Solids 284, 105–109 (2001).
[Crossref]

Rhonehouse, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Sand, J.

Sandt, C.

Shi, H.

Shiryaev, V.

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

Simmons, C. J.

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71, 219–224 (1988).
[Crossref]

Simmons, J. H.

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71, 219–224 (1988).
[Crossref]

Sinobad, M.

Smith, C.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Steinmeyer, G.

Suratwala, T. I.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for highenergy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[Crossref]

Surovtsev, N. V.

S. V. Adichtchev, V. K. Malinovsky, L. N. Ignatieva, E. B. Merkulov, and N. V. Surovtsev, “Low-frequency inelastic light scattering in a ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass,” J. Chem. Phys. 140, 184508 (2014).
[Crossref]

Tan, F.

Tanabe, S.

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germano tellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[Crossref]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Terry, F. L.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422 (2009).
[Crossref]

M. N. Islam, C. Xia, M. J. Freeman, J. Mauricio, A. Zakel, K. Ke, Z. Xu, and F. L. Terry, “Mid-IR super-continuum generation,” Proc. SPIE 7195, 71950W (2009).
[Crossref]

Thapa, R.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Thogersen, J.

Tonello, A.

A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Tverjanovich, A.

A. Tverjanovich and E. Vagizova, “Thermal expansion of glasses in the As2Se3-AsI3 system,” J. Non-Cryst. Solids 243, 277–280 (1999).
[Crossref]

Vagizova, E.

A. Tverjanovich and E. Vagizova, “Thermal expansion of glasses in the As2Se3-AsI3 system,” J. Non-Cryst. Solids 243, 277–280 (1999).
[Crossref]

Vallée, R.

Wang, F.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4  μm in a tapered fluorotellurite microstructured fiber pumped by a 1980  nm femtosecond fiber laser,” Appl. Phys. Lett. 110, 061102 (2017).
[Crossref]

F. Wang, K. K. Wang, C. F. Yao, Z. X. Jia, S. B. Wang, C. F. Wu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation,” Opt. Lett. 41, 634–637 (2016).
[Crossref]

Wang, K. K.

Wang, P.

Wang, S.

S. Wang, C. Li, C. Yao, S. Jia, Z. Jia, G. Qin, and W. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2  μm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

C. Yao, C. He, Z. Jia, S. Wang, G. Qin, Y. Ohishi, and W. Qin, “Holmiumdoped fluorotellurite microstructured fibers for 2.1  μm lasing,” Opt. Lett. 40, 4695–4698 (2015).
[Crossref]

Wang, S. B.

Wiersma, K.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Wu, C. F.

Xia, C.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422 (2009).
[Crossref]

M. N. Islam, C. Xia, M. J. Freeman, J. Mauricio, A. Zakel, K. Ke, Z. Xu, and F. L. Terry, “Mid-IR super-continuum generation,” Proc. SPIE 7195, 71950W (2009).
[Crossref]

Xiao, X.

Y. Li, X. Xiao, L. Kong, and C. Yang, “Fiber supercontinuum source for broadband-CARS microspectroscopy based on a dissipative soliton laser,” IEEE Photon. J. 9, 3900807 (2017).
[Crossref]

Xu, Z.

M. N. Islam, C. Xia, M. J. Freeman, J. Mauricio, A. Zakel, K. Ke, Z. Xu, and F. L. Terry, “Mid-IR super-continuum generation,” Proc. SPIE 7195, 71950W (2009).
[Crossref]

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422 (2009).
[Crossref]

Xue, G.

Yang, C.

Y. Li, X. Xiao, L. Kong, and C. Yang, “Fiber supercontinuum source for broadband-CARS microspectroscopy based on a dissipative soliton laser,” IEEE Photon. J. 9, 3900807 (2017).
[Crossref]

Yang, L.

Yang, W.

Yao, C.

S. Wang, C. Li, C. Yao, S. Jia, Z. Jia, G. Qin, and W. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2  μm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4  μm in a tapered fluorotellurite microstructured fiber pumped by a 1980  nm femtosecond fiber laser,” Appl. Phys. Lett. 110, 061102 (2017).
[Crossref]

C. Yao, C. He, Z. Jia, S. Wang, G. Qin, Y. Ohishi, and W. Qin, “Holmiumdoped fluorotellurite microstructured fibers for 2.1  μm lasing,” Opt. Lett. 40, 4695–4698 (2015).
[Crossref]

Yao, C. F.

Yin, K.

Zakel, A.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422 (2009).
[Crossref]

M. N. Islam, C. Xia, M. J. Freeman, J. Mauricio, A. Zakel, K. Ke, Z. Xu, and F. L. Terry, “Mid-IR super-continuum generation,” Proc. SPIE 7195, 71950W (2009).
[Crossref]

Zhang, B.

Zhang, L.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4  μm in a tapered fluorotellurite microstructured fiber pumped by a 1980  nm femtosecond fiber laser,” Appl. Phys. Lett. 110, 061102 (2017).
[Crossref]

Zhu, X.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers:review and prospect,” Adv. OptoElectron. 2010, 501956 (2010).
[Crossref]

Zong, J.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Adv. OptoElectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers:review and prospect,” Adv. OptoElectron. 2010, 501956 (2010).
[Crossref]

Appl. Phys. Lett. (1)

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4  μm in a tapered fluorotellurite microstructured fiber pumped by a 1980  nm femtosecond fiber laser,” Appl. Phys. Lett. 110, 061102 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422 (2009).
[Crossref]

IEEE Photon. J. (1)

Y. Li, X. Xiao, L. Kong, and C. Yang, “Fiber supercontinuum source for broadband-CARS microspectroscopy based on a dissipative soliton laser,” IEEE Photon. J. 9, 3900807 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Q. Nguyen, M. Matsuura, and N. Kishi, “WDM-to-OTDM conversion using supercontinuum generation in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 26, 1882–1885 (2014).
[Crossref]

J. Am. Ceram. Soc. (3)

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71, 219–224 (1988).
[Crossref]

C. G. Pantano and R. K. Brow, “Hydrolysis reactions at the surface of fluorozirconate glass,” J. Am. Ceram. Soc. 71, 577–581 (1988).
[Crossref]

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germano tellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[Crossref]

J. Appl. Remote Sens. (1)

D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8, 083557 (2014).
[Crossref]

J. Chem. Phys. (1)

S. V. Adichtchev, V. K. Malinovsky, L. N. Ignatieva, E. B. Merkulov, and N. V. Surovtsev, “Low-frequency inelastic light scattering in a ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass,” J. Chem. Phys. 140, 184508 (2014).
[Crossref]

J. Non-Cryst. Solids (3)

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

A. Tverjanovich and E. Vagizova, “Thermal expansion of glasses in the As2Se3-AsI3 system,” J. Non-Cryst. Solids 243, 277–280 (1999).
[Crossref]

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for highenergy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[Crossref]

J. Non-Crystalline Solids (1)

G. Frischat, B. Hueber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3-based heavy metal fluoride glasses in water,” J. Non-Crystalline Solids 284, 105–109 (2001).
[Crossref]

Light Sci. Appl. (1)

E. H. Penilla, L. F. Devia-Cruz, M. A. Duarte, C. L. Hardin, Y. Kodera, and J. E. Garay, “Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials,” Light Sci. Appl. 7, 33 (2018).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Opt. Lett. (5)

Opt. Mater. (1)

S. Wang, C. Li, C. Yao, S. Jia, Z. Jia, G. Qin, and W. Qin, “Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2  μm laser applications,” Opt. Mater. 64, 421–426 (2017).
[Crossref]

Opt. Mater. Express (2)

Optica (3)

Proc. SPIE (2)

M. N. Islam, C. Xia, M. J. Freeman, J. Mauricio, A. Zakel, K. Ke, Z. Xu, and F. L. Terry, “Mid-IR super-continuum generation,” Proc. SPIE 7195, 71950W (2009).
[Crossref]

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Solid State Ionics (1)

A. Boutarfaia and M. Poulain, “New stable fluoroindate glasses,” Solid State Ionics 144, 117 (2001).
[Crossref]

Other (2)

https://www.fiberlabs-inc.com/fiber_index/ .

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Measured differential thermal analysis (DTA) curves of TBY and ABCYSMT glasses at a heating rate of 10°C/min in the range of 30°C–800°C.
Fig. 2.
Fig. 2. (a) Refractive indices of TBY and ABCYSMT glasses. (b) The dependence of the calculated NA of all-solid fluorotellurite fibers on the wavelength.
Fig. 3.
Fig. 3. Transmittance spectra of 2 mm thick TBY and ABCYSMT glasses after putting the glasses in deionized water for 0, 12 days, respectively.
Fig. 4.
Fig. 4. (a) Calculated dispersion of propagating LP01 mode in the all-solid fluorotellurite fiber. Inset: Scanning electron micrograph of the fluorotellurite fiber. (b) Loss spectrum of the TBY glass fiber.
Fig. 5.
Fig. 5. Experiment setup for 10.4 W mid-infrared SC generation from ultra-high NA fluorotellurite fiber.
Fig. 6.
Fig. 6. (a) Dependence of the measured SC spectra generated from 60 cm long fluorotellurite fiber on the average power of the 1980 nm femtosecond fiber laser. (b) The dependence of the SC average power output from 60 cm long fluorotellurite fiber on the launched pump power of the 1980 nm femtosecond fiber laser. Inset: The power meter photograph during the mid-infrared SC laser source operating at the output power of 10.4 W.
Fig. 7.
Fig. 7. (a) Comparison of the simulated (the black solid curve) and measured (the red dashed curve) SC spectra output from the above all-solid fluorotellurite fiber for a same launched average pump power of 15.9  W. (b), (c) The spectral and temporal evolution of SC generation in the above all-solid fluorotellurite fiber for a launched average pump power of 15.9  W.
Fig. 8.
Fig. 8. (a) Calculated intensity distribution profiles of LP01, LP11, LP21, LP02, LP31, LP12, LP41, and LP22 modes in the fiber. (b) The calculated confinement losses of those propagation modes. (c) The calculated GVD profiles of those propagation modes.
Fig. 9.
Fig. 9. (a–h) Simulated SC spectra for LP01, LP11, LP21, LP02, LP31, LP12, LP41, and LP22 modes in the above all-solid fluorotellurite fiber when the launched average pump power was fixed at 15.9 W, respectively. The red dashed curve shows the measured SC spectrum output from the all-solid fluorotellurite fiber with the launched average pump power of 15.9 W.

Tables (2)

Tables Icon

Table 1. Transition Temperature Tg of Several ZBLAN, Indium Fluoride, Tellurite, Chalcogenide, Selenide and TBY Glasses

Tables Icon

Table 2. Thermal and Mechanical Properties of ZBLAN, TBY and ABCYSMT Glasses

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Rs=k(1ν)αEσF,

Metrics