Abstract

While the realization of silicon lasers using interband transitions is still technically problematic, utilization of Raman scattering processes seems to be the most feasible alternative. Raman silicon lasers based on photonic crystal nanocavities provide sub-microwatt thresholds and CMOS compatibility. Therefore, this type of laser is suitable for dense integration in Si photonic circuits. However, details of the gain mechanism, which are important for improving laser performance, have rarely been discussed due to the lack of a suitable characterization technique. Here, we report on the excitation-wavelength dependence of optical gain in a high-quality nanocavity-based Raman silicon laser. For this, we employ a so-called stimulated-Raman-scattering excitation (SRE) spectroscopy, which allows us to reveal the range of excitation wavelengths enabling laser operation, the excitation condition for maximum output, shift of the gain peak, and enhancement of Raman gain including nonlinear optical losses. In particular, we find that laser output remarkably decreases in the long-wavelength region of cavity resonance as excitation power increases. Numerical simulations suggest that optical loss due to free-carrier absorption induced by two-photon absorption grows substantially above a certain threshold.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Raman shift and strain effect in high-Q photonic crystal silicon nanocavity

Daiki Yamashita, Yasushi Takahashi, Takashi Asano, and Susumu Noda
Opt. Express 23(4) 3951-3959 (2015)

Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering

Ansheng Liu, Haisheng Rong, Mario Paniccia, Oded Cohen, and Dani Hak
Opt. Express 12(18) 4261-4268 (2004)

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi, S. Gaponenko, and L. Dal Negro, Towards the First Silicon Laser (Kluwer Academic, 2003).
  2. S. S. lyer and Y.-H. Xie, “Light emission from silicon,” Science 260, 40–46 (1993).
    [Crossref]
  3. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54  μm,” Opt. Express 10, 1305–1313 (2002).
    [Crossref]
  4. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003).
    [Crossref]
  5. R. Espinola, J. Dadap, R. Osgood, S. McNab, and Y. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713–3718 (2004).
    [Crossref]
  6. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
    [Crossref]
  7. Q. Xu, V. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express 12, 4437–4442 (2004).
    [Crossref]
  8. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).
    [Crossref]
  9. M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12, 5703–5710 (2004).
    [Crossref]
  10. T. Liang and H. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
    [Crossref]
  11. R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
    [Crossref]
  12. X. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers,” Opt. Express 15, 4763–4780 (2007).
    [Crossref]
  13. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
    [Crossref]
  14. H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
    [Crossref]
  15. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
    [Crossref]
  16. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88, 235313 (2013).
    [Crossref]
  17. D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “Raman shift and strain effect in high-Q photonic crystal silicon nanocavity,” Opt. Express 23, 3951–3959 (2015).
    [Crossref]
  18. D. Yamashita, T. Asano, S. Noda, and Y. Takahashi, “Lasing dynamics of optically-pumped ultralow-threshold Raman silicon nanocavity lasers,” Phys. Rev. Appl. 10, 024039 (2018).
    [Crossref]
  19. K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, M. Mori, T. Asano, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies,” Opt. Express 25, 18165–18174 (2017).
    [Crossref]
  20. K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, K. Yamada, and Y. Takahashi, “Photonic crystal nanocavities with an average Q factor of 1.9 million fabricated on a 300-mm-wide SOI wafer using a CMOS-compatible process,” J. Lightwave Technol. 36, 4774–4782 (2018).
    [Crossref]
  21. P. J. Dean, “Energy-dependent capture cross sections and the photoluminescence excitation spectra of gallium phosphide above the threshold for intrinsic interband absorption,” Phys. Rev. 168, 889–901 (1968).
    [Crossref]
  22. B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B 10, 676–681 (1974).
    [Crossref]
  23. D. Hessman, P. Castrillo, M. E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69, 749–751 (1996).
    [Crossref]
  24. H. Itoh, Y. Hayamizu, M. Yoshita, H. Akiyama, L. Pfeiffer, K. West, M. Szymanska, and P. Littlewood, “Polarization-dependent photoluminescence-excitation spectra of one-dimensional exciton and continuum states in T-shaped quantum wires,” Appl. Phys. Lett. 83, 2043–2045 (2003).
    [Crossref]
  25. K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18, 475–477 (1971).
    [Crossref]
  26. G. Mohs, T. Aoki, R. Shimano, M. Kuwata-Gonokami, and S. Nakamura, “On the gain mechanism in GaN based laser diodes,” Solid State Commun. 108, 105–109 (1998).
    [Crossref]
  27. B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46, 1299–1306 (1975).
    [Crossref]
  28. D. T. Cassidy, “Technique for measurement of the gain spectra of semiconductor diode lasers,” J. Appl. Phys. 56, 3096–3099 (1984).
    [Crossref]
  29. Y. Hayamizu, M. Yoshita, Y. Takahashi, H. Akiyama, C. Z. Ning, L. N. Pfeiffer, and K. W. West, “Biexciton gain and the Mott transition in GaAs quantum wires,” Phys. Rev. Lett. 99, 167403 (2007).
    [Crossref]
  30. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
    [Crossref]
  31. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
    [Crossref]
  32. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96, 101103 (2010).
    [Crossref]
  33. J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/Vheterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
    [Crossref]
  34. T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
    [Crossref]
  35. T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 1149–1153 (2004).
    [Crossref]
  36. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
    [Crossref]
  37. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
    [Crossref]
  38. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [Crossref]
  39. T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996–2002 (2006).
    [Crossref]
  40. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
    [Crossref]
  41. H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ∼9 million,” Opt. Express 22, 916–924 (2014).
    [Crossref]
  42. T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25, 1769–1777 (2017).
    [Crossref]
  43. V. Sih, S. Xu, Y.-H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40  Gb/s data in low-loss silicon waveguides,” Opt. Express 15, 357–362 (2007).
    [Crossref]
  44. J. C. Sturm and C. M. Reaves, “Silicon temperature measurement by infrared absorption. Fundamental processes and doping effects,” IEEE Trans. Electron Devices 39, 81–88 (1992).
    [Crossref]
  45. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
    [Crossref]
  46. M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97, 121111 (2010).
    [Crossref]
  47. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009).
    [Crossref]

2018 (2)

2017 (2)

2015 (1)

2014 (2)

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ∼9 million,” Opt. Express 22, 916–924 (2014).
[Crossref]

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/Vheterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

2013 (2)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88, 235313 (2013).
[Crossref]

2010 (2)

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96, 101103 (2010).
[Crossref]

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97, 121111 (2010).
[Crossref]

2009 (2)

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[Crossref]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009).
[Crossref]

2007 (5)

V. Sih, S. Xu, Y.-H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40  Gb/s data in low-loss silicon waveguides,” Opt. Express 15, 357–362 (2007).
[Crossref]

X. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers,” Opt. Express 15, 4763–4780 (2007).
[Crossref]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Y. Hayamizu, M. Yoshita, Y. Takahashi, H. Akiyama, C. Z. Ning, L. N. Pfeiffer, and K. W. West, “Biexciton gain and the Mott transition in GaAs quantum wires,” Phys. Rev. Lett. 99, 167403 (2007).
[Crossref]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

2006 (2)

2005 (5)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[Crossref]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

2004 (9)

T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 1149–1153 (2004).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

R. Espinola, J. Dadap, R. Osgood, S. McNab, and Y. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713–3718 (2004).
[Crossref]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[Crossref]

Q. Xu, V. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express 12, 4437–4442 (2004).
[Crossref]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).
[Crossref]

M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12, 5703–5710 (2004).
[Crossref]

T. Liang and H. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]

2003 (2)

H. Itoh, Y. Hayamizu, M. Yoshita, H. Akiyama, L. Pfeiffer, K. West, M. Szymanska, and P. Littlewood, “Polarization-dependent photoluminescence-excitation spectra of one-dimensional exciton and continuum states in T-shaped quantum wires,” Appl. Phys. Lett. 83, 2043–2045 (2003).
[Crossref]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003).
[Crossref]

2002 (1)

1998 (1)

G. Mohs, T. Aoki, R. Shimano, M. Kuwata-Gonokami, and S. Nakamura, “On the gain mechanism in GaN based laser diodes,” Solid State Commun. 108, 105–109 (1998).
[Crossref]

1996 (1)

D. Hessman, P. Castrillo, M. E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69, 749–751 (1996).
[Crossref]

1993 (1)

S. S. lyer and Y.-H. Xie, “Light emission from silicon,” Science 260, 40–46 (1993).
[Crossref]

1992 (1)

J. C. Sturm and C. M. Reaves, “Silicon temperature measurement by infrared absorption. Fundamental processes and doping effects,” IEEE Trans. Electron Devices 39, 81–88 (1992).
[Crossref]

1984 (1)

D. T. Cassidy, “Technique for measurement of the gain spectra of semiconductor diode lasers,” J. Appl. Phys. 56, 3096–3099 (1984).
[Crossref]

1975 (1)

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46, 1299–1306 (1975).
[Crossref]

1974 (1)

B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B 10, 676–681 (1974).
[Crossref]

1971 (1)

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18, 475–477 (1971).
[Crossref]

1968 (1)

P. J. Dean, “Energy-dependent capture cross sections and the photoluminescence excitation spectra of gallium phosphide above the threshold for intrinsic interband absorption,” Phys. Rev. 168, 889–901 (1968).
[Crossref]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Akiyama, H.

Y. Hayamizu, M. Yoshita, Y. Takahashi, H. Akiyama, C. Z. Ning, L. N. Pfeiffer, and K. W. West, “Biexciton gain and the Mott transition in GaAs quantum wires,” Phys. Rev. Lett. 99, 167403 (2007).
[Crossref]

H. Itoh, Y. Hayamizu, M. Yoshita, H. Akiyama, L. Pfeiffer, K. West, M. Szymanska, and P. Littlewood, “Polarization-dependent photoluminescence-excitation spectra of one-dimensional exciton and continuum states in T-shaped quantum wires,” Appl. Phys. Lett. 83, 2043–2045 (2003).
[Crossref]

Almeida, V.

Aoki, T.

G. Mohs, T. Aoki, R. Shimano, M. Kuwata-Gonokami, and S. Nakamura, “On the gain mechanism in GaN based laser diodes,” Solid State Commun. 108, 105–109 (1998).
[Crossref]

Asano, T.

D. Yamashita, T. Asano, S. Noda, and Y. Takahashi, “Lasing dynamics of optically-pumped ultralow-threshold Raman silicon nanocavity lasers,” Phys. Rev. Appl. 10, 024039 (2018).
[Crossref]

T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25, 1769–1777 (2017).
[Crossref]

K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, M. Mori, T. Asano, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies,” Opt. Express 25, 18165–18174 (2017).
[Crossref]

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “Raman shift and strain effect in high-Q photonic crystal silicon nanocavity,” Opt. Express 23, 3951–3959 (2015).
[Crossref]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ∼9 million,” Opt. Express 22, 916–924 (2014).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88, 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[Crossref]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
[Crossref]

T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996–2002 (2006).
[Crossref]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Ashida, K.

Boyraz, O.

Brinkmeyer, E.

Cassidy, D. T.

D. T. Cassidy, “Technique for measurement of the gain spectra of semiconductor diode lasers,” J. Appl. Phys. 56, 3096–3099 (1984).
[Crossref]

Castrillo, P.

D. Hessman, P. Castrillo, M. E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69, 749–751 (1996).
[Crossref]

Chihara, M.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88, 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Claps, R.

Cohen, O.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

V. Sih, S. Xu, Y.-H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40  Gb/s data in low-loss silicon waveguides,” Opt. Express 15, 357–362 (2007).
[Crossref]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[Crossref]

Dadap, J.

Dal Negro, L.

L. Pavesi, S. Gaponenko, and L. Dal Negro, Towards the First Silicon Laser (Kluwer Academic, 2003).

Dean, P. J.

P. J. Dean, “Energy-dependent capture cross sections and the photoluminescence excitation spectra of gallium phosphide above the threshold for intrinsic interband absorption,” Phys. Rev. 168, 889–901 (1968).
[Crossref]

Dimitropoulos, D.

Espinola, R.

Fang, A.

Fujita, M.

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97, 121111 (2010).
[Crossref]

Fukuda, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Gaponenko, S.

L. Pavesi, S. Gaponenko, and L. Dal Negro, Towards the First Silicon Laser (Kluwer Academic, 2003).

Gelloz, B.

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97, 121111 (2010).
[Crossref]

Gu, T.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/Vheterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

Hagino, H.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[Crossref]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

Hakki, B. W.

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46, 1299–1306 (1975).
[Crossref]

Han, Y.

Hayamizu, Y.

Y. Hayamizu, M. Yoshita, Y. Takahashi, H. Akiyama, C. Z. Ning, L. N. Pfeiffer, and K. W. West, “Biexciton gain and the Mott transition in GaAs quantum wires,” Phys. Rev. Lett. 99, 167403 (2007).
[Crossref]

H. Itoh, Y. Hayamizu, M. Yoshita, H. Akiyama, L. Pfeiffer, K. West, M. Szymanska, and P. Littlewood, “Polarization-dependent photoluminescence-excitation spectra of one-dimensional exciton and continuum states in T-shaped quantum wires,” Appl. Phys. Lett. 83, 2043–2045 (2003).
[Crossref]

Hessman, D.

D. Hessman, P. Castrillo, M. E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69, 749–751 (1996).
[Crossref]

Inokawa, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Inui, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88, 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Itabashi, S.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Itoh, H.

H. Itoh, Y. Hayamizu, M. Yoshita, H. Akiyama, L. Pfeiffer, K. West, M. Szymanska, and P. Littlewood, “Polarization-dependent photoluminescence-excitation spectra of one-dimensional exciton and continuum states in T-shaped quantum wires,” Appl. Phys. Lett. 83, 2043–2045 (2003).
[Crossref]

Jalali, B.

Jhaveri, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

Jones, R.

Kira, G.

Kishimoto, K.

Koshida, N.

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97, 121111 (2010).
[Crossref]

Koshino, K.

Krause, M.

Kuo, Y.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

Kuo, Y.-H.

Kuramochi, E.

Kuwata-Gonokami, M.

G. Mohs, T. Aoki, R. Shimano, M. Kuwata-Gonokami, and S. Nakamura, “On the gain mechanism in GaN based laser diodes,” Solid State Commun. 108, 105–109 (1998).
[Crossref]

Kwong, D.-L.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/Vheterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

Leheny, R. F.

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18, 475–477 (1971).
[Crossref]

Liang, T.

T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 1149–1153 (2004).
[Crossref]

T. Liang and H. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]

Lipson, M.

Littlewood, P.

H. Itoh, Y. Hayamizu, M. Yoshita, H. Akiyama, L. Pfeiffer, K. West, M. Szymanska, and P. Littlewood, “Polarization-dependent photoluminescence-excitation spectra of one-dimensional exciton and continuum states in T-shaped quantum wires,” Appl. Phys. Lett. 83, 2043–2045 (2003).
[Crossref]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[Crossref]

Lo, G.-Q.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/Vheterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

lyer, S. S.

S. S. lyer and Y.-H. Xie, “Light emission from silicon,” Science 260, 40–46 (1993).
[Crossref]

McNab, S.

Mitsugi, S.

Mohs, G.

G. Mohs, T. Aoki, R. Shimano, M. Kuwata-Gonokami, and S. Nakamura, “On the gain mechanism in GaN based laser diodes,” Solid State Commun. 108, 105–109 (1998).
[Crossref]

Monemar, B.

B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B 10, 676–681 (1974).
[Crossref]

Mori, M.

Nakamura, S.

G. Mohs, T. Aoki, R. Shimano, M. Kuwata-Gonokami, and S. Nakamura, “On the gain mechanism in GaN based laser diodes,” Solid State Commun. 108, 105–109 (1998).
[Crossref]

Nicolaescu, R.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

Ning, C. Z.

Y. Hayamizu, M. Yoshita, Y. Takahashi, H. Akiyama, C. Z. Ning, L. N. Pfeiffer, and K. W. West, “Biexciton gain and the Mott transition in GaAs quantum wires,” Phys. Rev. Lett. 99, 167403 (2007).
[Crossref]

Nishiguchi, K.

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009).
[Crossref]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Noda, S.

D. Yamashita, T. Asano, S. Noda, and Y. Takahashi, “Lasing dynamics of optically-pumped ultralow-threshold Raman silicon nanocavity lasers,” Phys. Rev. Appl. 10, 024039 (2018).
[Crossref]

T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25, 1769–1777 (2017).
[Crossref]

K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, M. Mori, T. Asano, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies,” Opt. Express 25, 18165–18174 (2017).
[Crossref]

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “Raman shift and strain effect in high-Q photonic crystal silicon nanocavity,” Opt. Express 23, 3951–3959 (2015).
[Crossref]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ∼9 million,” Opt. Express 22, 916–924 (2014).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88, 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97, 121111 (2010).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[Crossref]

T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996–2002 (2006).
[Crossref]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
[Crossref]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Notomi, M.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96, 101103 (2010).
[Crossref]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009).
[Crossref]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[Crossref]

Ochi, Y.

Ohtsuka, M.

Okano, M.

Osgood, R.

Paniccia, M.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

V. Sih, S. Xu, Y.-H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40  Gb/s data in low-loss silicon waveguides,” Opt. Express 15, 357–362 (2007).
[Crossref]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[Crossref]

Paoli, T. L.

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46, 1299–1306 (1975).
[Crossref]

Pavesi, L.

L. Pavesi, S. Gaponenko, and L. Dal Negro, Towards the First Silicon Laser (Kluwer Academic, 2003).

Pfeiffer, L.

H. Itoh, Y. Hayamizu, M. Yoshita, H. Akiyama, L. Pfeiffer, K. West, M. Szymanska, and P. Littlewood, “Polarization-dependent photoluminescence-excitation spectra of one-dimensional exciton and continuum states in T-shaped quantum wires,” Appl. Phys. Lett. 83, 2043–2045 (2003).
[Crossref]

Pfeiffer, L. N.

Y. Hayamizu, M. Yoshita, Y. Takahashi, H. Akiyama, C. Z. Ning, L. N. Pfeiffer, and K. W. West, “Biexciton gain and the Mott transition in GaAs quantum wires,” Phys. Rev. Lett. 99, 167403 (2007).
[Crossref]

Pistol, M. E.

D. Hessman, P. Castrillo, M. E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69, 749–751 (1996).
[Crossref]

Pryor, C.

D. Hessman, P. Castrillo, M. E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69, 749–751 (1996).
[Crossref]

Raday, O.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

V. Sih, S. Xu, Y.-H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40  Gb/s data in low-loss silicon waveguides,” Opt. Express 15, 357–362 (2007).
[Crossref]

Raghunathan, V.

Reaves, C. M.

J. C. Sturm and C. M. Reaves, “Silicon temperature measurement by infrared absorption. Fundamental processes and doping effects,” IEEE Trans. Electron Devices 39, 81–88 (1992).
[Crossref]

Renner, H.

Rong, H.

V. Sih, S. Xu, Y.-H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40  Gb/s data in low-loss silicon waveguides,” Opt. Express 15, 357–362 (2007).
[Crossref]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

Samuelson, L.

D. Hessman, P. Castrillo, M. E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69, 749–751 (1996).
[Crossref]

Seki, M.

Sekoguchi, H.

Shaklee, K. L.

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18, 475–477 (1971).
[Crossref]

Shimano, R.

G. Mohs, T. Aoki, R. Shimano, M. Kuwata-Gonokami, and S. Nakamura, “On the gain mechanism in GaN based laser diodes,” Solid State Commun. 108, 105–109 (1998).
[Crossref]

Shinojima, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Shinya, A.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96, 101103 (2010).
[Crossref]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[Crossref]

Sih, V.

V. Sih, S. Xu, Y.-H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40  Gb/s data in low-loss silicon waveguides,” Opt. Express 15, 357–362 (2007).
[Crossref]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

Song, B. S.

Song, B.-S.

Sturm, J. C.

J. C. Sturm and C. M. Reaves, “Silicon temperature measurement by infrared absorption. Fundamental processes and doping effects,” IEEE Trans. Electron Devices 39, 81–88 (1992).
[Crossref]

Sumikura, H.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96, 101103 (2010).
[Crossref]

Szymanska, M.

H. Itoh, Y. Hayamizu, M. Yoshita, H. Akiyama, L. Pfeiffer, K. West, M. Szymanska, and P. Littlewood, “Polarization-dependent photoluminescence-excitation spectra of one-dimensional exciton and continuum states in T-shaped quantum wires,” Appl. Phys. Lett. 83, 2043–2045 (2003).
[Crossref]

Takahashi, Y.

D. Yamashita, T. Asano, S. Noda, and Y. Takahashi, “Lasing dynamics of optically-pumped ultralow-threshold Raman silicon nanocavity lasers,” Phys. Rev. Appl. 10, 024039 (2018).
[Crossref]

K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, K. Yamada, and Y. Takahashi, “Photonic crystal nanocavities with an average Q factor of 1.9 million fabricated on a 300-mm-wide SOI wafer using a CMOS-compatible process,” J. Lightwave Technol. 36, 4774–4782 (2018).
[Crossref]

T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25, 1769–1777 (2017).
[Crossref]

K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, M. Mori, T. Asano, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies,” Opt. Express 25, 18165–18174 (2017).
[Crossref]

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “Raman shift and strain effect in high-Q photonic crystal silicon nanocavity,” Opt. Express 23, 3951–3959 (2015).
[Crossref]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ∼9 million,” Opt. Express 22, 916–924 (2014).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88, 235313 (2013).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[Crossref]

Y. Hayamizu, M. Yoshita, Y. Takahashi, H. Akiyama, C. Z. Ning, L. N. Pfeiffer, and K. W. West, “Biexciton gain and the Mott transition in GaAs quantum wires,” Phys. Rev. Lett. 99, 167403 (2007).
[Crossref]

Tanabe, T.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96, 101103 (2010).
[Crossref]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009).
[Crossref]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[Crossref]

Tanaka, Y.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[Crossref]

Taniyama, H.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96, 101103 (2010).
[Crossref]

Terawaki, R.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88, 235313 (2013).
[Crossref]

Tsang, H.

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 1149–1153 (2004).
[Crossref]

T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

T. Liang and H. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]

Tsuchizawa, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Uesugi, T.

Vlasov, Y.

Watanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

West, K.

H. Itoh, Y. Hayamizu, M. Yoshita, H. Akiyama, L. Pfeiffer, K. West, M. Szymanska, and P. Littlewood, “Polarization-dependent photoluminescence-excitation spectra of one-dimensional exciton and continuum states in T-shaped quantum wires,” Appl. Phys. Lett. 83, 2043–2045 (2003).
[Crossref]

West, K. W.

Y. Hayamizu, M. Yoshita, Y. Takahashi, H. Akiyama, C. Z. Ning, L. N. Pfeiffer, and K. W. West, “Biexciton gain and the Mott transition in GaAs quantum wires,” Phys. Rev. Lett. 99, 167403 (2007).
[Crossref]

Wong, C. W.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/Vheterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

X. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers,” Opt. Express 15, 4763–4780 (2007).
[Crossref]

Woo, J. C. S.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

Xie, Y.-H.

S. S. lyer and Y.-H. Xie, “Light emission from silicon,” Science 260, 40–46 (1993).
[Crossref]

Xu, Q.

Xu, S.

V. Sih, S. Xu, Y.-H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40  Gb/s data in low-loss silicon waveguides,” Opt. Express 15, 357–362 (2007).
[Crossref]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

Yamada, K.

K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, K. Yamada, and Y. Takahashi, “Photonic crystal nanocavities with an average Q factor of 1.9 million fabricated on a 300-mm-wide SOI wafer using a CMOS-compatible process,” J. Lightwave Technol. 36, 4774–4782 (2018).
[Crossref]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Yamashita, D.

D. Yamashita, T. Asano, S. Noda, and Y. Takahashi, “Lasing dynamics of optically-pumped ultralow-threshold Raman silicon nanocavity lasers,” Phys. Rev. Appl. 10, 024039 (2018).
[Crossref]

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “Raman shift and strain effect in high-Q photonic crystal silicon nanocavity,” Opt. Express 23, 3951–3959 (2015).
[Crossref]

Yang, J.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/Vheterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

Yang, X.

Yokoyama, N.

Yoshita, M.

Y. Hayamizu, M. Yoshita, Y. Takahashi, H. Akiyama, C. Z. Ning, L. N. Pfeiffer, and K. W. West, “Biexciton gain and the Mott transition in GaAs quantum wires,” Phys. Rev. Lett. 99, 167403 (2007).
[Crossref]

H. Itoh, Y. Hayamizu, M. Yoshita, H. Akiyama, L. Pfeiffer, K. West, M. Szymanska, and P. Littlewood, “Polarization-dependent photoluminescence-excitation spectra of one-dimensional exciton and continuum states in T-shaped quantum wires,” Appl. Phys. Lett. 83, 2043–2045 (2003).
[Crossref]

Yu, M.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/Vheterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

Zheng, J.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/Vheterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

Appl. Phys. Lett. (11)

T. Liang and H. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]

D. Hessman, P. Castrillo, M. E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69, 749–751 (1996).
[Crossref]

H. Itoh, Y. Hayamizu, M. Yoshita, H. Akiyama, L. Pfeiffer, K. West, M. Szymanska, and P. Littlewood, “Polarization-dependent photoluminescence-excitation spectra of one-dimensional exciton and continuum states in T-shaped quantum wires,” Appl. Phys. Lett. 83, 2043–2045 (2003).
[Crossref]

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18, 475–477 (1971).
[Crossref]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96, 101103 (2010).
[Crossref]

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/Vheterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

T. Liang and H. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97, 121111 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 1149–1153 (2004).
[Crossref]

IEEE Trans. Electron Devices (1)

J. C. Sturm and C. M. Reaves, “Silicon temperature measurement by infrared absorption. Fundamental processes and doping effects,” IEEE Trans. Electron Devices 39, 81–88 (1992).
[Crossref]

J. Appl. Phys. (2)

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46, 1299–1306 (1975).
[Crossref]

D. T. Cassidy, “Technique for measurement of the gain spectra of semiconductor diode lasers,” J. Appl. Phys. 56, 3096–3099 (1984).
[Crossref]

J. Lightwave Technol. (1)

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Nat. Photonics (1)

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

Nature (2)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Opt. Express (18)

K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, M. Mori, T. Asano, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies,” Opt. Express 25, 18165–18174 (2017).
[Crossref]

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “Raman shift and strain effect in high-Q photonic crystal silicon nanocavity,” Opt. Express 23, 3951–3959 (2015).
[Crossref]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]

X. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers,” Opt. Express 15, 4763–4780 (2007).
[Crossref]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54  μm,” Opt. Express 10, 1305–1313 (2002).
[Crossref]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003).
[Crossref]

R. Espinola, J. Dadap, R. Osgood, S. McNab, and Y. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713–3718 (2004).
[Crossref]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[Crossref]

Q. Xu, V. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express 12, 4437–4442 (2004).
[Crossref]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).
[Crossref]

M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12, 5703–5710 (2004).
[Crossref]

T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996–2002 (2006).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[Crossref]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
[Crossref]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009).
[Crossref]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ∼9 million,” Opt. Express 22, 916–924 (2014).
[Crossref]

T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25, 1769–1777 (2017).
[Crossref]

V. Sih, S. Xu, Y.-H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40  Gb/s data in low-loss silicon waveguides,” Opt. Express 15, 357–362 (2007).
[Crossref]

Phys. Rev. (1)

P. J. Dean, “Energy-dependent capture cross sections and the photoluminescence excitation spectra of gallium phosphide above the threshold for intrinsic interband absorption,” Phys. Rev. 168, 889–901 (1968).
[Crossref]

Phys. Rev. Appl. (1)

D. Yamashita, T. Asano, S. Noda, and Y. Takahashi, “Lasing dynamics of optically-pumped ultralow-threshold Raman silicon nanocavity lasers,” Phys. Rev. Appl. 10, 024039 (2018).
[Crossref]

Phys. Rev. B (3)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88, 235313 (2013).
[Crossref]

B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B 10, 676–681 (1974).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[Crossref]

Phys. Rev. Lett. (1)

Y. Hayamizu, M. Yoshita, Y. Takahashi, H. Akiyama, C. Z. Ning, L. N. Pfeiffer, and K. W. West, “Biexciton gain and the Mott transition in GaAs quantum wires,” Phys. Rev. Lett. 99, 167403 (2007).
[Crossref]

Science (1)

S. S. lyer and Y.-H. Xie, “Light emission from silicon,” Science 260, 40–46 (1993).
[Crossref]

Solid State Commun. (1)

G. Mohs, T. Aoki, R. Shimano, M. Kuwata-Gonokami, and S. Nakamura, “On the gain mechanism in GaN based laser diodes,” Solid State Commun. 108, 105–109 (1998).
[Crossref]

Other (1)

L. Pavesi, S. Gaponenko, and L. Dal Negro, Towards the First Silicon Laser (Kluwer Academic, 2003).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the heterostructure nanocavity used for the Raman laser. (b) Band diagram of the nanocavity. The pump and Stokes nanocavity modes form through confinement in the two propagation bands. The inset on the right side of the graph outlines the SRE measurement procedure. (c) Nanocavity excitation configuration to measure properties of the pump mode, and (d) those of the Stokes mode. (e) Resonant spectrum of the pump mode, and (f) that of the Stokes mode. Filled circles show experimental data and solid lines are fitting results using a Lorentzian function.
Fig. 2.
Fig. 2. Setup used to measure excitation-wavelength dependence of the pump mode light and Stokes mode light.
Fig. 3.
Fig. 3. (a) Resonance spectra for the pump nanocavity mode (blue curves) and SRE spectra (red curves) for Pinput1.2×Pth. (b) Resonance spectra for the pump mode (upper panel) and SRE spectra (lower panel) for 0.7×PthPinput8.0×Pth. Emission intensities were measured by Ge photodiode sensor (Thorlabs S132C). Insets illustrate how the nanocavity modes were excited.
Fig. 4.
Fig. 4. (a) Calculated resonant emission spectra for the pump mode (upper panel) and Stokes mode (lower panel) for the range 0.8×PthPinput8.0×Pth. (b) Corresponding shift in frequency spacing Δf (upper panel) and the change in QFCA (lower panel). The original numerical data for the points indicated by the open circles are presented in Fig. S4 of Supplement 1.
Fig. 5.
Fig. 5. (a) Color map of Raman laser output power versus Pinput and λin. The horizontal axis plots the difference between excitation wavelengths λin and λp,0. (b) ΔλSRE and ΔΛlasing as a function of Pinput. (c) λSRE as a function of Pinput (relative to λp,0). (d) Raman laser output power characteristics for the three λin indicated in (a) as a function of Pinput. The gray curve is the maximum obtainable output power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1Qi,0=1Qi,theory+1Qi,scat+1Qi,abs.
1QS=1QS,0+1QFCA.
QFCA=2πnNCσFCAλS,