Abstract

The control of quantum states of light at the nanoscale has become possible in recent years with the use of plasmonics. Here, many types of nanophotonic devices and applications have been suggested that take advantage of quantum optical effects, despite the inherent presence of loss. A key example is quantum plasmonic sensing, which provides sensitivity beyond the classical limit using entangled N00N states and their generalizations in a compact system operating below the diffraction limit. In this work, we experimentally demonstrate the excitation and propagation of a two-plasmon entangled N00N state (N=2) in a silver nanowire and assess the performance of our system for carrying out quantum sensing. Polarization entangled photon pairs are converted into plasmons in the silver nanowire, which propagate over a distance of 5 μm and reconvert back into photons. A full analysis of the plasmonic system finds that high-quality entanglement is preserved throughout. We measure the characteristic super-resolution phase oscillations of the entangled state via coincidence measurements. We also identify various sources of loss in our setup and show how they can be mitigated, in principle, in order to reach super-sensitivity that goes beyond the classical sensing limit. Our results show that polarization entanglement can be preserved in a plasmonic nanowire and that sensing with a quantum advantage would be possible with only moderate loss present.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantum teleportation over 100  km of fiber using highly efficient superconducting nanowire single-photon detectors

Hiroki Takesue, Shellee D. Dyer, Martin J. Stevens, Varun Verma, Richard P. Mirin, and Sae Woo Nam
Optica 2(10) 832-835 (2015)

Characterizing an entangled-photon source with classical detectors and measurements

Lee A. Rozema, Chao Wang, Dylan H. Mahler, Alex Hayat, Aephraim M. Steinberg, John E. Sipe, and Marco Liscidini
Optica 2(5) 430-433 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
    [Crossref]
  2. X.-F. Ren, G.-P. Guo, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett. 76, 753–759 (2006).
    [Crossref]
  3. F. Dieleman, M. S. Tame, Y. Sonnefraud, M. S. Kim, and S. A. Maier, “Experimental verification of entanglement generated in a plasmonic system,” Nano Lett. 17, 7455–7461 (2017).
    [Crossref]
  4. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
    [Crossref]
  5. R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys. 5, 470–474 (2009).
    [Crossref]
  6. A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
    [Crossref]
  7. A. Cuche, O. Mollet, A. Drezet, and S. Huant, “‘Deterministic’ quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
    [Crossref]
  8. Y.-J. Cai, M. Li, X.-F. Ren, C.-L. Zou, X. Xiong, H.-L. Lei, B.-H. Liu, G.-P. Guo, and G.-C. Guo, “High-visibility on-chip quantum interference of single surface plasmons,” Phys. Rev. Appl. 2, 014004 (2014).
    [Crossref]
  9. S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhua, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat Commun. 7, 11490 (2016).
    [Crossref]
  10. J. Francis, X. Zhang, S. K. Özdemir, and M. S. Tame, “Quantum random number generation using an on-chip plasmonic beamsplitter,” Quantum Sci. Technol. 2, 035004 (2017).
    [Crossref]
  11. D. E. Chang, A. S. Srensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
    [Crossref]
  12. P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106, 113601 (2011).
    [Crossref]
  13. D. E. Chang, V. Vuletic, and M. D. Lukin, “Quantum nonlinear optics—photon by photon,” Nat. Photonics 8, 685–694 (2014).
    [Crossref]
  14. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
    [Crossref]
  15. N. P. de Leon, M. D. Lukin, and H. Park, “Quantum plasmonic circuits,” IEEE J. Sel. Top. Quantum. Electron. 18, 1781–1791 (2012).
    [Crossref]
  16. A. Huck and U. L. Andersen, “Coupling single emitters to quantum plasmonic circuits,” Nanophotonics 5, 483–495 (2016).
    [Crossref]
  17. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
    [Crossref]
  18. I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
    [Crossref]
  19. M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15, 2380–2384 (2015).
    [Crossref]
  20. S. Kumar, A. Huck, and U. L. Andersen, “Efficient coupling of a single diamond color center to propagating plasmonic gap modes,” Nano Lett. 13, 1221–1225 (2013).
    [Crossref]
  21. D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4, 011049 (2014).
    [Crossref]
  22. W. Fan, B. J. Lawrie, and R. C. Pooser, “Quantum plasmonic sensing,” Phys. Rev. A 92, 053812 (2015).
    [Crossref]
  23. R. C. Pooser and B. Lawrie, “Plasmonic trace sensing below the photon shot noise limit,” ACS Photon. 3, 8–13 (2015).
    [Crossref]
  24. C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. S. Tame, “Quantum plasmonic sensing: beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992–999 (2016).
    [Crossref]
  25. J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. S. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
    [Crossref]
  26. M. Dowran, A. Kumar, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Quantum-enhanced plasmonic sensing,” Optica 5, 628–633 (2018).
    [Crossref]
  27. J.-S. Lee, S.-J. Yoon, H. Rah, M. Tame, C. Rockstuhl, S. H. Song, C. Lee, and K.-G. Lee, “Quantum plasmonic sensing using single photons,” arXiv:1806.10300 (2018).
  28. D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300, 82–86 (2003).
    [Crossref]
  29. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
    [Crossref]
  30. E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
    [Crossref]
  31. M. Taylor, Quantum Microscopy of Biological Systems (Springer, 2015).
  32. M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
    [Crossref]
  33. S. Kaya, J. C. Weeber, F. Zacharatos, K. Hassan, T. Bernardin, B. Cluzel, J. Fatome, and C. Finot, “Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths,” Opt. Express 21, 22269–22284 (2013).
    [Crossref]
  34. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
    [Crossref]
  35. C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
    [Crossref]
  36. J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8, 317–320 (2014).
    [Crossref]
  37. G. D. Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, “Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect,” Phys. Rev. Appl. 1, 034004 (2014).
    [Crossref]
  38. G. Fujii, D. Fukuda, and S. Inoue, “Direct observation of bosonic quantum interference of surface plasmon polaritons using photon-number-resolving detectors,” Phys. Rev. B 90, 085430 (2014).
    [Crossref]
  39. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref]
  40. J. S. Fakonas, A. Mitskovets, and H. A. Atwater, “Path entanglement of surface plasmons,” New J. Phys. 17, 023002 (2015).
    [Crossref]
  41. B. Vest, I. Shlesinger, M. C. Dheur, E. Devaux, J. J. Greffet, G. Messin, and F. Marquier, “Plasmonic interferences of two-particle N00N states,” New J. Phys. 20, 053050 (2018).
    [Crossref]
  42. J. Jacobson, G. Björk, I. Chuang, and Y. Yamamoto, “Photonic de Broglie waves,” Phys. Rev. Lett. 74, 4835–4838 (1995).
    [Crossref]
  43. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
    [Crossref]
  44. A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
    [Crossref]
  45. R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Kolodynski, “Quantum limits in optical interferometry,” Prog. Opt. 60, 345–435 (2015).
    [Crossref]
  46. L. B. Sagle, L. K. Ruvuna, J. A. Ruemmele, and R. P. van Duyne, “Advances in localized surface plasmon resonance spectroscopy biosensing,” Nanomedicine 6, 1447–1462 (2011).
    [Crossref]
  47. B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
    [Crossref]
  48. F. Gu, H. Zeng, L. Tong, and S. Zhuang, “Metal single-nanowire plasmonic sensors,” Opt. Lett. 38, 1826–1828 (2013).
    [Crossref]
  49. K. Ahn, D. Kim, O. Kim, and J. Nam, “Analysis of transparent conductive silver nanowire films from dip coating flow,” J. Coat. Technol. Res. 12, 855–862 (2015).
    [Crossref]
  50. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal Bioanal. Chem. 407, 3883–3897 (2015).
    [Crossref]
  51. B. Bob, A. Machness, T.-B. Song, H. Zhou, C.-H. Chung, and Y. Yang, “Silver nanowires with semiconducting ligands for low-temperature transparent conductors,” Nano Res. 9, 392–400 (2016).
    [Crossref]
  52. A. Tinazli, J. Piehler, M. Beuttler, R. Guckenberger, and R. Tampe, “Native protein nanolithography that can write, read and erase,” Nat. Nanotechnol. 2, 220–225 (2007).
    [Crossref]
  53. K. Salaita, Y. Wang, and C. A. Mirkin, “Applications of dip-pen nanolithography,” Nat. Nanotechnol. 2, 145–155 (2007).
    [Crossref]
  54. G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4, 1840 (2012).
    [Crossref]
  55. K. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98, 223601 (2007).
    [Crossref]
  56. R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Quantum phase estimation with lossy interferometers,” Phys. Rev. A 80, 013825 (2009).
    [Crossref]
  57. S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett. 72, 3439–3443 (1994).
    [Crossref]
  58. N. Thomas-Peter, B. J. Smith, A. Datta, L. Zhang, U. Dorner, and I. A. Walmsley, “Real-world quantum sensors: evaluating resources for precision measurement,” Phys. Rev. Lett. 107, 113603 (2011).
    [Crossref]

2018 (2)

B. Vest, I. Shlesinger, M. C. Dheur, E. Devaux, J. J. Greffet, G. Messin, and F. Marquier, “Plasmonic interferences of two-particle N00N states,” New J. Phys. 20, 053050 (2018).
[Crossref]

M. Dowran, A. Kumar, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Quantum-enhanced plasmonic sensing,” Optica 5, 628–633 (2018).
[Crossref]

2017 (3)

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. S. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

F. Dieleman, M. S. Tame, Y. Sonnefraud, M. S. Kim, and S. A. Maier, “Experimental verification of entanglement generated in a plasmonic system,” Nano Lett. 17, 7455–7461 (2017).
[Crossref]

J. Francis, X. Zhang, S. K. Özdemir, and M. S. Tame, “Quantum random number generation using an on-chip plasmonic beamsplitter,” Quantum Sci. Technol. 2, 035004 (2017).
[Crossref]

2016 (6)

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhua, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat Commun. 7, 11490 (2016).
[Crossref]

A. Huck and U. L. Andersen, “Coupling single emitters to quantum plasmonic circuits,” Nanophotonics 5, 483–495 (2016).
[Crossref]

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. S. Tame, “Quantum plasmonic sensing: beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992–999 (2016).
[Crossref]

B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

B. Bob, A. Machness, T.-B. Song, H. Zhou, C.-H. Chung, and Y. Yang, “Silver nanowires with semiconducting ligands for low-temperature transparent conductors,” Nano Res. 9, 392–400 (2016).
[Crossref]

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

2015 (8)

K. Ahn, D. Kim, O. Kim, and J. Nam, “Analysis of transparent conductive silver nanowire films from dip coating flow,” J. Coat. Technol. Res. 12, 855–862 (2015).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Kolodynski, “Quantum limits in optical interferometry,” Prog. Opt. 60, 345–435 (2015).
[Crossref]

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15, 2380–2384 (2015).
[Crossref]

W. Fan, B. J. Lawrie, and R. C. Pooser, “Quantum plasmonic sensing,” Phys. Rev. A 92, 053812 (2015).
[Crossref]

R. C. Pooser and B. Lawrie, “Plasmonic trace sensing below the photon shot noise limit,” ACS Photon. 3, 8–13 (2015).
[Crossref]

J. S. Fakonas, A. Mitskovets, and H. A. Atwater, “Path entanglement of surface plasmons,” New J. Phys. 17, 023002 (2015).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

2014 (6)

D. E. Chang, V. Vuletic, and M. D. Lukin, “Quantum nonlinear optics—photon by photon,” Nat. Photonics 8, 685–694 (2014).
[Crossref]

Y.-J. Cai, M. Li, X.-F. Ren, C.-L. Zou, X. Xiong, H.-L. Lei, B.-H. Liu, G.-P. Guo, and G.-C. Guo, “High-visibility on-chip quantum interference of single surface plasmons,” Phys. Rev. Appl. 2, 014004 (2014).
[Crossref]

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8, 317–320 (2014).
[Crossref]

G. D. Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, “Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect,” Phys. Rev. Appl. 1, 034004 (2014).
[Crossref]

G. Fujii, D. Fukuda, and S. Inoue, “Direct observation of bosonic quantum interference of surface plasmon polaritons using photon-number-resolving detectors,” Phys. Rev. B 90, 085430 (2014).
[Crossref]

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4, 011049 (2014).
[Crossref]

2013 (4)

S. Kumar, A. Huck, and U. L. Andersen, “Efficient coupling of a single diamond color center to propagating plasmonic gap modes,” Nano Lett. 13, 1221–1225 (2013).
[Crossref]

M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

F. Gu, H. Zeng, L. Tong, and S. Zhuang, “Metal single-nanowire plasmonic sensors,” Opt. Lett. 38, 1826–1828 (2013).
[Crossref]

S. Kaya, J. C. Weeber, F. Zacharatos, K. Hassan, T. Bernardin, B. Cluzel, J. Fatome, and C. Finot, “Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths,” Opt. Express 21, 22269–22284 (2013).
[Crossref]

2012 (3)

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4, 1840 (2012).
[Crossref]

N. P. de Leon, M. D. Lukin, and H. Park, “Quantum plasmonic circuits,” IEEE J. Sel. Top. Quantum. Electron. 18, 1781–1791 (2012).
[Crossref]

2011 (5)

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106, 113601 (2011).
[Crossref]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[Crossref]

N. Thomas-Peter, B. J. Smith, A. Datta, L. Zhang, U. Dorner, and I. A. Walmsley, “Real-world quantum sensors: evaluating resources for precision measurement,” Phys. Rev. Lett. 107, 113603 (2011).
[Crossref]

L. B. Sagle, L. K. Ruvuna, J. A. Ruemmele, and R. P. van Duyne, “Advances in localized surface plasmon resonance spectroscopy biosensing,” Nanomedicine 6, 1447–1462 (2011).
[Crossref]

2010 (1)

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “‘Deterministic’ quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[Crossref]

2009 (4)

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys. 5, 470–474 (2009).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Quantum phase estimation with lossy interferometers,” Phys. Rev. A 80, 013825 (2009).
[Crossref]

2007 (5)

K. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98, 223601 (2007).
[Crossref]

A. Tinazli, J. Piehler, M. Beuttler, R. Guckenberger, and R. Tampe, “Native protein nanolithography that can write, read and erase,” Nat. Nanotechnol. 2, 220–225 (2007).
[Crossref]

K. Salaita, Y. Wang, and C. A. Mirkin, “Applications of dip-pen nanolithography,” Nat. Nanotechnol. 2, 145–155 (2007).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

D. E. Chang, A. S. Srensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

2006 (1)

X.-F. Ren, G.-P. Guo, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett. 76, 753–759 (2006).
[Crossref]

2003 (2)

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300, 82–86 (2003).
[Crossref]

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref]

1999 (1)

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref]

1997 (1)

1995 (1)

J. Jacobson, G. Björk, I. Chuang, and Y. Yamamoto, “Photonic de Broglie waves,” Phys. Rev. Lett. 74, 4835–4838 (1995).
[Crossref]

1994 (1)

S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett. 72, 3439–3443 (1994).
[Crossref]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

Aharonovich, I.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

Ahn, K.

K. Ahn, D. Kim, O. Kim, and J. Nam, “Analysis of transparent conductive silver nanowire films from dip coating flow,” J. Coat. Technol. Res. 12, 855–862 (2015).
[Crossref]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Albert, J.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

Allan, V. J.

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300, 82–86 (2003).
[Crossref]

Andersen, U. L.

A. Huck and U. L. Andersen, “Coupling single emitters to quantum plasmonic circuits,” Nanophotonics 5, 483–495 (2016).
[Crossref]

S. Kumar, A. Huck, and U. L. Andersen, “Efficient coupling of a single diamond color center to propagating plasmonic gap modes,” Nano Lett. 13, 1221–1225 (2013).
[Crossref]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[Crossref]

Atwater, H. A.

J. S. Fakonas, A. Mitskovets, and H. A. Atwater, “Path entanglement of surface plasmons,” New J. Phys. 17, 023002 (2015).
[Crossref]

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8, 317–320 (2014).
[Crossref]

Balasubramanian, G.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys. 5, 470–474 (2009).
[Crossref]

Banaszek, K.

R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Quantum phase estimation with lossy interferometers,” Phys. Rev. A 80, 013825 (2009).
[Crossref]

Bergman, K.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref]

Bernardin, T.

Beuttler, M.

A. Tinazli, J. Piehler, M. Beuttler, R. Guckenberger, and R. Tampe, “Native protein nanolithography that can write, read and erase,” Nat. Nanotechnol. 2, 220–225 (2007).
[Crossref]

Björk, G.

J. Jacobson, G. Björk, I. Chuang, and Y. Yamamoto, “Photonic de Broglie waves,” Phys. Rev. Lett. 74, 4835–4838 (1995).
[Crossref]

Block, S. M.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref]

Bob, B.

B. Bob, A. Machness, T.-B. Song, H. Zhou, C.-H. Chung, and Y. Yang, “Silver nanowires with semiconducting ligands for low-temperature transparent conductors,” Nano Res. 9, 392–400 (2016).
[Crossref]

Bockova, M.

B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

Bowen, W. P.

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

Braunstein, S. L.

S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett. 72, 3439–3443 (1994).
[Crossref]

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

Cai, Y.-J.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15, 2380–2384 (2015).
[Crossref]

Y.-J. Cai, M. Li, X.-F. Ren, C.-L. Zou, X. Xiong, H.-L. Lei, B.-H. Liu, G.-P. Guo, and G.-C. Guo, “High-visibility on-chip quantum interference of single surface plasmons,” Phys. Rev. Appl. 2, 014004 (2014).
[Crossref]

Castelletto, S.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

Caucheteur, C.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

Caves, C. M.

S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett. 72, 3439–3443 (1994).
[Crossref]

Chadd, E. H.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref]

Chang, D. E.

D. E. Chang, V. Vuletic, and M. D. Lukin, “Quantum nonlinear optics—photon by photon,” Nat. Photonics 8, 685–694 (2014).
[Crossref]

D. E. Chang, A. S. Srensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Cheng, Q. Q.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhua, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat Commun. 7, 11490 (2016).
[Crossref]

Chuang, I.

J. Jacobson, G. Björk, I. Chuang, and Y. Yamamoto, “Photonic de Broglie waves,” Phys. Rev. Lett. 74, 4835–4838 (1995).
[Crossref]

Chung, C.-H.

B. Bob, A. Machness, T.-B. Song, H. Zhou, C.-H. Chung, and Y. Yang, “Silver nanowires with semiconducting ligands for low-temperature transparent conductors,” Nano Res. 9, 392–400 (2016).
[Crossref]

Cluzel, B.

Crespi, A.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

Cuche, A.

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “‘Deterministic’ quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[Crossref]

Datta, A.

N. Thomas-Peter, B. J. Smith, A. Datta, L. Zhang, U. Dorner, and I. A. Walmsley, “Real-world quantum sensors: evaluating resources for precision measurement,” Phys. Rev. Lett. 107, 113603 (2011).
[Crossref]

de Leon, N. P.

N. P. de Leon, M. D. Lukin, and H. Park, “Quantum plasmonic circuits,” IEEE J. Sel. Top. Quantum. Electron. 18, 1781–1791 (2012).
[Crossref]

Demkowicz-Dobrzanski, R.

R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Kolodynski, “Quantum limits in optical interferometry,” Prog. Opt. 60, 345–435 (2015).
[Crossref]

R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Quantum phase estimation with lossy interferometers,” Phys. Rev. A 80, 013825 (2009).
[Crossref]

Demler, E. A.

D. E. Chang, A. S. Srensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Devaux, E.

B. Vest, I. Shlesinger, M. C. Dheur, E. Devaux, J. J. Greffet, G. Messin, and F. Marquier, “Plasmonic interferences of two-particle N00N states,” New J. Phys. 20, 053050 (2018).
[Crossref]

Dheur, M. C.

B. Vest, I. Shlesinger, M. C. Dheur, E. Devaux, J. J. Greffet, G. Messin, and F. Marquier, “Plasmonic interferences of two-particle N00N states,” New J. Phys. 20, 053050 (2018).
[Crossref]

Dieleman, F.

F. Dieleman, M. S. Tame, Y. Sonnefraud, M. S. Kim, and S. A. Maier, “Experimental verification of entanglement generated in a plasmonic system,” Nano Lett. 17, 7455–7461 (2017).
[Crossref]

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. S. Tame, “Quantum plasmonic sensing: beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992–999 (2016).
[Crossref]

G. D. Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, “Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect,” Phys. Rev. Appl. 1, 034004 (2014).
[Crossref]

Dong, C.-H.

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

Dorner, U.

N. Thomas-Peter, B. J. Smith, A. Datta, L. Zhang, U. Dorner, and I. A. Walmsley, “Real-world quantum sensors: evaluating resources for precision measurement,” Phys. Rev. Lett. 107, 113603 (2011).
[Crossref]

R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Quantum phase estimation with lossy interferometers,” Phys. Rev. A 80, 013825 (2009).
[Crossref]

Dowran, M.

Drezet, A.

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “‘Deterministic’ quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[Crossref]

Duan, J.-Y.

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

Fakonas, J. S.

J. S. Fakonas, A. Mitskovets, and H. A. Atwater, “Path entanglement of surface plasmons,” New J. Phys. 17, 023002 (2015).
[Crossref]

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8, 317–320 (2014).
[Crossref]

Fan, W.

W. Fan, B. J. Lawrie, and R. C. Pooser, “Quantum plasmonic sensing,” Phys. Rev. A 92, 053812 (2015).
[Crossref]

Fatome, J.

Finot, C.

Francis, J.

J. Francis, X. Zhang, S. K. Özdemir, and M. S. Tame, “Quantum random number generation using an on-chip plasmonic beamsplitter,” Quantum Sci. Technol. 2, 035004 (2017).
[Crossref]

Fujii, G.

G. Fujii, D. Fukuda, and S. Inoue, “Direct observation of bosonic quantum interference of surface plasmon polaritons using photon-number-resolving detectors,” Phys. Rev. B 90, 085430 (2014).
[Crossref]

Fukuda, D.

G. Fujii, D. Fukuda, and S. Inoue, “Direct observation of bosonic quantum interference of surface plasmon polaritons using photon-number-resolving detectors,” Phys. Rev. B 90, 085430 (2014).
[Crossref]

Gilchrist, A.

K. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98, 223601 (2007).
[Crossref]

Gittes, F.

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref]

Gong, Y. X.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhua, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat Commun. 7, 11490 (2016).
[Crossref]

Greentree, A. D.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

Greffet, J. J.

B. Vest, I. Shlesinger, M. C. Dheur, E. Devaux, J. J. Greffet, G. Messin, and F. Marquier, “Plasmonic interferences of two-particle N00N states,” New J. Phys. 20, 053050 (2018).
[Crossref]

Grotz, B.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys. 5, 470–474 (2009).
[Crossref]

Gu, F.

Guan, J.-G.

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

Guckenberger, R.

A. Tinazli, J. Piehler, M. Beuttler, R. Guckenberger, and R. Tampe, “Native protein nanolithography that can write, read and erase,” Nat. Nanotechnol. 2, 220–225 (2007).
[Crossref]

Guo, G.-C.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15, 2380–2384 (2015).
[Crossref]

Y.-J. Cai, M. Li, X.-F. Ren, C.-L. Zou, X. Xiong, H.-L. Lei, B.-H. Liu, G.-P. Guo, and G.-C. Guo, “High-visibility on-chip quantum interference of single surface plasmons,” Phys. Rev. Appl. 2, 014004 (2014).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

X.-F. Ren, G.-P. Guo, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett. 76, 753–759 (2006).
[Crossref]

Guo, G.-P.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15, 2380–2384 (2015).
[Crossref]

Y.-J. Cai, M. Li, X.-F. Ren, C.-L. Zou, X. Xiong, H.-L. Lei, B.-H. Liu, G.-P. Guo, and G.-C. Guo, “High-visibility on-chip quantum interference of single surface plasmons,” Phys. Rev. Appl. 2, 014004 (2014).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

X.-F. Ren, G.-P. Guo, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett. 76, 753–759 (2006).
[Crossref]

Guo, T.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

Hassan, K.

Hemmer, P. R.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys. 5, 470–474 (2009).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Homola, J.

B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Horodecki, K.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

Horodecki, M.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

Horodecki, P.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

Horodecki, R.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

Huang, Y.-F.

X.-F. Ren, G.-P. Guo, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett. 76, 753–759 (2006).
[Crossref]

Huant, S.

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “‘Deterministic’ quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[Crossref]

Huck, A.

A. Huck and U. L. Andersen, “Coupling single emitters to quantum plasmonic circuits,” Nanophotonics 5, 483–495 (2016).
[Crossref]

S. Kumar, A. Huck, and U. L. Andersen, “Efficient coupling of a single diamond color center to propagating plasmonic gap modes,” Nano Lett. 13, 1221–1225 (2013).
[Crossref]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[Crossref]

Huynh, T.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. S. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

Inoue, S.

G. Fujii, D. Fukuda, and S. Inoue, “Direct observation of bosonic quantum interference of surface plasmon polaritons using photon-number-resolving detectors,” Phys. Rev. B 90, 085430 (2014).
[Crossref]

Jacobson, J.

J. Jacobson, G. Björk, I. Chuang, and Y. Yamamoto, “Photonic de Broglie waves,” Phys. Rev. Lett. 74, 4835–4838 (1995).
[Crossref]

Jarzyna, M.

R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Kolodynski, “Quantum limits in optical interferometry,” Prog. Opt. 60, 345–435 (2015).
[Crossref]

Jelezko, F.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys. 5, 470–474 (2009).
[Crossref]

Kalashnikov, D. A.

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4, 011049 (2014).
[Crossref]

Kaya, S.

Kelaita, Y. A.

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8, 317–320 (2014).
[Crossref]

Kéna-Cohen, S.

G. D. Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, “Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect,” Phys. Rev. Appl. 1, 034004 (2014).
[Crossref]

Kim, D.

K. Ahn, D. Kim, O. Kim, and J. Nam, “Analysis of transparent conductive silver nanowire films from dip coating flow,” J. Coat. Technol. Res. 12, 855–862 (2015).
[Crossref]

Kim, M. S.

F. Dieleman, M. S. Tame, Y. Sonnefraud, M. S. Kim, and S. A. Maier, “Experimental verification of entanglement generated in a plasmonic system,” Nano Lett. 17, 7455–7461 (2017).
[Crossref]

G. D. Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, “Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect,” Phys. Rev. Appl. 1, 034004 (2014).
[Crossref]

M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Kim, O.

K. Ahn, D. Kim, O. Kim, and J. Nam, “Analysis of transparent conductive silver nanowire films from dip coating flow,” J. Coat. Technol. Res. 12, 855–862 (2015).
[Crossref]

Kobayashi, T.

Kolchin, P.

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106, 113601 (2011).
[Crossref]

Kolesov, R.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys. 5, 470–474 (2009).
[Crossref]

Kolodynski, J.

R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Kolodynski, “Quantum limits in optical interferometry,” Prog. Opt. 60, 345–435 (2015).
[Crossref]

Krivitsky, L. A.

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4, 011049 (2014).
[Crossref]

Kumar, A.

Kumar, S.

S. Kumar, A. Huck, and U. L. Andersen, “Efficient coupling of a single diamond color center to propagating plasmonic gap modes,” Nano Lett. 13, 1221–1225 (2013).
[Crossref]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[Crossref]

Kuznetsov, A. I.

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4, 011049 (2014).
[Crossref]

Lawrie, B.

R. C. Pooser and B. Lawrie, “Plasmonic trace sensing below the photon shot noise limit,” ACS Photon. 3, 8–13 (2015).
[Crossref]

Lawrie, B. J.

M. Dowran, A. Kumar, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Quantum-enhanced plasmonic sensing,” Optica 5, 628–633 (2018).
[Crossref]

W. Fan, B. J. Lawrie, and R. C. Pooser, “Quantum plasmonic sensing,” Phys. Rev. A 92, 053812 (2015).
[Crossref]

Lee, C.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. S. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. S. Tame, “Quantum plasmonic sensing: beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992–999 (2016).
[Crossref]

J.-S. Lee, S.-J. Yoon, H. Rah, M. Tame, C. Rockstuhl, S. H. Song, C. Lee, and K.-G. Lee, “Quantum plasmonic sensing using single photons,” arXiv:1806.10300 (2018).

Lee, H.

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8, 317–320 (2014).
[Crossref]

Lee, J.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. S. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. S. Tame, “Quantum plasmonic sensing: beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992–999 (2016).
[Crossref]

Lee, J.-S.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. S. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

J.-S. Lee, S.-J. Yoon, H. Rah, M. Tame, C. Rockstuhl, S. H. Song, C. Lee, and K.-G. Lee, “Quantum plasmonic sensing using single photons,” arXiv:1806.10300 (2018).

Lee, K.-G.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. S. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

J.-S. Lee, S.-J. Yoon, H. Rah, M. Tame, C. Rockstuhl, S. H. Song, C. Lee, and K.-G. Lee, “Quantum plasmonic sensing using single photons,” arXiv:1806.10300 (2018).

Lee, S.-Y.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. S. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

Leggett, G. J.

G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4, 1840 (2012).
[Crossref]

Lei, H.-L.

Y.-J. Cai, M. Li, X.-F. Ren, C.-L. Zou, X. Xiong, H.-L. Lei, B.-H. Liu, G.-P. Guo, and G.-C. Guo, “High-visibility on-chip quantum interference of single surface plasmons,” Phys. Rev. Appl. 2, 014004 (2014).
[Crossref]

Li, C.-F.

X.-F. Ren, G.-P. Guo, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett. 76, 753–759 (2006).
[Crossref]

Li, L.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhua, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat Commun. 7, 11490 (2016).
[Crossref]

Li, M.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15, 2380–2384 (2015).
[Crossref]

Y.-J. Cai, M. Li, X.-F. Ren, C.-L. Zou, X. Xiong, H.-L. Lei, B.-H. Liu, G.-P. Guo, and G.-C. Guo, “High-visibility on-chip quantum interference of single surface plasmons,” Phys. Rev. Appl. 2, 014004 (2014).
[Crossref]

Li, T.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhua, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat Commun. 7, 11490 (2016).
[Crossref]

Liou, G. F.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref]

Liu, B.-H.

Y.-J. Cai, M. Li, X.-F. Ren, C.-L. Zou, X. Xiong, H.-L. Lei, B.-H. Liu, G.-P. Guo, and G.-C. Guo, “High-visibility on-chip quantum interference of single surface plasmons,” Phys. Rev. Appl. 2, 014004 (2014).
[Crossref]

Lobino, M.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

Lodahl, P.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

Lukin, M. D.

D. E. Chang, V. Vuletic, and M. D. Lukin, “Quantum nonlinear optics—photon by photon,” Nat. Photonics 8, 685–694 (2014).
[Crossref]

N. P. de Leon, M. D. Lukin, and H. Park, “Quantum plasmonic circuits,” IEEE J. Sel. Top. Quantum. Electron. 18, 1781–1791 (2012).
[Crossref]

D. E. Chang, A. S. Srensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Lundeen, J. S.

R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Quantum phase estimation with lossy interferometers,” Phys. Rev. A 80, 013825 (2009).
[Crossref]

Machness, A.

B. Bob, A. Machness, T.-B. Song, H. Zhou, C.-H. Chung, and Y. Yang, “Silver nanowires with semiconducting ligands for low-temperature transparent conductors,” Nano Res. 9, 392–400 (2016).
[Crossref]

Mahmoodian, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

Maier, S. A.

F. Dieleman, M. S. Tame, Y. Sonnefraud, M. S. Kim, and S. A. Maier, “Experimental verification of entanglement generated in a plasmonic system,” Nano Lett. 17, 7455–7461 (2017).
[Crossref]

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. S. Tame, “Quantum plasmonic sensing: beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992–999 (2016).
[Crossref]

G. D. Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, “Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect,” Phys. Rev. Appl. 1, 034004 (2014).
[Crossref]

M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Marino, A. M.

Marquier, F.

B. Vest, I. Shlesinger, M. C. Dheur, E. Devaux, J. J. Greffet, G. Messin, and F. Marquier, “Plasmonic interferences of two-particle N00N states,” New J. Phys. 20, 053050 (2018).
[Crossref]

Martino, G. D.

G. D. Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, “Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect,” Phys. Rev. Appl. 1, 034004 (2014).
[Crossref]

Matthews, J. C. F.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

McEnery, K. R.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Messin, G.

B. Vest, I. Shlesinger, M. C. Dheur, E. Devaux, J. J. Greffet, G. Messin, and F. Marquier, “Plasmonic interferences of two-particle N00N states,” New J. Phys. 20, 053050 (2018).
[Crossref]

Mirkin, C. A.

K. Salaita, Y. Wang, and C. A. Mirkin, “Applications of dip-pen nanolithography,” Nat. Nanotechnol. 2, 145–155 (2007).
[Crossref]

Mitskovets, A.

J. S. Fakonas, A. Mitskovets, and H. A. Atwater, “Path entanglement of surface plasmons,” New J. Phys. 17, 023002 (2015).
[Crossref]

Mollet, O.

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “‘Deterministic’ quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[Crossref]

Morimoto, A.

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Nam, J.

K. Ahn, D. Kim, O. Kim, and J. Nam, “Analysis of transparent conductive silver nanowire films from dip coating flow,” J. Coat. Technol. Res. 12, 855–862 (2015).
[Crossref]

Neal, C. R.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

Neuman, K. C.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref]

Nicolet, A. A. L.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys. 5, 470–474 (2009).
[Crossref]

O’Brien, J. L.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

K. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98, 223601 (2007).
[Crossref]

Osellame, R.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Oulton, R. F.

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106, 113601 (2011).
[Crossref]

Ozdemir, S. K.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Özdemir, S. K.

J. Francis, X. Zhang, S. K. Özdemir, and M. S. Tame, “Quantum random number generation using an on-chip plasmonic beamsplitter,” Quantum Sci. Technol. 2, 035004 (2017).
[Crossref]

G. D. Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, “Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect,” Phys. Rev. Appl. 1, 034004 (2014).
[Crossref]

Pan, Z.

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4, 011049 (2014).
[Crossref]

Park, H.

N. P. de Leon, M. D. Lukin, and H. Park, “Quantum plasmonic circuits,” IEEE J. Sel. Top. Quantum. Electron. 18, 1781–1791 (2012).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Peterman, E. J.

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref]

Piehler, J.

A. Tinazli, J. Piehler, M. Beuttler, R. Guckenberger, and R. Tampe, “Native protein nanolithography that can write, read and erase,” Nat. Nanotechnol. 2, 220–225 (2007).
[Crossref]

Politi, A.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

Pooser, R. C.

M. Dowran, A. Kumar, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Quantum-enhanced plasmonic sensing,” Optica 5, 628–633 (2018).
[Crossref]

W. Fan, B. J. Lawrie, and R. C. Pooser, “Quantum plasmonic sensing,” Phys. Rev. A 92, 053812 (2015).
[Crossref]

R. C. Pooser and B. Lawrie, “Plasmonic trace sensing below the photon shot noise limit,” ACS Photon. 3, 8–13 (2015).
[Crossref]

Prawer, S.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

Pregnell, K. L.

K. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98, 223601 (2007).
[Crossref]

Prevedel, R.

K. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98, 223601 (2007).
[Crossref]

Pryde, G. J.

K. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98, 223601 (2007).
[Crossref]

Rah, H.

J.-S. Lee, S.-J. Yoon, H. Rah, M. Tame, C. Rockstuhl, S. H. Song, C. Lee, and K.-G. Lee, “Quantum plasmonic sensing using single photons,” arXiv:1806.10300 (2018).

Ramponi, R.

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

Ren, X.-F.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15, 2380–2384 (2015).
[Crossref]

Y.-J. Cai, M. Li, X.-F. Ren, C.-L. Zou, X. Xiong, H.-L. Lei, B.-H. Liu, G.-P. Guo, and G.-C. Guo, “High-visibility on-chip quantum interference of single surface plasmons,” Phys. Rev. Appl. 2, 014004 (2014).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

X.-F. Ren, G.-P. Guo, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett. 76, 753–759 (2006).
[Crossref]

Resch, K.

K. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98, 223601 (2007).
[Crossref]

Rockstuhl, C.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. S. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. S. Tame, “Quantum plasmonic sensing: beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992–999 (2016).
[Crossref]

J.-S. Lee, S.-J. Yoon, H. Rah, M. Tame, C. Rockstuhl, S. H. Song, C. Lee, and K.-G. Lee, “Quantum plasmonic sensing using single photons,” arXiv:1806.10300 (2018).

Ruemmele, J. A.

L. B. Sagle, L. K. Ruvuna, J. A. Ruemmele, and R. P. van Duyne, “Advances in localized surface plasmon resonance spectroscopy biosensing,” Nanomedicine 6, 1447–1462 (2011).
[Crossref]

Ruvuna, L. K.

L. B. Sagle, L. K. Ruvuna, J. A. Ruemmele, and R. P. van Duyne, “Advances in localized surface plasmon resonance spectroscopy biosensing,” Nanomedicine 6, 1447–1462 (2011).
[Crossref]

Sagle, L. B.

L. B. Sagle, L. K. Ruvuna, J. A. Ruemmele, and R. P. van Duyne, “Advances in localized surface plasmon resonance spectroscopy biosensing,” Nanomedicine 6, 1447–1462 (2011).
[Crossref]

Salaita, K.

K. Salaita, Y. Wang, and C. A. Mirkin, “Applications of dip-pen nanolithography,” Nat. Nanotechnol. 2, 145–155 (2007).
[Crossref]

Schmidt, C. F.

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref]

Shakoor, A.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[Crossref]

Shlesinger, I.

B. Vest, I. Shlesinger, M. C. Dheur, E. Devaux, J. J. Greffet, G. Messin, and F. Marquier, “Plasmonic interferences of two-particle N00N states,” New J. Phys. 20, 053050 (2018).
[Crossref]

Simpson, D. A.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

Smith, B. J.

N. Thomas-Peter, B. J. Smith, A. Datta, L. Zhang, U. Dorner, and I. A. Walmsley, “Real-world quantum sensors: evaluating resources for precision measurement,” Phys. Rev. Lett. 107, 113603 (2011).
[Crossref]

R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Quantum phase estimation with lossy interferometers,” Phys. Rev. A 80, 013825 (2009).
[Crossref]

Song, S. H.

J.-S. Lee, S.-J. Yoon, H. Rah, M. Tame, C. Rockstuhl, S. H. Song, C. Lee, and K.-G. Lee, “Quantum plasmonic sensing using single photons,” arXiv:1806.10300 (2018).

Song, T.-B.

B. Bob, A. Machness, T.-B. Song, H. Zhou, C.-H. Chung, and Y. Yang, “Silver nanowires with semiconducting ligands for low-temperature transparent conductors,” Nano Res. 9, 392–400 (2016).
[Crossref]

Sonnefraud, Y.

F. Dieleman, M. S. Tame, Y. Sonnefraud, M. S. Kim, and S. A. Maier, “Experimental verification of entanglement generated in a plasmonic system,” Nano Lett. 17, 7455–7461 (2017).
[Crossref]

G. D. Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, “Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect,” Phys. Rev. Appl. 1, 034004 (2014).
[Crossref]

Spackova, B.

B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

Srensen, A. S.

D. E. Chang, A. S. Srensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Stephens, D. J.

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300, 82–86 (2003).
[Crossref]

Stobbe, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

Stöhr, R. J.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys. 5, 470–474 (2009).
[Crossref]

Su, C.-H.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

Sun, C.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhua, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat Commun. 7, 11490 (2016).
[Crossref]

Takahara, J.

Taki, H.

Tame, M.

J.-S. Lee, S.-J. Yoon, H. Rah, M. Tame, C. Rockstuhl, S. H. Song, C. Lee, and K.-G. Lee, “Quantum plasmonic sensing using single photons,” arXiv:1806.10300 (2018).

Tame, M. S.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. S. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

J. Francis, X. Zhang, S. K. Özdemir, and M. S. Tame, “Quantum random number generation using an on-chip plasmonic beamsplitter,” Quantum Sci. Technol. 2, 035004 (2017).
[Crossref]

F. Dieleman, M. S. Tame, Y. Sonnefraud, M. S. Kim, and S. A. Maier, “Experimental verification of entanglement generated in a plasmonic system,” Nano Lett. 17, 7455–7461 (2017).
[Crossref]

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. S. Tame, “Quantum plasmonic sensing: beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992–999 (2016).
[Crossref]

G. D. Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, “Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect,” Phys. Rev. Appl. 1, 034004 (2014).
[Crossref]

M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Tampe, R.

A. Tinazli, J. Piehler, M. Beuttler, R. Guckenberger, and R. Tampe, “Native protein nanolithography that can write, read and erase,” Nat. Nanotechnol. 2, 220–225 (2007).
[Crossref]

Taylor, M.

M. Taylor, Quantum Microscopy of Biological Systems (Springer, 2015).

Taylor, M. A.

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

Thomas-Peter, N.

N. Thomas-Peter, B. J. Smith, A. Datta, L. Zhang, U. Dorner, and I. A. Walmsley, “Real-world quantum sensors: evaluating resources for precision measurement,” Phys. Rev. Lett. 107, 113603 (2011).
[Crossref]

Tinazli, A.

A. Tinazli, J. Piehler, M. Beuttler, R. Guckenberger, and R. Tampe, “Native protein nanolithography that can write, read and erase,” Nat. Nanotechnol. 2, 220–225 (2007).
[Crossref]

Tong, L.

Tong, L.-M.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15, 2380–2384 (2015).
[Crossref]

van Duyne, R. P.

L. B. Sagle, L. K. Ruvuna, J. A. Ruemmele, and R. P. van Duyne, “Advances in localized surface plasmon resonance spectroscopy biosensing,” Nanomedicine 6, 1447–1462 (2011).
[Crossref]

Vest, B.

B. Vest, I. Shlesinger, M. C. Dheur, E. Devaux, J. J. Greffet, G. Messin, and F. Marquier, “Plasmonic interferences of two-particle N00N states,” New J. Phys. 20, 053050 (2018).
[Crossref]

Vuletic, V.

D. E. Chang, V. Vuletic, and M. D. Lukin, “Quantum nonlinear optics—photon by photon,” Nat. Photonics 8, 685–694 (2014).
[Crossref]

Walmsley, I. A.

N. Thomas-Peter, B. J. Smith, A. Datta, L. Zhang, U. Dorner, and I. A. Walmsley, “Real-world quantum sensors: evaluating resources for precision measurement,” Phys. Rev. Lett. 107, 113603 (2011).
[Crossref]

R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Quantum phase estimation with lossy interferometers,” Phys. Rev. A 80, 013825 (2009).
[Crossref]

Wang, S. M.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhua, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat Commun. 7, 11490 (2016).
[Crossref]

Wang, Y.

K. Salaita, Y. Wang, and C. A. Mirkin, “Applications of dip-pen nanolithography,” Nat. Nanotechnol. 2, 145–155 (2007).
[Crossref]

Wasilewski, W.

R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Quantum phase estimation with lossy interferometers,” Phys. Rev. A 80, 013825 (2009).
[Crossref]

Weeber, J. C.

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

White, A. G.

K. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98, 223601 (2007).
[Crossref]

Wrachtrup, J.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys. 5, 470–474 (2009).
[Crossref]

Wrobel, P.

B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

Xiong, X.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15, 2380–2384 (2015).
[Crossref]

Y.-J. Cai, M. Li, X.-F. Ren, C.-L. Zou, X. Xiong, H.-L. Lei, B.-H. Liu, G.-P. Guo, and G.-C. Guo, “High-visibility on-chip quantum interference of single surface plasmons,” Phys. Rev. Appl. 2, 014004 (2014).
[Crossref]

Xu, P.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhua, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat Commun. 7, 11490 (2016).
[Crossref]

Yamagishi, S.

Yamamoto, Y.

J. Jacobson, G. Björk, I. Chuang, and Y. Yamamoto, “Photonic de Broglie waves,” Phys. Rev. Lett. 74, 4835–4838 (1995).
[Crossref]

Yang, R.

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

Yang, Y.

B. Bob, A. Machness, T.-B. Song, H. Zhou, C.-H. Chung, and Y. Yang, “Silver nanowires with semiconducting ligands for low-temperature transparent conductors,” Nano Res. 9, 392–400 (2016).
[Crossref]

Yoon, S.-J.

J.-S. Lee, S.-J. Yoon, H. Rah, M. Tame, C. Rockstuhl, S. H. Song, C. Lee, and K.-G. Lee, “Quantum plasmonic sensing using single photons,” arXiv:1806.10300 (2018).

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Zacharatos, F.

Zeng, H.

Zhang, L.

N. Thomas-Peter, B. J. Smith, A. Datta, L. Zhang, U. Dorner, and I. A. Walmsley, “Real-world quantum sensors: evaluating resources for precision measurement,” Phys. Rev. Lett. 107, 113603 (2011).
[Crossref]

Zhang, X.

J. Francis, X. Zhang, S. K. Özdemir, and M. S. Tame, “Quantum random number generation using an on-chip plasmonic beamsplitter,” Quantum Sci. Technol. 2, 035004 (2017).
[Crossref]

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106, 113601 (2011).
[Crossref]

Zhou, H.

B. Bob, A. Machness, T.-B. Song, H. Zhou, C.-H. Chung, and Y. Yang, “Silver nanowires with semiconducting ligands for low-temperature transparent conductors,” Nano Res. 9, 392–400 (2016).
[Crossref]

Zhua, S. N.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhua, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat Commun. 7, 11490 (2016).
[Crossref]

Zhuang, S.

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Zou, C.-L.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15, 2380–2384 (2015).
[Crossref]

Y.-J. Cai, M. Li, X.-F. Ren, C.-L. Zou, X. Xiong, H.-L. Lei, B.-H. Liu, G.-P. Guo, and G.-C. Guo, “High-visibility on-chip quantum interference of single surface plasmons,” Phys. Rev. Appl. 2, 014004 (2014).
[Crossref]

ACS Photon. (2)

R. C. Pooser and B. Lawrie, “Plasmonic trace sensing below the photon shot noise limit,” ACS Photon. 3, 8–13 (2015).
[Crossref]

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. S. Tame, “Quantum plasmonic sensing: beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992–999 (2016).
[Crossref]

Anal Bioanal. Chem. (1)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

Appl. Phys. Lett. (2)

A. Crespi, M. Lobino, J. C. F. Matthews, A. Politi, C. R. Neal, R. Ramponi, R. Osellame, and J. L. O’Brien, “Measuring protein concentration with entangled photons,” Appl. Phys. Lett. 100, 233704 (2012).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

Biophys. J. (2)

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref]

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref]

Europhys. Lett. (1)

X.-F. Ren, G.-P. Guo, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett. 76, 753–759 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum. Electron. (1)

N. P. de Leon, M. D. Lukin, and H. Park, “Quantum plasmonic circuits,” IEEE J. Sel. Top. Quantum. Electron. 18, 1781–1791 (2012).
[Crossref]

J. Coat. Technol. Res. (1)

K. Ahn, D. Kim, O. Kim, and J. Nam, “Analysis of transparent conductive silver nanowire films from dip coating flow,” J. Coat. Technol. Res. 12, 855–862 (2015).
[Crossref]

Nano Lett. (4)

F. Dieleman, M. S. Tame, Y. Sonnefraud, M. S. Kim, and S. A. Maier, “Experimental verification of entanglement generated in a plasmonic system,” Nano Lett. 17, 7455–7461 (2017).
[Crossref]

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “‘Deterministic’ quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[Crossref]

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15, 2380–2384 (2015).
[Crossref]

S. Kumar, A. Huck, and U. L. Andersen, “Efficient coupling of a single diamond color center to propagating plasmonic gap modes,” Nano Lett. 13, 1221–1225 (2013).
[Crossref]

Nano Res. (1)

B. Bob, A. Machness, T.-B. Song, H. Zhou, C.-H. Chung, and Y. Yang, “Silver nanowires with semiconducting ligands for low-temperature transparent conductors,” Nano Res. 9, 392–400 (2016).
[Crossref]

Nanomedicine (1)

L. B. Sagle, L. K. Ruvuna, J. A. Ruemmele, and R. P. van Duyne, “Advances in localized surface plasmon resonance spectroscopy biosensing,” Nanomedicine 6, 1447–1462 (2011).
[Crossref]

Nanophotonics (1)

A. Huck and U. L. Andersen, “Coupling single emitters to quantum plasmonic circuits,” Nanophotonics 5, 483–495 (2016).
[Crossref]

Nanoscale (1)

G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4, 1840 (2012).
[Crossref]

Nat Commun. (1)

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhua, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat Commun. 7, 11490 (2016).
[Crossref]

Nat. Nanotechnol. (2)

A. Tinazli, J. Piehler, M. Beuttler, R. Guckenberger, and R. Tampe, “Native protein nanolithography that can write, read and erase,” Nat. Nanotechnol. 2, 220–225 (2007).
[Crossref]

K. Salaita, Y. Wang, and C. A. Mirkin, “Applications of dip-pen nanolithography,” Nat. Nanotechnol. 2, 145–155 (2007).
[Crossref]

Nat. Photonics (2)

D. E. Chang, V. Vuletic, and M. D. Lukin, “Quantum nonlinear optics—photon by photon,” Nat. Photonics 8, 685–694 (2014).
[Crossref]

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8, 317–320 (2014).
[Crossref]

Nat. Phys. (3)

D. E. Chang, A. S. Srensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys. 5, 470–474 (2009).
[Crossref]

Nature (1)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

New J. Phys. (2)

J. S. Fakonas, A. Mitskovets, and H. A. Atwater, “Path entanglement of surface plasmons,” New J. Phys. 17, 023002 (2015).
[Crossref]

B. Vest, I. Shlesinger, M. C. Dheur, E. Devaux, J. J. Greffet, G. Messin, and F. Marquier, “Plasmonic interferences of two-particle N00N states,” New J. Phys. 20, 053050 (2018).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optica (1)

Phys. Rep. (1)

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

Phys. Rev. A (3)

R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Quantum phase estimation with lossy interferometers,” Phys. Rev. A 80, 013825 (2009).
[Crossref]

W. Fan, B. J. Lawrie, and R. C. Pooser, “Quantum plasmonic sensing,” Phys. Rev. A 92, 053812 (2015).
[Crossref]

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. S. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

Phys. Rev. Appl. (2)

G. D. Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, “Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect,” Phys. Rev. Appl. 1, 034004 (2014).
[Crossref]

Y.-J. Cai, M. Li, X.-F. Ren, C.-L. Zou, X. Xiong, H.-L. Lei, B.-H. Liu, G.-P. Guo, and G.-C. Guo, “High-visibility on-chip quantum interference of single surface plasmons,” Phys. Rev. Appl. 2, 014004 (2014).
[Crossref]

Phys. Rev. B (1)

G. Fujii, D. Fukuda, and S. Inoue, “Direct observation of bosonic quantum interference of surface plasmon polaritons using photon-number-resolving detectors,” Phys. Rev. B 90, 085430 (2014).
[Crossref]

Phys. Rev. Lett. (8)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[Crossref]

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106, 113601 (2011).
[Crossref]

S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett. 72, 3439–3443 (1994).
[Crossref]

N. Thomas-Peter, B. J. Smith, A. Datta, L. Zhang, U. Dorner, and I. A. Walmsley, “Real-world quantum sensors: evaluating resources for precision measurement,” Phys. Rev. Lett. 107, 113603 (2011).
[Crossref]

K. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98, 223601 (2007).
[Crossref]

J. Jacobson, G. Björk, I. Chuang, and Y. Yamamoto, “Photonic de Broglie waves,” Phys. Rev. Lett. 74, 4835–4838 (1995).
[Crossref]

Phys. Rev. X (1)

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4, 011049 (2014).
[Crossref]

Proc. IEEE (1)

B. Spackova, P. Wrobel, M. Bockova, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

Prog. Opt. (1)

R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Kolodynski, “Quantum limits in optical interferometry,” Prog. Opt. 60, 345–435 (2015).
[Crossref]

Quantum Sci. Technol. (1)

J. Francis, X. Zhang, S. K. Özdemir, and M. S. Tame, “Quantum random number generation using an on-chip plasmonic beamsplitter,” Quantum Sci. Technol. 2, 035004 (2017).
[Crossref]

Rep. Prog. Phys. (1)

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

Rev. Mod. Phys. (2)

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

Science (1)

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300, 82–86 (2003).
[Crossref]

Other (2)

J.-S. Lee, S.-J. Yoon, H. Rah, M. Tame, C. Rockstuhl, S. H. Song, C. Lee, and K.-G. Lee, “Quantum plasmonic sensing using single photons,” arXiv:1806.10300 (2018).

M. Taylor, Quantum Microscopy of Biological Systems (Springer, 2015).

Supplementary Material (1)

NameDescription
» Supplement 1       supplementary materials

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Experimental setup. (a) A type-I BBO crystal is pumped by a 404 nm continuous-wave laser to produce two-photon pairs (in region I). The two half-wave plates (HWP1 and HWP2) are used to set each photon of a given pair in an orthogonal polarization. The photons are then put into the same spatial mode using a polarizing beamsplitter. The interference between photons occurs at HWP3 by setting its angle to π/8. This generates the entangled two-photon state 12(|2H,0V|0H,2V) in the same spatial mode. A separable two-photon state |1H,1V can also be prepared by setting the angle of HWP3 to zero. (b) The input state is transmitted, after HWP4 is used to fine tune the polarizations of the photons, through a tapered-fiber silver nanowire structure and collected by a 100 times objective of 3 mm focal length. We also use an additional HWP and quarter-wave plate (QWP) after the objective to fine tune the polarization and a pinhole confocal system to improve the signal-to-noise ratio (in region III). Subsequently, the two-photon HOM interference and the two-photon de Broglie wavelength measurements are implemented by a coincidence measurement (in regions IV and V, respectively), and quantum state tomography (QST) is performed (in region VI) to characterize the transmitted two-photon entangled state. (c) SEM image of the hybrid structure used to convert photons into plasmons. It consists of a tapered single-mode fiber joined to a silver nanowire with a radius of about 160 nm. The scale bar in the lower-right corner is 5 μm.
Fig. 2.
Fig. 2. (a) Fitted HOM interference curve for the two-photon state transmitted through a silver nanowire. Black squares represent the two-photon coincidence counts in 10 s. Error bars added to the actual data are determined using a Poisson error in the detection due to the probabilistic nature of the SPDC process being the dominant source of fluctuation in counts [19,34]. (b) Two-photon coincidence counts and single-photon counts of the plasmonic N00N state transmitted through a silver nanowire plasmonic system. Red squares represent the two-photon coincidence counts in 5 s, while blue dots represent the single-photon counts in 1 s. Here, a phase shift is applied to the single-photon case to align the two sets of data. Error bars correspond to Poisson noise due to the SPDC process [19,34].
Fig. 3.
Fig. 3. QST of the N00N state input (N=2) in the two-photon subspace of the Hilbert space. Experimentally reconstructed state: (a) the real part and (b) the imaginary part. Ideal state: (c) the real part and (d) the imaginary part.
Fig. 4.
Fig. 4. QST of the unbalanced N00N state output (N=2) transmitted through a silver nanowire in the two-photon subspace of the Hilbert space. Experimentally reconstructed state: (a) the real part and (b) the imaginary part. Ideal state: (c) the real part and (d) the imaginary part.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P|1H,0V(ϕ)=f1(1+V1cosϕ)2,
P|1H,1V(ϕ)=f2(1+V2cos2ϕ)2,
ΔϕSIL=1ηoverallN,
Pcoin(N)=fN(1+VNcosNϕ)2,
Δϕ=2σ2fNVNN|sin(Nϕ)|,
1<fN2ηoverallVN2N.

Metrics