Abstract

Standard optical systems in ophthalmology are strictly dedicated either to retinal or to anterior segment imaging due to the refractive properties of the eye. We demonstrate a swept source optical coherence tomography platform with an electrically tunable lens (ETL) for versatile 3D in vivo imaging of both the eye’s anterior segment and the retina. The optimized optical setup with adaptive operational states of the ETL permits focusing on the retina and on the anterior segment. Dynamic control of the optical beam focus allows for OCT image enhancement, leading to the visualization of the vitreous details at both the vitreo-lenticular and vitreo-retinal attachment sites in an unprecedented manner. ETL tuning enables sequential visualization of the anterior and posterior segment of the eye, and such whole eye imaging can be also used to perform quantitative ocular biometry.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual band dual focus optical coherence tomography for imaging the whole eye segment

Shanhui Fan, Lin Li, Qian Li, Cuixia Dai, Qiushi Ren, Shuliang Jiao, and Chuanqing Zhou
Biomed. Opt. Express 6(7) 2481-2493 (2015)

Versatile optical coherence tomography for imaging the human eye

Aizhu Tao, Yilei Shao, Jianguang Zhong, Hong Jiang, Meixiao Shen, and Jianhua Wang
Biomed. Opt. Express 4(7) 1031-1044 (2013)

In vivo imaging of the rodent eye with swept source/Fourier domain OCT

Jonathan J. Liu, Ireneusz Grulkowski, Martin F. Kraus, Benjamin Potsaid, Chen D. Lu, Bernhard Baumann, Jay S. Duker, Joachim Hornegger, and James G. Fujimoto
Biomed. Opt. Express 4(2) 351-363 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photon. 6, 340–367 (2014).
    [Crossref]
  2. F. A. Midyett and S. K. Mukherji, Orbital Imaging (Elsevier, 2015).
  3. A. Malhotra, F. J. Minja, A. Crum, and D. Burrowes, “Ocular anatomy and cross-sectional imaging of the eye,” Semin. Ultrasound CT MRI 32, 2–13 (2011).
    [Crossref]
  4. L. Fanea and A. J. Fagan, “Review: magnetic resonance imaging techniques in ophthalmology,” Mol. Vis. 18, 2538–2560 (2012).
  5. C. Enders, E.-M. Braig, K. Scherer, J. U. Werner, G. K. Lang, G. E. Lang, F. Pfeiffer, P. Noël, E. Rummeny, and J. Herzen, “Advanced non-destructive ocular visualization methods by improved X-ray imaging techniques,” PLoS One 12, e0170633 (2017).
    [Crossref]
  6. I. Grulkowski, “Anterior segment OCT,” in Handbook of Visual Optics, P. Artal, ed. (CRC Press, 2017), pp. 61–90.
  7. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with spectral OCT system using a high-speed CMOS camera,” Opt. Express 17, 4842–4858 (2009).
    [Crossref]
  8. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20, 6109–6115 (2012).
    [Crossref]
  9. S. H. Fan, L. Li, Q. Li, C. X. Dai, Q. S. Ren, S. L. Jiao, and C. Q. Zhou, “Dual band dual focus optical coherence tomography for imaging the whole eye segment,” Biomed. Opt. Express 6, 2481–2493 (2015).
    [Crossref]
  10. X. Mao, J. T. Banta, B. Ke, H. Jiang, J. He, C. Liu, and J. Wang, “Wavefront derived refraction and full eye biometry in pseudophakic eyes,” PLoS One 11, e0152293 (2016).
    [Crossref]
  11. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3, 1506–1520 (2012).
    [Crossref]
  12. J. G. Zhong, Y. L. Shao, A. Z. Tao, H. Jiang, C. Liu, H. C. Zhang, and J. H. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420.e2 (2014).
    [Crossref]
  13. H.-W. Jeong, S.-W. Lee, and B.-M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express 20, 19148–19159 (2012).
    [Crossref]
  14. H. J. Kim, P. U. Kim, M. G. Hyeon, Y. Choi, J. Kim, and B. M. Kim, “High-resolution, dual-depth spectral-domain optical coherence tomography with interlaced detection for whole-eye imaging,” Appl. Opt. 55, 7212–7217 (2016).
    [Crossref]
  15. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
    [Crossref]
  16. A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37, 1883–1885 (2012).
    [Crossref]
  17. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200  kHz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009).
    [Crossref]
  18. I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120, 2184–2190 (2013).
    [Crossref]
  19. B. Kiss, O. Findl, R. Menapace, M. Wirtitsch, W. Drexler, C. K. Hitzenberger, and A. F. Fercher, “Biometry of cataractous eyes using partial coherence interferometry—clinical feasibility study of a commercial prototype I,” J. Cataract Refract. Surg. 28, 224–229 (2002).
    [Crossref]
  20. J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol. 86, 458–462 (2002).
    [Crossref]
  21. P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93, 949–953 (2009).
    [Crossref]
  22. K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116, 2087–2092 (2009).
    [Crossref]
  23. L. P. J. Cruysberg, M. Doors, F. Verbakel, T. T. J. M. Berendschot, J. De Brabander, and R. M. M. A. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94, 106–110 (2010).
    [Crossref]
  24. S. Srivannaboon, C. Chirapapaisan, P. Chonpimai, and S. Loket, “Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer,” J. Cataract Refract. Surg. 41, 2224–2232 (2015).
    [Crossref]
  25. A. Akman, L. Asena, and S. G. Güngör, “Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500,” Br. J. Ophthalmol. 100, 1201–1205 (2016).
    [Crossref]
  26. K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7, 102 (2016).
    [Crossref]
  27. F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21, 21010–21026 (2013).
    [Crossref]
  28. J. M. Jabbour, B. H. Malik, C. Olsovsky, R. Cuenca, S. Cheng, J. A. Jo, Y.-S. L. Cheng, J. M. Wright, and K. C. Maitland, “Optical axial scanning in confocal microscopy using an electrically tunable lens,” Biomed. Opt. Express 5, 645–652 (2014).
    [Crossref]
  29. Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
    [Crossref]
  30. I. Grulkowski, K. Szulzycki, and M. Wojtkowski, “Microscopic OCT imaging with focus extension by ultrahigh-speed acousto-optic tunable lens and stroboscopic illumination,” Opt. Express 22, 31746–31760 (2014).
    [Crossref]
  31. J. P. Su, Y. Li, M. L. Tang, L. Liu, A. D. Pechauer, D. Huang, and G. J. Liu, “Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography,” J. Biomed. Opt. 20, 126002 (2015).
    [Crossref]
  32. M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11, 054013 (2006).
    [Crossref]
  33. Y. K. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5, 1877–1885 (2014).
    [Crossref]
  34. Y.-H. Lin and H.-S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21, 9428–9436 (2013).
    [Crossref]
  35. H. E. Milton, P. B. Morgan, J. H. Clamp, and H. F. Gleeson, “Electronic liquid crystal contact lenses for the correction of presbyopia,” Opt. Express 22, 8035–8040 (2014).
    [Crossref]
  36. C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3, 918–924 (2016).
    [Crossref]
  37. I. Grulkowski, D. Jankowski, and P. Kwiek, “Acousto-optic interaction of a Gaussian laser beam with an ultrasonic wave of cylindrical symmetry,” Appl. Opt. 46, 5870–5876 (2007).
    [Crossref]
  38. E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).
    [Crossref]
  39. P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157, 116–127.e1 (2014).
    [Crossref]

2017 (1)

C. Enders, E.-M. Braig, K. Scherer, J. U. Werner, G. K. Lang, G. E. Lang, F. Pfeiffer, P. Noël, E. Rummeny, and J. Herzen, “Advanced non-destructive ocular visualization methods by improved X-ray imaging techniques,” PLoS One 12, e0170633 (2017).
[Crossref]

2016 (5)

X. Mao, J. T. Banta, B. Ke, H. Jiang, J. He, C. Liu, and J. Wang, “Wavefront derived refraction and full eye biometry in pseudophakic eyes,” PLoS One 11, e0152293 (2016).
[Crossref]

A. Akman, L. Asena, and S. G. Güngör, “Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500,” Br. J. Ophthalmol. 100, 1201–1205 (2016).
[Crossref]

K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7, 102 (2016).
[Crossref]

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3, 918–924 (2016).
[Crossref]

H. J. Kim, P. U. Kim, M. G. Hyeon, Y. Choi, J. Kim, and B. M. Kim, “High-resolution, dual-depth spectral-domain optical coherence tomography with interlaced detection for whole-eye imaging,” Appl. Opt. 55, 7212–7217 (2016).
[Crossref]

2015 (4)

S. H. Fan, L. Li, Q. Li, C. X. Dai, Q. S. Ren, S. L. Jiao, and C. Q. Zhou, “Dual band dual focus optical coherence tomography for imaging the whole eye segment,” Biomed. Opt. Express 6, 2481–2493 (2015).
[Crossref]

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

J. P. Su, Y. Li, M. L. Tang, L. Liu, A. D. Pechauer, D. Huang, and G. J. Liu, “Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography,” J. Biomed. Opt. 20, 126002 (2015).
[Crossref]

S. Srivannaboon, C. Chirapapaisan, P. Chonpimai, and S. Loket, “Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer,” J. Cataract Refract. Surg. 41, 2224–2232 (2015).
[Crossref]

2014 (7)

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157, 116–127.e1 (2014).
[Crossref]

J. G. Zhong, Y. L. Shao, A. Z. Tao, H. Jiang, C. Liu, H. C. Zhang, and J. H. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420.e2 (2014).
[Crossref]

J. M. Jabbour, B. H. Malik, C. Olsovsky, R. Cuenca, S. Cheng, J. A. Jo, Y.-S. L. Cheng, J. M. Wright, and K. C. Maitland, “Optical axial scanning in confocal microscopy using an electrically tunable lens,” Biomed. Opt. Express 5, 645–652 (2014).
[Crossref]

H. E. Milton, P. B. Morgan, J. H. Clamp, and H. F. Gleeson, “Electronic liquid crystal contact lenses for the correction of presbyopia,” Opt. Express 22, 8035–8040 (2014).
[Crossref]

Y. K. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5, 1877–1885 (2014).
[Crossref]

P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photon. 6, 340–367 (2014).
[Crossref]

I. Grulkowski, K. Szulzycki, and M. Wojtkowski, “Microscopic OCT imaging with focus extension by ultrahigh-speed acousto-optic tunable lens and stroboscopic illumination,” Opt. Express 22, 31746–31760 (2014).
[Crossref]

2013 (3)

Y.-H. Lin and H.-S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21, 9428–9436 (2013).
[Crossref]

F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21, 21010–21026 (2013).
[Crossref]

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120, 2184–2190 (2013).
[Crossref]

2012 (6)

2011 (1)

A. Malhotra, F. J. Minja, A. Crum, and D. Burrowes, “Ocular anatomy and cross-sectional imaging of the eye,” Semin. Ultrasound CT MRI 32, 2–13 (2011).
[Crossref]

2010 (1)

L. P. J. Cruysberg, M. Doors, F. Verbakel, T. T. J. M. Berendschot, J. De Brabander, and R. M. M. A. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94, 106–110 (2010).
[Crossref]

2009 (4)

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93, 949–953 (2009).
[Crossref]

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116, 2087–2092 (2009).
[Crossref]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with spectral OCT system using a high-speed CMOS camera,” Opt. Express 17, 4842–4858 (2009).
[Crossref]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200  kHz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009).
[Crossref]

2008 (1)

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).
[Crossref]

2007 (1)

2006 (1)

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11, 054013 (2006).
[Crossref]

2002 (2)

B. Kiss, O. Findl, R. Menapace, M. Wirtitsch, W. Drexler, C. K. Hitzenberger, and A. F. Fercher, “Biometry of cataractous eyes using partial coherence interferometry—clinical feasibility study of a commercial prototype I,” J. Cataract Refract. Surg. 28, 224–229 (2002).
[Crossref]

J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol. 86, 458–462 (2002).
[Crossref]

Akman, A.

A. Akman, L. Asena, and S. G. Güngör, “Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500,” Br. J. Ophthalmol. 100, 1201–1205 (2016).
[Crossref]

Alcón, E.

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).
[Crossref]

Alejandre, N.

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157, 116–127.e1 (2014).
[Crossref]

Alonso-Sanz, J. R.

Artal, P.

P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photon. 6, 340–367 (2014).
[Crossref]

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).
[Crossref]

Asena, L.

A. Akman, L. Asena, and S. G. Güngör, “Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500,” Br. J. Ophthalmol. 100, 1201–1205 (2016).
[Crossref]

Banta, J. T.

X. Mao, J. T. Banta, B. Ke, H. Jiang, J. He, C. Liu, and J. Wang, “Wavefront derived refraction and full eye biometry in pseudophakic eyes,” PLoS One 11, e0152293 (2016).
[Crossref]

Berendschot, T. T. J. M.

L. P. J. Cruysberg, M. Doors, F. Verbakel, T. T. J. M. Berendschot, J. De Brabander, and R. M. M. A. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94, 106–110 (2010).
[Crossref]

Berrow, E. J.

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93, 949–953 (2009).
[Crossref]

Boilot, V.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Braig, E.-M.

C. Enders, E.-M. Braig, K. Scherer, J. U. Werner, G. K. Lang, G. E. Lang, F. Pfeiffer, P. Noël, E. Rummeny, and J. Herzen, “Advanced non-destructive ocular visualization methods by improved X-ray imaging techniques,” PLoS One 12, e0170633 (2017).
[Crossref]

Buckhurst, P. J.

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93, 949–953 (2009).
[Crossref]

Burrowes, D.

A. Malhotra, F. J. Minja, A. Crum, and D. Burrowes, “Ocular anatomy and cross-sectional imaging of the eye,” Semin. Ultrasound CT MRI 32, 2–13 (2011).
[Crossref]

Bustamante, T.

Cable, A. E.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120, 2184–2190 (2013).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

Chai, X.

Chen, H.-S.

Chen, Z.

Cheng, S.

Cheng, Y.-S. L.

Chirapapaisan, C.

S. Srivannaboon, C. Chirapapaisan, P. Chonpimai, and S. Loket, “Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer,” J. Cataract Refract. Surg. 41, 2224–2232 (2015).
[Crossref]

Choi, Y.

Chonpimai, P.

S. Srivannaboon, C. Chirapapaisan, P. Chonpimai, and S. Loket, “Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer,” J. Cataract Refract. Surg. 41, 2224–2232 (2015).
[Crossref]

Clamp, J. H.

Clark, J.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Clemetson, I. A.

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116, 2087–2092 (2009).
[Crossref]

Crum, A.

A. Malhotra, F. J. Minja, A. Crum, and D. Burrowes, “Ocular anatomy and cross-sectional imaging of the eye,” Semin. Ultrasound CT MRI 32, 2–13 (2011).
[Crossref]

Cruysberg, L. P. J.

L. P. J. Cruysberg, M. Doors, F. Verbakel, T. T. J. M. Berendschot, J. De Brabander, and R. M. M. A. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94, 106–110 (2010).
[Crossref]

Cuenca, R.

Dai, C.

Dai, C. X.

Davies, L. N.

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93, 949–953 (2009).
[Crossref]

De Brabander, J.

L. P. J. Cruysberg, M. Doors, F. Verbakel, T. T. J. M. Berendschot, J. De Brabander, and R. M. M. A. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94, 106–110 (2010).
[Crossref]

de Castro, A.

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157, 116–127.e1 (2014).
[Crossref]

De Freitas, C.

Dhalla, A.-H.

Doors, M.

L. P. J. Cruysberg, M. Doors, F. Verbakel, T. T. J. M. Berendschot, J. De Brabander, and R. M. M. A. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94, 106–110 (2010).
[Crossref]

Dorronsoro, C.

Draviam, V. M.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Drexler, W.

B. Kiss, O. Findl, R. Menapace, M. Wirtitsch, W. Drexler, C. K. Hitzenberger, and A. F. Fercher, “Biometry of cataractous eyes using partial coherence interferometry—clinical feasibility study of a commercial prototype I,” J. Cataract Refract. Surg. 28, 224–229 (2002).
[Crossref]

Duker, J. S.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120, 2184–2190 (2013).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

Ehlers, J. P.

Enders, C.

C. Enders, E.-M. Braig, K. Scherer, J. U. Werner, G. K. Lang, G. E. Lang, F. Pfeiffer, P. Noël, E. Rummeny, and J. Herzen, “Advanced non-destructive ocular visualization methods by improved X-ray imaging techniques,” PLoS One 12, e0170633 (2017).
[Crossref]

Fagan, A. J.

L. Fanea and A. J. Fagan, “Review: magnetic resonance imaging techniques in ophthalmology,” Mol. Vis. 18, 2538–2560 (2012).

Fahrbach, F. O.

Fan, S.

Fan, S. H.

Fanea, L.

L. Fanea and A. J. Fagan, “Review: magnetic resonance imaging techniques in ophthalmology,” Mol. Vis. 18, 2538–2560 (2012).

Fercher, A. F.

B. Kiss, O. Findl, R. Menapace, M. Wirtitsch, W. Drexler, C. K. Hitzenberger, and A. F. Fercher, “Biometry of cataractous eyes using partial coherence interferometry—clinical feasibility study of a commercial prototype I,” J. Cataract Refract. Surg. 28, 224–229 (2002).
[Crossref]

Findl, O.

B. Kiss, O. Findl, R. Menapace, M. Wirtitsch, W. Drexler, C. K. Hitzenberger, and A. F. Fercher, “Biometry of cataractous eyes using partial coherence interferometry—clinical feasibility study of a commercial prototype I,” J. Cataract Refract. Surg. 28, 224–229 (2002).
[Crossref]

Frueh, B. E.

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116, 2087–2092 (2009).
[Crossref]

Fujimoto, J. G.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120, 2184–2190 (2013).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

Funahashi, A.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Gilmartin, B.

J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol. 86, 458–462 (2002).
[Crossref]

Gleeson, H. F.

Goldblum, D.

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116, 2087–2092 (2009).
[Crossref]

Gora, M.

Gorczynska, I.

Götzinger, E.

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11, 054013 (2006).
[Crossref]

Grulkowski, I.

Güngör, S. G.

A. Akman, L. Asena, and S. G. Güngör, “Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500,” Br. J. Ophthalmol. 100, 1201–1205 (2016).
[Crossref]

He, J.

X. Mao, J. T. Banta, B. Ke, H. Jiang, J. He, C. Liu, and J. Wang, “Wavefront derived refraction and full eye biometry in pseudophakic eyes,” PLoS One 11, e0152293 (2016).
[Crossref]

Helmchen, F.

Herzen, J.

C. Enders, E.-M. Braig, K. Scherer, J. U. Werner, G. K. Lang, G. E. Lang, F. Pfeiffer, P. Noël, E. Rummeny, and J. Herzen, “Advanced non-destructive ocular visualization methods by improved X-ray imaging techniques,” PLoS One 12, e0170633 (2017).
[Crossref]

Hiraiwa, T.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Hiroi, N.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Hitzenberger, C. K.

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11, 054013 (2006).
[Crossref]

B. Kiss, O. Findl, R. Menapace, M. Wirtitsch, W. Drexler, C. K. Hitzenberger, and A. F. Fercher, “Biometry of cataractous eyes using partial coherence interferometry—clinical feasibility study of a commercial prototype I,” J. Cataract Refract. Surg. 28, 224–229 (2002).
[Crossref]

Ho, A.

Huang, D.

J. P. Su, Y. Li, M. L. Tang, L. Liu, A. D. Pechauer, D. Huang, and G. J. Liu, “Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography,” J. Biomed. Opt. 20, 126002 (2015).
[Crossref]

Huber, R.

Huisken, J.

Hyeon, M. G.

Izatt, J. A.

Jabbour, J. M.

Jankowski, D.

Jayaraman, V.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120, 2184–2190 (2013).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

Jeong, H.-W.

Jiang, H.

X. Mao, J. T. Banta, B. Ke, H. Jiang, J. He, C. Liu, and J. Wang, “Wavefront derived refraction and full eye biometry in pseudophakic eyes,” PLoS One 11, e0152293 (2016).
[Crossref]

J. G. Zhong, Y. L. Shao, A. Z. Tao, H. Jiang, C. Liu, H. C. Zhang, and J. H. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420.e2 (2014).
[Crossref]

Jiang, J.

Jiao, S.

Jiao, S. L.

Jiménez-Alfaro, I.

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157, 116–127.e1 (2014).
[Crossref]

Jo, J. A.

Kaluzny, B. J.

Karnowski, K.

Ke, B.

X. Mao, J. T. Banta, B. Ke, H. Jiang, J. He, C. Liu, and J. Wang, “Wavefront derived refraction and full eye biometry in pseudophakic eyes,” PLoS One 11, e0152293 (2016).
[Crossref]

Kim, B. M.

Kim, B.-M.

Kim, H. J.

Kim, J.

Kim, P. U.

Kiss, B.

B. Kiss, O. Findl, R. Menapace, M. Wirtitsch, W. Drexler, C. K. Hitzenberger, and A. F. Fercher, “Biometry of cataractous eyes using partial coherence interferometry—clinical feasibility study of a commercial prototype I,” J. Cataract Refract. Surg. 28, 224–229 (2002).
[Crossref]

Kowalczyk, A.

Kuo, A.

Kwiek, P.

Lang, G. E.

C. Enders, E.-M. Braig, K. Scherer, J. U. Werner, G. K. Lang, G. E. Lang, F. Pfeiffer, P. Noël, E. Rummeny, and J. Herzen, “Advanced non-destructive ocular visualization methods by improved X-ray imaging techniques,” PLoS One 12, e0170633 (2017).
[Crossref]

Lang, G. K.

C. Enders, E.-M. Braig, K. Scherer, J. U. Werner, G. K. Lang, G. E. Lang, F. Pfeiffer, P. Noël, E. Rummeny, and J. Herzen, “Advanced non-destructive ocular visualization methods by improved X-ray imaging techniques,” PLoS One 12, e0170633 (2017).
[Crossref]

Lee, S.-W.

Li, L.

Li, Q.

Li, Y.

J. P. Su, Y. Li, M. L. Tang, L. Liu, A. D. Pechauer, D. Huang, and G. J. Liu, “Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography,” J. Biomed. Opt. 20, 126002 (2015).
[Crossref]

Lin, Y.-H.

Liu, C.

X. Mao, J. T. Banta, B. Ke, H. Jiang, J. He, C. Liu, and J. Wang, “Wavefront derived refraction and full eye biometry in pseudophakic eyes,” PLoS One 11, e0152293 (2016).
[Crossref]

J. G. Zhong, Y. L. Shao, A. Z. Tao, H. Jiang, C. Liu, H. C. Zhang, and J. H. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420.e2 (2014).
[Crossref]

Liu, G. J.

J. P. Su, Y. Li, M. L. Tang, L. Liu, A. D. Pechauer, D. Huang, and G. J. Liu, “Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography,” J. Biomed. Opt. 20, 126002 (2015).
[Crossref]

Liu, J. J.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120, 2184–2190 (2013).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

Liu, L.

J. P. Su, Y. Li, M. L. Tang, L. Liu, A. D. Pechauer, D. Huang, and G. J. Liu, “Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography,” J. Biomed. Opt. 20, 126002 (2015).
[Crossref]

Loket, S.

S. Srivannaboon, C. Chirapapaisan, P. Chonpimai, and S. Loket, “Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer,” J. Cataract Refract. Surg. 41, 2224–2232 (2015).
[Crossref]

Lu, C. D.

Maitland, K. C.

Malhotra, A.

A. Malhotra, F. J. Minja, A. Crum, and D. Burrowes, “Ocular anatomy and cross-sectional imaging of the eye,” Semin. Ultrasound CT MRI 32, 2–13 (2011).
[Crossref]

Malik, B. H.

Mallen, E. A. H.

J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol. 86, 458–462 (2002).
[Crossref]

Manns, F.

Mao, X.

X. Mao, J. T. Banta, B. Ke, H. Jiang, J. He, C. Liu, and J. Wang, “Wavefront derived refraction and full eye biometry in pseudophakic eyes,” PLoS One 11, e0152293 (2016).
[Crossref]

Marcos, S.

Menapace, R.

B. Kiss, O. Findl, R. Menapace, M. Wirtitsch, W. Drexler, C. K. Hitzenberger, and A. F. Fercher, “Biometry of cataractous eyes using partial coherence interferometry—clinical feasibility study of a commercial prototype I,” J. Cataract Refract. Surg. 28, 224–229 (2002).
[Crossref]

Midyett, F. A.

F. A. Midyett and S. K. Mukherji, Orbital Imaging (Elsevier, 2015).

Milton, H. E.

Minja, F. J.

A. Malhotra, F. J. Minja, A. Crum, and D. Burrowes, “Ocular anatomy and cross-sectional imaging of the eye,” Semin. Ultrasound CT MRI 32, 2–13 (2011).
[Crossref]

Mishra, K.

K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7, 102 (2016).
[Crossref]

Morgan, P. B.

Mugele, F.

K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7, 102 (2016).
[Crossref]

Mukherji, S. K.

F. A. Midyett and S. K. Mukherji, Orbital Imaging (Elsevier, 2015).

Nakai, Y.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Nankivil, D.

Naroo, S. A.

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93, 949–953 (2009).
[Crossref]

Noël, P.

C. Enders, E.-M. Braig, K. Scherer, J. U. Werner, G. K. Lang, G. E. Lang, F. Pfeiffer, P. Noël, E. Rummeny, and J. Herzen, “Advanced non-destructive ocular visualization methods by improved X-ray imaging techniques,” PLoS One 12, e0170633 (2017).
[Crossref]

Nonaka, S.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Nuijts, R. M. M. A.

L. P. J. Cruysberg, M. Doors, F. Verbakel, T. T. J. M. Berendschot, J. De Brabander, and R. M. M. A. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94, 106–110 (2010).
[Crossref]

Oku, H.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Olsovsky, C.

Ortiz, S.

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157, 116–127.e1 (2014).
[Crossref]

Ozeki, M.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Parel, J. M.

Pascual, D.

Pechauer, A. D.

J. P. Su, Y. Li, M. L. Tang, L. Liu, A. D. Pechauer, D. Huang, and G. J. Liu, “Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography,” J. Biomed. Opt. 20, 126002 (2015).
[Crossref]

Perez-Merino, P.

Pérez-Merino, P.

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157, 116–127.e1 (2014).
[Crossref]

Pfeiffer, F.

C. Enders, E.-M. Braig, K. Scherer, J. U. Werner, G. K. Lang, G. E. Lang, F. Pfeiffer, P. Noël, E. Rummeny, and J. Herzen, “Advanced non-destructive ocular visualization methods by improved X-ray imaging techniques,” PLoS One 12, e0170633 (2017).
[Crossref]

Pircher, M.

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11, 054013 (2006).
[Crossref]

Potsaid, B.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120, 2184–2190 (2013).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

Radhakrishnan, A.

Ren, Q.

Ren, Q. S.

Rohrer, K.

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116, 2087–2092 (2009).
[Crossref]

Ruggeri, M.

Rummeny, E.

C. Enders, E.-M. Braig, K. Scherer, J. U. Werner, G. K. Lang, G. E. Lang, F. Pfeiffer, P. Noël, E. Rummeny, and J. Herzen, “Advanced non-destructive ocular visualization methods by improved X-ray imaging techniques,” PLoS One 12, e0170633 (2017).
[Crossref]

Santodomingo-Rubido, J.

J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol. 86, 458–462 (2002).
[Crossref]

Scherer, K.

C. Enders, E.-M. Braig, K. Scherer, J. U. Werner, G. K. Lang, G. E. Lang, F. Pfeiffer, P. Noël, E. Rummeny, and J. Herzen, “Advanced non-destructive ocular visualization methods by improved X-ray imaging techniques,” PLoS One 12, e0170633 (2017).
[Crossref]

Schmid, B.

Shah, S.

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93, 949–953 (2009).
[Crossref]

Shao, Y. L.

J. G. Zhong, Y. L. Shao, A. Z. Tao, H. Jiang, C. Liu, H. C. Zhang, and J. H. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420.e2 (2014).
[Crossref]

Shrestha, R.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Srivannaboon, S.

S. Srivannaboon, C. Chirapapaisan, P. Chonpimai, and S. Loket, “Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer,” J. Cataract Refract. Surg. 41, 2224–2232 (2015).
[Crossref]

Srivastava, S. K.

Su, J. P.

J. P. Su, Y. Li, M. L. Tang, L. Liu, A. D. Pechauer, D. Huang, and G. J. Liu, “Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography,” J. Biomed. Opt. 20, 126002 (2015).
[Crossref]

Szkulmowski, M.

Szlag, D.

Szulzycki, K.

Tamura, N.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Tang, M. L.

J. P. Su, Y. Li, M. L. Tang, L. Liu, A. D. Pechauer, D. Huang, and G. J. Liu, “Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography,” J. Biomed. Opt. 20, 126002 (2015).
[Crossref]

Taniguchi, A.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Tanimoto, R.

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Tao, A. Z.

J. G. Zhong, Y. L. Shao, A. Z. Tao, H. Jiang, C. Liu, H. C. Zhang, and J. H. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420.e2 (2014).
[Crossref]

Tao, Y. K. K.

Tappeiner, C.

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116, 2087–2092 (2009).
[Crossref]

Uhlhorn, S. R.

van den Ende, D.

K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7, 102 (2016).
[Crossref]

Velasco-Ocana, M.

Verbakel, F.

L. P. J. Cruysberg, M. Doors, F. Verbakel, T. T. J. M. Berendschot, J. De Brabander, and R. M. M. A. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94, 106–110 (2010).
[Crossref]

Villegas, E. A.

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).
[Crossref]

Voigt, F. F.

Wälti, R.

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116, 2087–2092 (2009).
[Crossref]

Wang, J.

X. Mao, J. T. Banta, B. Ke, H. Jiang, J. He, C. Liu, and J. Wang, “Wavefront derived refraction and full eye biometry in pseudophakic eyes,” PLoS One 11, e0152293 (2016).
[Crossref]

Wang, J. H.

J. G. Zhong, Y. L. Shao, A. Z. Tao, H. Jiang, C. Liu, H. C. Zhang, and J. H. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420.e2 (2014).
[Crossref]

Werner, J. U.

C. Enders, E.-M. Braig, K. Scherer, J. U. Werner, G. K. Lang, G. E. Lang, F. Pfeiffer, P. Noël, E. Rummeny, and J. Herzen, “Advanced non-destructive ocular visualization methods by improved X-ray imaging techniques,” PLoS One 12, e0170633 (2017).
[Crossref]

Wirtitsch, M.

B. Kiss, O. Findl, R. Menapace, M. Wirtitsch, W. Drexler, C. K. Hitzenberger, and A. F. Fercher, “Biometry of cataractous eyes using partial coherence interferometry—clinical feasibility study of a commercial prototype I,” J. Cataract Refract. Surg. 28, 224–229 (2002).
[Crossref]

Wojtkowski, M.

Wolffsohn, J. S.

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93, 949–953 (2009).
[Crossref]

J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol. 86, 458–462 (2002).
[Crossref]

Wright, J. M.

Zhang, H. C.

J. G. Zhong, Y. L. Shao, A. Z. Tao, H. Jiang, C. Liu, H. C. Zhang, and J. H. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420.e2 (2014).
[Crossref]

Zhang, J. Y.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120, 2184–2190 (2013).
[Crossref]

Zhong, J. G.

J. G. Zhong, Y. L. Shao, A. Z. Tao, H. Jiang, C. Liu, H. C. Zhang, and J. H. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420.e2 (2014).
[Crossref]

Zhou, C.

Zhou, C. Q.

Adv. Opt. Photon. (1)

Am. J. Ophthalmol. (2)

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157, 116–127.e1 (2014).
[Crossref]

J. G. Zhong, Y. L. Shao, A. Z. Tao, H. Jiang, C. Liu, H. C. Zhang, and J. H. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420.e2 (2014).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (5)

Br. J. Ophthalmol. (4)

J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol. 86, 458–462 (2002).
[Crossref]

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93, 949–953 (2009).
[Crossref]

L. P. J. Cruysberg, M. Doors, F. Verbakel, T. T. J. M. Berendschot, J. De Brabander, and R. M. M. A. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94, 106–110 (2010).
[Crossref]

A. Akman, L. Asena, and S. G. Güngör, “Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500,” Br. J. Ophthalmol. 100, 1201–1205 (2016).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).
[Crossref]

J. Biomed. Opt. (2)

J. P. Su, Y. Li, M. L. Tang, L. Liu, A. D. Pechauer, D. Huang, and G. J. Liu, “Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography,” J. Biomed. Opt. 20, 126002 (2015).
[Crossref]

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11, 054013 (2006).
[Crossref]

J. Cataract Refract. Surg. (2)

S. Srivannaboon, C. Chirapapaisan, P. Chonpimai, and S. Loket, “Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer,” J. Cataract Refract. Surg. 41, 2224–2232 (2015).
[Crossref]

B. Kiss, O. Findl, R. Menapace, M. Wirtitsch, W. Drexler, C. K. Hitzenberger, and A. F. Fercher, “Biometry of cataractous eyes using partial coherence interferometry—clinical feasibility study of a commercial prototype I,” J. Cataract Refract. Surg. 28, 224–229 (2002).
[Crossref]

Micromachines (1)

K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7, 102 (2016).
[Crossref]

Mol. Vis. (1)

L. Fanea and A. J. Fagan, “Review: magnetic resonance imaging techniques in ophthalmology,” Mol. Vis. 18, 2538–2560 (2012).

Ophthalmology (2)

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120, 2184–2190 (2013).
[Crossref]

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116, 2087–2092 (2009).
[Crossref]

Opt. Express (8)

H. E. Milton, P. B. Morgan, J. H. Clamp, and H. F. Gleeson, “Electronic liquid crystal contact lenses for the correction of presbyopia,” Opt. Express 22, 8035–8040 (2014).
[Crossref]

I. Grulkowski, K. Szulzycki, and M. Wojtkowski, “Microscopic OCT imaging with focus extension by ultrahigh-speed acousto-optic tunable lens and stroboscopic illumination,” Opt. Express 22, 31746–31760 (2014).
[Crossref]

Y.-H. Lin and H.-S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21, 9428–9436 (2013).
[Crossref]

F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21, 21010–21026 (2013).
[Crossref]

H.-W. Jeong, S.-W. Lee, and B.-M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express 20, 19148–19159 (2012).
[Crossref]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with spectral OCT system using a high-speed CMOS camera,” Opt. Express 17, 4842–4858 (2009).
[Crossref]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200  kHz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009).
[Crossref]

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20, 6109–6115 (2012).
[Crossref]

Opt. Lett. (1)

Optica (1)

PLoS One (2)

X. Mao, J. T. Banta, B. Ke, H. Jiang, J. He, C. Liu, and J. Wang, “Wavefront derived refraction and full eye biometry in pseudophakic eyes,” PLoS One 11, e0152293 (2016).
[Crossref]

C. Enders, E.-M. Braig, K. Scherer, J. U. Werner, G. K. Lang, G. E. Lang, F. Pfeiffer, P. Noël, E. Rummeny, and J. Herzen, “Advanced non-destructive ocular visualization methods by improved X-ray imaging techniques,” PLoS One 12, e0170633 (2017).
[Crossref]

Rev. Sci. Instr. (1)

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam, and H. Oku, “High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes,” Rev. Sci. Instr. 86, 013707 (2015).
[Crossref]

Semin. Ultrasound CT MRI (1)

A. Malhotra, F. J. Minja, A. Crum, and D. Burrowes, “Ocular anatomy and cross-sectional imaging of the eye,” Semin. Ultrasound CT MRI 32, 2–13 (2011).
[Crossref]

Other (2)

F. A. Midyett and S. K. Mukherji, Orbital Imaging (Elsevier, 2015).

I. Grulkowski, “Anterior segment OCT,” in Handbook of Visual Optics, P. Artal, ed. (CRC Press, 2017), pp. 61–90.

Supplementary Material (6)

NameDescription
» Visualization 1       Shape of the wavefront exiting the electrically tunable lens
» Visualization 2       SS-OCT imaging of the anterior segment with tunable focus
» Visualization 3       Enhanced 3-D visualization of anterior vitreous opacifications
» Visualization 4       SS-OCT imaging of the retina with tunable focus
» Visualization 5       Enhanced 3-D visualization of posterior vitreous opacifications
» Visualization 6       Quasi-simultaneous OCT imaging of the whole eye. Switching between imaging modes with the electrically tunable lens

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup. (a) Setup for beam profiling and wavefront sensing. CMOS, camera; HSWS, Hartmann–Shack wavefront sensor; ETL, electrically tunable lens; f1=100  mm, f2=50  mm. (b) SS-OCT system. Configurations of the object arm with tunable lens: (c) anterior segment imaging, (d) retinal imaging, (e) whole eye imaging. PDB, balanced photodetector; SC, galvanometric scanners; OL, offset lens; f1 and f2, relay optics lenses (f1=100  mm, f2=50  mm); Σ, pivot plane.

Fig. 2.
Fig. 2.

Scan protocols used in this study. Driving signals are applied to the scanners (SC) and to the tunable lens. (a) Sequential B-scan protocol, (b) sequential cross scan protocol.

Fig. 3.
Fig. 3.

Operation performance of the electrically tunable lens. (a) Horizontal sections and axial profiles of light intensity behind the ETL for current values I=100  mA and I=300  mA, (b) shape of the wavefront exiting the ETL (Visualization 1), (c) tunable lens power as a function of applied current with and without an offset lens, (d) magnitude of wavefront astigmatism (A) and coma (C) for vertical and horizontal orientations of the ETL without offset lens showing gravitationally induced aberrations, (e) root mean square (RMS) of higher-order aberrations of the wavefront exiting the vertically and horizontally oriented ETL.

Fig. 4.
Fig. 4.

Numerical simulations and experimental data of axial intensity profiles of the beam for different states of the ETL. Upper panel shows intensity maps along the optical axis for the entire tuning range of the ETL. Lower panel shows calculated intensity profiles for two selected ETL current values in each imaging mode (solid green and blue), along with the profiles measured experimentally (dots). (a) Anterior segment imaging interface, (b) retinal imaging interface, (c) whole eye imaging interface. Optical axis z was defined in Figs. 1(c)1(e) for each imaging mode.

Fig. 5.
Fig. 5.

SS-OCT imaging of the anterior segment with tunable focus. (a) Anterior segment OCT images for different ETL current values (focus position indicated by a yellow triangle) and a composite image generated by focus stacking of 50 cross sections (with red dashed outline). The change in image quality is demonstrated in Visualization 2. (b) Enhanced 3D visualization of anterior vitreous opacifications (Visualization 3): rendering of volumetric data set, en face image, MIP, and combined SVP and MIP with depth encoding.

Fig. 6.
Fig. 6.

SS-OCT imaging of the retina with tunable focus. (a) Retinal OCT images for different ETL current values (focus position indicated by a yellow triangle) and a composite image generated by focus stacking of 50 cross sections (with blue dashed outline). The change in image quality is demonstrated in Visualization 4. (b) Enhanced 3D visualization of posterior vitreous opacifications (Visualization 5): rendering of volumetric data set, retinal fundus image, vitreous MIP, and combined SVP and MIP with depth encoding.

Fig. 7.
Fig. 7.

Quasi-simultaneous OCT imaging of the whole eye. (a) Switching between imaging modes with the ETL (Visualization 6), (b) composite image of the whole eye, (c) composite image of the whole eye after unfolding, with corresponding axial profile of light intensity showing reflections from the ocular components.

Fig. 8.
Fig. 8.

Ocular biometry based on tunable lens SS-OCT. (a) Correlation plot of axial eye length (AL) between SS-OCT and OLCR (Lenstar), (b) Bland–Altman plot showing agreement between the methods. The solid horizontal line indicates bias, and the dashed lines show 95% confidence interval (CI).

Tables (2)

Tables Icon

Table 1. Operational Modes of OCT System with Tunable Lensa

Tables Icon

Table 2. Statistical Analysis of Intraocular Distances Measured with SS-OCT and Dynamic Focusing

Metrics