Abstract

Whispering gallery mode based optical microcavities are important for highly sensitive optical sensing. However, the current experimental realizations are strongly dependent on high-resolution tunable lasers and evanescent coupling, which are too cumbersome and too expensive for portable devices. Herein we experimentally demonstrate a cost-effective and robust approach to detect and size a single nanoparticle with far-field laser emissions. By placing a limacon microdisk close to a spiral microdisk, chiral resonances have been successfully generated. In contrast to previous research, here the internal chirality is strongly correlated with the far-field patterns (FFPs) and thus can be transduced to far-field emissions. Once a nanoparticle is attached to the limacon microdisk, the asymmetrical backscattering at the notch of the spiral can be averaged by the symmetrical scattering of the nanoparticle. Consequently, the internal chirality and the corresponding FFPs are changed. By measuring a far-field directional laser emission, nanoparticles with a radius of 50  nm have been successfully detected and sized without employing any spectral information. As a narrow-linewidth tunable laser is not used in our experiment and microdisks lasers may be electrically driven, this research will provide a new path to cost-effective, portable, highly sensitive optical sensors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rotation-induced evolution of far-field emission patterns of deformed microdisk cavities

Li Ge, Raktim Sarma, and Hui Cao
Optica 2(4) 323-328 (2015)

Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities

Jiangang Zhu, Şahin Kaya Özdemir, Lina He, Da-Ren Chen, and Lan Yang
Opt. Express 19(17) 16195-16206 (2011)

End-fire injection of light into high-Q silicon microdisks

Shuai Liu, Wenzhao Sun, Yujie Wang, Xiaoyi Yu, Ke Xu, Yongzhen Huang, Shumin Xiao, and Qinghai Song
Optica 5(5) 612-616 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref]
  2. X. D. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
    [Crossref]
  3. Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
    [Crossref]
  4. F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
    [Crossref]
  5. K. J. Vahala, “Optical microcavites,” Nature 424, 839–846 (2003).
    [Crossref]
  6. M. L. Gorodetsky, A. D. Pryamikov, and V. S. J. Ilchenko, “Rayleigh scattering in high-Q microspheres,” Opt. Soc. Am. B 17, 1051–1057 (2000).
    [Crossref]
  7. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on chip,” Nature 421, 925–928 (2003).
    [Crossref]
  8. M. Borsellie, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [Crossref]
  9. Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Tech. 2, 1600299 (2017).
    [Crossref]
  10. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
    [Crossref]
  11. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Lablel-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
    [Crossref]
  12. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
    [Crossref]
  13. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
    [Crossref]
  14. J. Zhu, S. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  15. L. He, K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
    [Crossref]
  16. L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. H. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
    [Crossref]
  17. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
    [Crossref]
  18. J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97, 253901 (2006).
    [Crossref]
  19. Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
    [Crossref]
  20. L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
    [Crossref]
  21. H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
    [Crossref]
  22. B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
    [Crossref]
  23. Z. Gu, N. Zhang, Q. Lyu, M. Li, S. Xiao, and Q. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 588–594 (2016).
    [Crossref]
  24. J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901 (2014).
    [Crossref]
  25. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
    [Crossref]
  26. J. Wiersig, S. W. Kim, and M. Hentschel, “Asymmetric scattering and nonorthogonal mode patterns in optical microspirals,” Phys. Rev. A 78, 053809 (2008).
    [Crossref]
  27. J. Wiersig, “Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles,” Phys. Rev. A 84, 063828 (2011).
    [Crossref]
  28. J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).
    [Crossref]
  29. Q. H. Song, Z. Y. Gu, N. Zhang, K. Y. Wang, N. B. Yi, and S. M. Xiao, “Improvement of the chirality near avoided resonance crossing in optical microcavity,” Sci. China Phys. Mech. Astron. 58, 114210 (2015).
    [Crossref]
  30. J. Kullig and J. Wiersig, “Frobenius-Perron eigenstates in deformed microdisk cavities: non-Hermitian physics and asymmetric backscattering in ray dynamics,” New J. Phys. 18, 015005 (2016).
    [Crossref]
  31. S. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).
    [Crossref]
  32. N. Zhang, S. Liu, K. Wang, Z. Gu, M. Li, N. Yi, S. Xiao, and Q. Song, “Single nanoparticle detection using far-field emission of photonic molecule around the exceptional point,” Sci. Rep. 5, 11912 (2015).
    [Crossref]
  33. M. Kim, K. Kwon, J. Shim, Y. Jung, and Y. Yu, “Partially directional microdisk laser with two Rayleigh scatterers,” Opt. Lett. 39, 2423–2426 (2014).
    [Crossref]
  34. B. Peng, S. K. Özdemir, M. Liertzer, W. J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
  35. J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
    [Crossref]
  36. V. S. Letokhov, “Review: valuable book on laser physics: laser physics,” Sov. J. Quantum Electron.6 (1974).
  37. H. E. Tureci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).
    [Crossref]
  38. L. Ge, Y. D. Chong, S. Rotter, H. E. Tureci, and A. D. Stone, “Unconventional modes in lasers with spatially varying gain and loss,” Phys. Rev. A 84, 023820 (2011).
    [Crossref]
  39. Z. Y. Gu, N. Zhang, Q. Lyu, M. Li, S. M. Xiao, and Q. H. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 697 (2016).
    [Crossref]
  40. M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: inside-outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).
    [Crossref]
  41. H. E. Türeci, H. G. L. Schwefel, P. Jacquod, and A. D. Stone, Progress in Optics, E. Wolf, ed. (Elsevier, 2005), Vol. 47, Chap. 2.

2017 (2)

Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Tech. 2, 1600299 (2017).
[Crossref]

2016 (4)

Z. Gu, N. Zhang, Q. Lyu, M. Li, S. Xiao, and Q. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 588–594 (2016).
[Crossref]

J. Kullig and J. Wiersig, “Frobenius-Perron eigenstates in deformed microdisk cavities: non-Hermitian physics and asymmetric backscattering in ray dynamics,” New J. Phys. 18, 015005 (2016).
[Crossref]

B. Peng, S. K. Özdemir, M. Liertzer, W. J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

Z. Y. Gu, N. Zhang, Q. Lyu, M. Li, S. M. Xiao, and Q. H. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 697 (2016).
[Crossref]

2015 (3)

Q. H. Song, Z. Y. Gu, N. Zhang, K. Y. Wang, N. B. Yi, and S. M. Xiao, “Improvement of the chirality near avoided resonance crossing in optical microcavity,” Sci. China Phys. Mech. Astron. 58, 114210 (2015).
[Crossref]

S. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).
[Crossref]

N. Zhang, S. Liu, K. Wang, Z. Gu, M. Li, N. Yi, S. Xiao, and Q. Song, “Single nanoparticle detection using far-field emission of photonic molecule around the exceptional point,” Sci. Rep. 5, 11912 (2015).
[Crossref]

2014 (6)

M. Kim, K. Kwon, J. Shim, Y. Jung, and Y. Yu, “Partially directional microdisk laser with two Rayleigh scatterers,” Opt. Lett. 39, 2423–2426 (2014).
[Crossref]

J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901 (2014).
[Crossref]

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref]

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref]

B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

2013 (1)

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. H. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

2012 (1)

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

2011 (5)

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

L. He, K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Wiersig, “Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles,” Phys. Rev. A 84, 063828 (2011).
[Crossref]

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).
[Crossref]

L. Ge, Y. D. Chong, S. Rotter, H. E. Tureci, and A. D. Stone, “Unconventional modes in lasers with spatially varying gain and loss,” Phys. Rev. A 84, 023820 (2011).
[Crossref]

2010 (2)

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
[Crossref]

J. Zhu, S. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

2008 (5)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

X. D. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

J. Wiersig, S. W. Kim, and M. Hentschel, “Asymmetric scattering and nonorthogonal mode patterns in optical microspirals,” Phys. Rev. A 78, 053809 (2008).
[Crossref]

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[Crossref]

2007 (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Lablel-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

2006 (2)

J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97, 253901 (2006).
[Crossref]

H. E. Tureci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).
[Crossref]

2005 (1)

2003 (4)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on chip,” Nature 421, 925–928 (2003).
[Crossref]

K. J. Vahala, “Optical microcavites,” Nature 424, 839–846 (2003).
[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: inside-outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).
[Crossref]

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

2000 (1)

M. L. Gorodetsky, A. D. Pryamikov, and V. S. J. Ilchenko, “Rayleigh scattering in high-Q microspheres,” Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Lablel-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on chip,” Nature 421, 925–928 (2003).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Bender, C. M.

B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

Borsellie, M.

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Cao, H.

S. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).
[Crossref]

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
[Crossref]

Chang, R. K.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Chen, D.-R.

J. Zhu, S. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Chen, W. J.

B. Peng, S. K. Özdemir, M. Liertzer, W. J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

Chern, G. D.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Chong, Y. D.

L. Ge, Y. D. Chong, S. Rotter, H. E. Tureci, and A. D. Stone, “Unconventional modes in lasers with spatially varying gain and loss,” Phys. Rev. A 84, 023820 (2011).
[Crossref]

Christodoulides, D. N.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref]

Clements, W. R.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. H. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Collier, B.

H. E. Tureci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).
[Crossref]

Eberspächer, A.

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).
[Crossref]

Fan, X. D.

X. D. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

Feng, L.

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref]

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Lablel-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Lablel-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Ge, L.

S. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).
[Crossref]

L. Ge, Y. D. Chong, S. Rotter, H. E. Tureci, and A. D. Stone, “Unconventional modes in lasers with spatially varying gain and loss,” Phys. Rev. A 84, 023820 (2011).
[Crossref]

Gong, Q. H.

Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. H. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Gorodetsky, M. L.

M. L. Gorodetsky, A. D. Pryamikov, and V. S. J. Ilchenko, “Rayleigh scattering in high-Q microspheres,” Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

Gu, X.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Tech. 2, 1600299 (2017).
[Crossref]

Gu, Z.

Z. Gu, N. Zhang, Q. Lyu, M. Li, S. Xiao, and Q. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 588–594 (2016).
[Crossref]

N. Zhang, S. Liu, K. Wang, Z. Gu, M. Li, N. Yi, S. Xiao, and Q. Song, “Single nanoparticle detection using far-field emission of photonic molecule around the exceptional point,” Sci. Rep. 5, 11912 (2015).
[Crossref]

Gu, Z. Y.

Z. Y. Gu, N. Zhang, Q. Lyu, M. Li, S. M. Xiao, and Q. H. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 697 (2016).
[Crossref]

Q. H. Song, Z. Y. Gu, N. Zhang, K. Y. Wang, N. B. Yi, and S. M. Xiao, “Improvement of the chirality near avoided resonance crossing in optical microcavity,” Sci. China Phys. Mech. Astron. 58, 114210 (2015).
[Crossref]

He, L.

L. He, K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Zhu, S. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Heinrich, M.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref]

Hentschel, M.

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).
[Crossref]

J. Wiersig, S. W. Kim, and M. Hentschel, “Asymmetric scattering and nonorthogonal mode patterns in optical microspirals,” Phys. Rev. A 78, 053809 (2008).
[Crossref]

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[Crossref]

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: inside-outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).
[Crossref]

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Hodaei, H.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref]

Ilchenko, V. S. J.

M. L. Gorodetsky, A. D. Pryamikov, and V. S. J. Ilchenko, “Rayleigh scattering in high-Q microspheres,” Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

Jacquod, P.

H. E. Türeci, H. G. L. Schwefel, P. Jacquod, and A. D. Stone, Progress in Optics, E. Wolf, ed. (Elsevier, 2005), Vol. 47, Chap. 2.

Jiang, X.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. H. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Jiang, Z.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Tech. 2, 1600299 (2017).
[Crossref]

Johnson, N. M.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Johnson, T. J.

Jung, Y.

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Khajavikhan, M.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref]

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Kim, M.

Kim, S. W.

J. Wiersig, S. W. Kim, and M. Hentschel, “Asymmetric scattering and nonorthogonal mode patterns in optical microspirals,” Phys. Rev. A 78, 053809 (2008).
[Crossref]

Kim, W.

L. He, K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on chip,” Nature 421, 925–928 (2003).
[Crossref]

Kneissl, M.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Kramer, J.

B. Peng, S. K. Özdemir, M. Liertzer, W. J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Lablel-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Kullig, J.

J. Kullig and J. Wiersig, “Frobenius-Perron eigenstates in deformed microdisk cavities: non-Hermitian physics and asymmetric backscattering in ray dynamics,” New J. Phys. 18, 015005 (2016).
[Crossref]

Kwon, K.

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Letokhov, V. S.

V. S. Letokhov, “Review: valuable book on laser physics: laser physics,” Sov. J. Quantum Electron.6 (1974).

Li, B.-B.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. H. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Li, L.

J. Zhu, S. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, M.

Z. Gu, N. Zhang, Q. Lyu, M. Li, S. Xiao, and Q. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 588–594 (2016).
[Crossref]

Z. Y. Gu, N. Zhang, Q. Lyu, M. Li, S. M. Xiao, and Q. H. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 697 (2016).
[Crossref]

N. Zhang, S. Liu, K. Wang, Z. Gu, M. Li, N. Yi, S. Xiao, and Q. Song, “Single nanoparticle detection using far-field emission of photonic molecule around the exceptional point,” Sci. Rep. 5, 11912 (2015).
[Crossref]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Liertzer, M.

B. Peng, S. K. Özdemir, M. Liertzer, W. J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

Liu, S.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Tech. 2, 1600299 (2017).
[Crossref]

N. Zhang, S. Liu, K. Wang, Z. Gu, M. Li, N. Yi, S. Xiao, and Q. Song, “Single nanoparticle detection using far-field emission of photonic molecule around the exceptional point,” Sci. Rep. 5, 11912 (2015).
[Crossref]

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Lyu, Q.

Z. Gu, N. Zhang, Q. Lyu, M. Li, S. Xiao, and Q. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 588–594 (2016).
[Crossref]

Z. Y. Gu, N. Zhang, Q. Lyu, M. Li, S. M. Xiao, and Q. H. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 697 (2016).
[Crossref]

Ma, R. M.

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref]

Miri, M. A.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref]

Monifi, F.

B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

Nori, F.

B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

Özdemir, K.

L. He, K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Özdemir, S. K.

B. Peng, S. K. Özdemir, M. Liertzer, W. J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

J. Zhu, S. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Painter, O.

Peng, B.

B. Peng, S. K. Özdemir, M. Liertzer, W. J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

Pryamikov, A. D.

M. L. Gorodetsky, A. D. Pryamikov, and V. S. J. Ilchenko, “Rayleigh scattering in high-Q microspheres,” Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

Rotter, S.

B. Peng, S. K. Özdemir, M. Liertzer, W. J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

L. Ge, Y. D. Chong, S. Rotter, H. E. Tureci, and A. D. Stone, “Unconventional modes in lasers with spatially varying gain and loss,” Phys. Rev. A 84, 023820 (2011).
[Crossref]

Ryu, J.-W.

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).
[Crossref]

Sarma, S.

S. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).
[Crossref]

Schomerus, H.

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).
[Crossref]

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: inside-outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).
[Crossref]

Schubert, R.

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: inside-outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).
[Crossref]

Schwefel, H. G. L.

H. E. Türeci, H. G. L. Schwefel, P. Jacquod, and A. D. Stone, Progress in Optics, E. Wolf, ed. (Elsevier, 2005), Vol. 47, Chap. 2.

Shao, L.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. H. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Shim, J.

Shim, J.-B.

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).
[Crossref]

Shinohara, S.

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).
[Crossref]

Shopova, S. I.

X. D. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

Song, Q.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Tech. 2, 1600299 (2017).
[Crossref]

Z. Gu, N. Zhang, Q. Lyu, M. Li, S. Xiao, and Q. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 588–594 (2016).
[Crossref]

N. Zhang, S. Liu, K. Wang, Z. Gu, M. Li, N. Yi, S. Xiao, and Q. Song, “Single nanoparticle detection using far-field emission of photonic molecule around the exceptional point,” Sci. Rep. 5, 11912 (2015).
[Crossref]

Song, Q. H.

Z. Y. Gu, N. Zhang, Q. Lyu, M. Li, S. M. Xiao, and Q. H. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 697 (2016).
[Crossref]

Q. H. Song, Z. Y. Gu, N. Zhang, K. Y. Wang, N. B. Yi, and S. M. Xiao, “Improvement of the chirality near avoided resonance crossing in optical microcavity,” Sci. China Phys. Mech. Astron. 58, 114210 (2015).
[Crossref]

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
[Crossref]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on chip,” Nature 421, 925–928 (2003).
[Crossref]

Stone, A. D.

L. Ge, Y. D. Chong, S. Rotter, H. E. Tureci, and A. D. Stone, “Unconventional modes in lasers with spatially varying gain and loss,” Phys. Rev. A 84, 023820 (2011).
[Crossref]

H. E. Tureci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).
[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

H. E. Türeci, H. G. L. Schwefel, P. Jacquod, and A. D. Stone, Progress in Optics, E. Wolf, ed. (Elsevier, 2005), Vol. 47, Chap. 2.

Sun, W.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Tech. 2, 1600299 (2017).
[Crossref]

Sun, Y.

X. D. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

Suter, J. D.

X. D. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Tureci, H. E.

L. Ge, Y. D. Chong, S. Rotter, H. E. Tureci, and A. D. Stone, “Unconventional modes in lasers with spatially varying gain and loss,” Phys. Rev. A 84, 023820 (2011).
[Crossref]

H. E. Tureci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).
[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Türeci, H. E.

H. E. Türeci, H. G. L. Schwefel, P. Jacquod, and A. D. Stone, Progress in Optics, E. Wolf, ed. (Elsevier, 2005), Vol. 47, Chap. 2.

Vahala, K. J.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Lablel-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on chip,” Nature 421, 925–928 (2003).
[Crossref]

K. J. Vahala, “Optical microcavites,” Nature 424, 839–846 (2003).
[Crossref]

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. H. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Wang, K.

N. Zhang, S. Liu, K. Wang, Z. Gu, M. Li, N. Yi, S. Xiao, and Q. Song, “Single nanoparticle detection using far-field emission of photonic molecule around the exceptional point,” Sci. Rep. 5, 11912 (2015).
[Crossref]

Wang, K. Y.

Q. H. Song, Z. Y. Gu, N. Zhang, K. Y. Wang, N. B. Yi, and S. M. Xiao, “Improvement of the chirality near avoided resonance crossing in optical microcavity,” Sci. China Phys. Mech. Astron. 58, 114210 (2015).
[Crossref]

Wang, L.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Tech. 2, 1600299 (2017).
[Crossref]

Wang, W.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. H. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Wang, Y.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Tech. 2, 1600299 (2017).
[Crossref]

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref]

White, I. M.

X. D. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

Wiersig, J.

J. Kullig and J. Wiersig, “Frobenius-Perron eigenstates in deformed microdisk cavities: non-Hermitian physics and asymmetric backscattering in ray dynamics,” New J. Phys. 18, 015005 (2016).
[Crossref]

B. Peng, S. K. Özdemir, M. Liertzer, W. J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

S. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).
[Crossref]

J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901 (2014).
[Crossref]

J. Wiersig, “Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles,” Phys. Rev. A 84, 063828 (2011).
[Crossref]

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).
[Crossref]

J. Wiersig, S. W. Kim, and M. Hentschel, “Asymmetric scattering and nonorthogonal mode patterns in optical microspirals,” Phys. Rev. A 78, 053809 (2008).
[Crossref]

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[Crossref]

J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97, 253901 (2006).
[Crossref]

Wong, Z. J.

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref]

Xiao, S.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Tech. 2, 1600299 (2017).
[Crossref]

Z. Gu, N. Zhang, Q. Lyu, M. Li, S. Xiao, and Q. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 588–594 (2016).
[Crossref]

N. Zhang, S. Liu, K. Wang, Z. Gu, M. Li, N. Yi, S. Xiao, and Q. Song, “Single nanoparticle detection using far-field emission of photonic molecule around the exceptional point,” Sci. Rep. 5, 11912 (2015).
[Crossref]

Xiao, S. M.

Z. Y. Gu, N. Zhang, Q. Lyu, M. Li, S. M. Xiao, and Q. H. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 697 (2016).
[Crossref]

Q. H. Song, Z. Y. Gu, N. Zhang, K. Y. Wang, N. B. Yi, and S. M. Xiao, “Improvement of the chirality near avoided resonance crossing in optical microcavity,” Sci. China Phys. Mech. Astron. 58, 114210 (2015).
[Crossref]

Xiao, Y.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Tech. 2, 1600299 (2017).
[Crossref]

Xiao, Y. F.

Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Xiao, Y.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. H. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

J. Zhu, S. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yang, L.

Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

B. Peng, S. K. Özdemir, M. Liertzer, W. J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

L. He, K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Zhu, S. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yi, N.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Tech. 2, 1600299 (2017).
[Crossref]

N. Zhang, S. Liu, K. Wang, Z. Gu, M. Li, N. Yi, S. Xiao, and Q. Song, “Single nanoparticle detection using far-field emission of photonic molecule around the exceptional point,” Sci. Rep. 5, 11912 (2015).
[Crossref]

Yi, N. B.

Q. H. Song, Z. Y. Gu, N. Zhang, K. Y. Wang, N. B. Yi, and S. M. Xiao, “Improvement of the chirality near avoided resonance crossing in optical microcavity,” Sci. China Phys. Mech. Astron. 58, 114210 (2015).
[Crossref]

Yilmaz, H.

B. Peng, S. K. Özdemir, M. Liertzer, W. J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

Yu, X. C.

Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Yu, X.-C.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. H. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Yu, Y.

Zhang, N.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Tech. 2, 1600299 (2017).
[Crossref]

Z. Y. Gu, N. Zhang, Q. Lyu, M. Li, S. M. Xiao, and Q. H. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 697 (2016).
[Crossref]

Z. Gu, N. Zhang, Q. Lyu, M. Li, S. Xiao, and Q. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 588–594 (2016).
[Crossref]

Q. H. Song, Z. Y. Gu, N. Zhang, K. Y. Wang, N. B. Yi, and S. M. Xiao, “Improvement of the chirality near avoided resonance crossing in optical microcavity,” Sci. China Phys. Mech. Astron. 58, 114210 (2015).
[Crossref]

N. Zhang, S. Liu, K. Wang, Z. Gu, M. Li, N. Yi, S. Xiao, and Q. Song, “Single nanoparticle detection using far-field emission of photonic molecule around the exceptional point,” Sci. Rep. 5, 11912 (2015).
[Crossref]

Zhang, X.

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref]

Zhi, Y. Y.

Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Zhu, H.

X. D. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

Zhu, J.

L. He, K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Zhu, S. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Adv. Mater. (2)

Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. H. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Adv. Mater. Tech. (1)

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Tech. 2, 1600299 (2017).
[Crossref]

Anal. Chim. Acta. (1)

X. D. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

Appl. Phys. Lett. (2)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Europhys. Lett. (1)

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: inside-outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).
[Crossref]

Laser Photon. Rev. (2)

Z. Y. Gu, N. Zhang, Q. Lyu, M. Li, S. M. Xiao, and Q. H. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 697 (2016).
[Crossref]

Z. Gu, N. Zhang, Q. Lyu, M. Li, S. Xiao, and Q. Song, “Experimental demonstration of PT-symmetric stripe lasers,” Laser Photon. Rev. 10, 588–594 (2016).
[Crossref]

Nanophotonics (1)

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Nat. Nanotechnol. (2)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

L. He, K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Nat. Photonics (1)

J. Zhu, S. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Nature (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on chip,” Nature 421, 925–928 (2003).
[Crossref]

K. J. Vahala, “Optical microcavites,” Nature 424, 839–846 (2003).
[Crossref]

New J. Phys. (1)

J. Kullig and J. Wiersig, “Frobenius-Perron eigenstates in deformed microdisk cavities: non-Hermitian physics and asymmetric backscattering in ray dynamics,” New J. Phys. 18, 015005 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Soc. Am. B (1)

M. L. Gorodetsky, A. D. Pryamikov, and V. S. J. Ilchenko, “Rayleigh scattering in high-Q microspheres,” Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

Phys. Rev. A (5)

J. Wiersig, S. W. Kim, and M. Hentschel, “Asymmetric scattering and nonorthogonal mode patterns in optical microspirals,” Phys. Rev. A 78, 053809 (2008).
[Crossref]

J. Wiersig, “Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles,” Phys. Rev. A 84, 063828 (2011).
[Crossref]

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).
[Crossref]

H. E. Tureci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).
[Crossref]

L. Ge, Y. D. Chong, S. Rotter, H. E. Tureci, and A. D. Stone, “Unconventional modes in lasers with spatially varying gain and loss,” Phys. Rev. A 84, 023820 (2011).
[Crossref]

Phys. Rev. Lett. (5)

J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97, 253901 (2006).
[Crossref]

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
[Crossref]

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[Crossref]

S. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).
[Crossref]

J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901 (2014).
[Crossref]

Proc. Natl. Acad. Sci. USA (3)

B. Peng, S. K. Özdemir, M. Liertzer, W. J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Sci. China Phys. Mech. Astron. (1)

Q. H. Song, Z. Y. Gu, N. Zhang, K. Y. Wang, N. B. Yi, and S. M. Xiao, “Improvement of the chirality near avoided resonance crossing in optical microcavity,” Sci. China Phys. Mech. Astron. 58, 114210 (2015).
[Crossref]

Sci. Rep. (1)

N. Zhang, S. Liu, K. Wang, Z. Gu, M. Li, N. Yi, S. Xiao, and Q. Song, “Single nanoparticle detection using far-field emission of photonic molecule around the exceptional point,” Sci. Rep. 5, 11912 (2015).
[Crossref]

Science (4)

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref]

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref]

B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Lablel-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Other (2)

V. S. Letokhov, “Review: valuable book on laser physics: laser physics,” Sov. J. Quantum Electron.6 (1974).

H. E. Türeci, H. G. L. Schwefel, P. Jacquod, and A. D. Stone, Progress in Optics, E. Wolf, ed. (Elsevier, 2005), Vol. 47, Chap. 2.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Lasing actions in the limacon–spiral photonic molecule. (a) The top-view SEM image of the photonic molecule; (b, c) the laser spectrum and the dependence of output intensity on the pumping energy; (d) the laser spectrum at the laser threshold.
Fig. 2.
Fig. 2. FFPs of the lasers in the limacon–spiral photonic molecule. (a) The far-field angular distribution of the total emission, (b)–(d) the FFPs of modes 1–3 in Fig. 1(b).
Fig. 3.
Fig. 3. Resonant modes of the limacon–spiral photonic molecule. (a) The calculated Q-factors in the photonic molecule, (b) the field pattern (|Ez|) high-Q mode in the photonic molecules. The white line is the cavity boundary. (c), (d) The Husimi map and the corresponding far-field pattern of mode 2 in (a).
Fig. 4.
Fig. 4. Chirality of high-Q resonances in the limacon–spiral photonic molecule. The dots and open squares show the chirality obtained from the Husimi map and the far-field patterns, respectively. The stars are the experimental results in Fig. 2.
Fig. 5.
Fig. 5. Confirmation of chirality. (a, c) The top-view SEM images of the waveguide-coupled limacon–spiral photonic molecule and a single limacon microdisk; (b, d) their corresponding fluorescent microscope images above the laser thresholds.
Fig. 6.
Fig. 6. Numerical simulation of single-nanoparticle detection. (a) The schematic picture of singe-nanoparticle detection on the limacon–spiral photonic molecule, (b) the far-field patterns with different nanoparticle sizes. The lines are vertically shifted for a clear view. (c) The chirality α2 as a function of r. Here the crosses show the experimental results in Fig. 7 and the other four samples in Supplement 1. (d) The dependence of α2 on the position of the nanoparticle. Here the nanoparticle is fixed at r=50  nm.
Fig. 7.
Fig. 7. Experimental confirmation of single-nanoparticle detection with microdisk lasers. (a, b) The top-view SEM images of the limacon–spiral photonic molecule and the nanoparticle, (c) the threshold behavior of the limacon–spiral photonic molecule laser. The inset shows the laser spectra with and without the single nanoparticle. (d) The FFPs of the limacon–spiral photonic molecule laser with and without the single nanoparticle.

Metrics