Abstract

We use rotational photonic tweezers to access local viscoelastic properties of complex fluids over a wide frequency range. This is done by monitoring both passive rotational Brownian motion and also actively driven transient rotation between two angular trapping states of a birefringent microsphere. These enable measurement of high- and low-frequency properties, respectively. Complex fluids arise frequently in microscopic biological systems, typically with length scales at the cellular level. Thus, high spatial resolution as provided by rotational photonic tweezers is important. We measure the properties of tear film on a contact lens and demonstrate variations in these properties between two subjects over time. We also show excellent agreement between our theoretical model and experimental results. We believe that this is the first time that active microrheology using rotating tweezers has been used for biologically relevant questions. Our method demonstrates potential for future applications to determine the spatial-temporal properties of biologically relevant and complex fluids that are only available in very small volumes.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

Shu Zhang, Lachlan J. Gibson, Alexander B. Stilgoe, Itia A. Favre-Bulle, Timo A. Nieminen, and Halina Rubinsztein-Dunlop, "Ultrasensitive rotating photonic probes for complex biological systems: erratum," Optica 4, 1372-1372 (2017)
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-4-11-1372

OSA Recommended Articles
Extending vaterite microviscometry to ex vivo blood vessels by serial calibration

Samir G. Shreim, Earl Steward, and Elliot L. Botvinick
Biomed. Opt. Express 3(1) 37-47 (2012)

Towards total photonic control of complex-shaped colloids by vortex beams

Clayton P. Lapointe, Thomas G. Mason, and Ivan I. Smalyukh
Opt. Express 19(19) 18182-18189 (2011)

Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap

Oto Brzobohatý, Alejandro V. Arzola, Martin Šiler, Lukáš Chvátal, Petr Jákl, Stephen Simpson, and Pavel Zemánek
Opt. Express 23(6) 7273-7287 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Waigh, “Microrheology of complex fluids,” Rep. Prog. Phys. 68, 685–742 (2005).
    [Crossref]
  2. T. M. Squires and T. G. Mason, “Fluid mechanics of microrheology,” Annu. Rev. Fluid Mech. 42, 413–438 (2010).
    [Crossref]
  3. D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91, 4296–4305 (2006).
    [Crossref]
  4. K. Tsubota, “Tear dynamics and dry eye,” Prog. Retinal Eye Res. 17, 565–596 (1998).
    [Crossref]
  5. C. G. Begley, B. Caffery, and K. K. Nichols, “Responses of contact lens wearers to a dry eye survey,” Optom. Vis. Sci. 77, 40–46 (2000).
    [Crossref]
  6. M. E. Johnson and P. J. Murphy, “Changes in the tear film and ocular surface from dry eye syndrome,” Prog. Retinal Eye Res. 23, 449–474 (2004).
    [Crossref]
  7. J. M. Tiffany, “The viscosity of human tears,” Int. Ophthalmol. 15, 371–376 (1991).
    [Crossref]
  8. J. M. Tiffany, “Composition and biophysical properties of the tear film: knowledge and uncertainty,” Adv. Exp. Med. Biol. 350, 231–238 (1994).
    [Crossref]
  9. J. M. Tiffany, “Viscoelastic properties of human tears and polymer solutions,” Adv. Exp. Med. Biol. 350, 267–270 (1994).
    [Crossref]
  10. P. E. King-Smith, B. A. Fink, R. M. Hill, K. W. Koelling, and J. M. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29, 357–368 (2004).
    [Crossref]
  11. J. Wang, D. Desmond Fonn, T. L. Simpson, and L. Jones, “Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 44, 2524–2528 (2003).
    [Crossref]
  12. D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKintosh, “Nonequilibrium mechanics of active cytoskeletal networks,” Science 315, 370–373 (2007).
    [Crossref]
  13. J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10, 046006 (2013).
    [Crossref]
  14. A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9, 2568–2575 (2009).
    [Crossref]
  15. G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, “Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements,” J. Opt. A 11, 034016 (2009).
    [Crossref]
  16. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
    [Crossref]
  17. S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
    [Crossref]
  18. R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
    [Crossref]
  19. D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express 16, 15897–15902 (2008).
    [Crossref]
  20. M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
    [Crossref]
  21. D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
    [Crossref]
  22. M. Chaoui and F. Feuillebois, “Creeping flow around a sphere in a shear flow close to a wall,” Quart. J. Mech. Appl. Math. 56, 381–410 (2003).
    [Crossref]
  23. J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
    [Crossref]
  24. Q. Liu and A. Prosperetti, “Wall effects on a rotating sphere,” J. Fluid Mech. 657, 1–21 (2010).
    [Crossref]
  25. Z. Cheng and T. G. Mason, “Rotational diffusion microrheology,” Phys. Rev. Lett. 90, 018304 (2003).
    [Crossref]
  26. J. S. Bennett, L. J. Gibson, R. M. Kelly, E. Brousse, B. Baudisch, D. Preece, T. A. Nieminen, T. Nicholson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Spatially-resolved rotational microrheology with an optically-trapped sphere,” Sci. Rep. 3, 1759 (2013).
    [Crossref]
  27. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
    [Crossref]
  28. T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74, 1250–1253 (1995).
    [Crossref]
  29. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
    [Crossref]
  30. L. J. Gibson, S. Zhang, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Active rotational and translational microrheology beyond the linear spring regime,” Phys. Rev. E 95, 042608 (2017).
    [Crossref]
  31. K. Maruyama, N. Yokoi, A. Takamata, and S. Kinoshita, “Effect of environmental conditions on tear dynamics in soft contact lens wearers,” Invest. Ophthalmol. Visual Sci. 45, 2563–2568 (2004).
    [Crossref]
  32. T. F. Svitova and M. C. Lin, “Racial variations in interfacial behavior of lipids extracted from worn soft contact lenses,” Optom. Vis. Sci. 90, 1361–1369 (2013).
    [Crossref]
  33. R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25, 11672–11679 (2009).
    [Crossref]
  34. T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. 10, 115005 (2008).
    [Crossref]

2017 (1)

L. J. Gibson, S. Zhang, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Active rotational and translational microrheology beyond the linear spring regime,” Phys. Rev. E 95, 042608 (2017).
[Crossref]

2013 (3)

T. F. Svitova and M. C. Lin, “Racial variations in interfacial behavior of lipids extracted from worn soft contact lenses,” Optom. Vis. Sci. 90, 1361–1369 (2013).
[Crossref]

J. S. Bennett, L. J. Gibson, R. M. Kelly, E. Brousse, B. Baudisch, D. Preece, T. A. Nieminen, T. Nicholson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Spatially-resolved rotational microrheology with an optically-trapped sphere,” Sci. Rep. 3, 1759 (2013).
[Crossref]

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10, 046006 (2013).
[Crossref]

2011 (1)

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

2010 (3)

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[Crossref]

Q. Liu and A. Prosperetti, “Wall effects on a rotating sphere,” J. Fluid Mech. 657, 1–21 (2010).
[Crossref]

T. M. Squires and T. G. Mason, “Fluid mechanics of microrheology,” Annu. Rev. Fluid Mech. 42, 413–438 (2010).
[Crossref]

2009 (4)

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9, 2568–2575 (2009).
[Crossref]

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, “Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements,” J. Opt. A 11, 034016 (2009).
[Crossref]

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25, 11672–11679 (2009).
[Crossref]

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

2008 (2)

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. 10, 115005 (2008).
[Crossref]

D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express 16, 15897–15902 (2008).
[Crossref]

2007 (3)

D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKintosh, “Nonequilibrium mechanics of active cytoskeletal networks,” Science 315, 370–373 (2007).
[Crossref]

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
[Crossref]

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

2006 (1)

D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91, 4296–4305 (2006).
[Crossref]

2005 (1)

T. A. Waigh, “Microrheology of complex fluids,” Rep. Prog. Phys. 68, 685–742 (2005).
[Crossref]

2004 (4)

M. E. Johnson and P. J. Murphy, “Changes in the tear film and ocular surface from dry eye syndrome,” Prog. Retinal Eye Res. 23, 449–474 (2004).
[Crossref]

P. E. King-Smith, B. A. Fink, R. M. Hill, K. W. Koelling, and J. M. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29, 357–368 (2004).
[Crossref]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[Crossref]

K. Maruyama, N. Yokoi, A. Takamata, and S. Kinoshita, “Effect of environmental conditions on tear dynamics in soft contact lens wearers,” Invest. Ophthalmol. Visual Sci. 45, 2563–2568 (2004).
[Crossref]

2003 (4)

M. Chaoui and F. Feuillebois, “Creeping flow around a sphere in a shear flow close to a wall,” Quart. J. Mech. Appl. Math. 56, 381–410 (2003).
[Crossref]

Z. Cheng and T. G. Mason, “Rotational diffusion microrheology,” Phys. Rev. Lett. 90, 018304 (2003).
[Crossref]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[Crossref]

J. Wang, D. Desmond Fonn, T. L. Simpson, and L. Jones, “Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 44, 2524–2528 (2003).
[Crossref]

2001 (1)

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[Crossref]

2000 (1)

C. G. Begley, B. Caffery, and K. K. Nichols, “Responses of contact lens wearers to a dry eye survey,” Optom. Vis. Sci. 77, 40–46 (2000).
[Crossref]

1998 (1)

K. Tsubota, “Tear dynamics and dry eye,” Prog. Retinal Eye Res. 17, 565–596 (1998).
[Crossref]

1995 (1)

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74, 1250–1253 (1995).
[Crossref]

1994 (2)

J. M. Tiffany, “Composition and biophysical properties of the tear film: knowledge and uncertainty,” Adv. Exp. Med. Biol. 350, 231–238 (1994).
[Crossref]

J. M. Tiffany, “Viscoelastic properties of human tears and polymer solutions,” Adv. Exp. Med. Biol. 350, 267–270 (1994).
[Crossref]

1991 (1)

J. M. Tiffany, “The viscosity of human tears,” Int. Ophthalmol. 15, 371–376 (1991).
[Crossref]

Baudisch, B.

J. S. Bennett, L. J. Gibson, R. M. Kelly, E. Brousse, B. Baudisch, D. Preece, T. A. Nieminen, T. Nicholson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Spatially-resolved rotational microrheology with an optically-trapped sphere,” Sci. Rep. 3, 1759 (2013).
[Crossref]

Begley, C. G.

C. G. Begley, B. Caffery, and K. K. Nichols, “Responses of contact lens wearers to a dry eye survey,” Optom. Vis. Sci. 77, 40–46 (2000).
[Crossref]

Bennett, J. S.

J. S. Bennett, L. J. Gibson, R. M. Kelly, E. Brousse, B. Baudisch, D. Preece, T. A. Nieminen, T. Nicholson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Spatially-resolved rotational microrheology with an optically-trapped sphere,” Sci. Rep. 3, 1759 (2013).
[Crossref]

Berg-Sørensen, K.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10, 046006 (2013).
[Crossref]

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[Crossref]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[Crossref]

Botvinick, E.

Bowman, R.

Boyce, M. C.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Brau, R. R.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Brousse, E.

J. S. Bennett, L. J. Gibson, R. M. Kelly, E. Brousse, B. Baudisch, D. Preece, T. A. Nieminen, T. Nicholson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Spatially-resolved rotational microrheology with an optically-trapped sphere,” Sci. Rep. 3, 1759 (2013).
[Crossref]

Caffery, B.

C. G. Begley, B. Caffery, and K. K. Nichols, “Responses of contact lens wearers to a dry eye survey,” Optom. Vis. Sci. 77, 40–46 (2000).
[Crossref]

Castro, C. E.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Chaoui, M.

M. Chaoui and F. Feuillebois, “Creeping flow around a sphere in a shear flow close to a wall,” Quart. J. Mech. Appl. Math. 56, 381–410 (2003).
[Crossref]

Cheng, Z.

Z. Cheng and T. G. Mason, “Rotational diffusion microrheology,” Phys. Rev. Lett. 90, 018304 (2003).
[Crossref]

Cooper, J.

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9, 2568–2575 (2009).
[Crossref]

Cooper, J. M.

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[Crossref]

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

De Luca, A. C.

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, “Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements,” J. Opt. A 11, 034016 (2009).
[Crossref]

Desmond Fonn, D.

J. Wang, D. Desmond Fonn, T. L. Simpson, and L. Jones, “Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 44, 2524–2528 (2003).
[Crossref]

Di Leonardo, R.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

Evans, R. M. L.

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[Crossref]

Feng, C.

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25, 11672–11679 (2009).
[Crossref]

Ferrer, J. M.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Feuillebois, F.

M. Chaoui and F. Feuillebois, “Creeping flow around a sphere in a shear flow close to a wall,” Quart. J. Mech. Appl. Math. 56, 381–410 (2003).
[Crossref]

Fink, B. A.

P. E. King-Smith, B. A. Fink, R. M. Hill, K. W. Koelling, and J. M. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29, 357–368 (2004).
[Crossref]

Fusco, S.

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, “Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements,” J. Opt. A 11, 034016 (2009).
[Crossref]

Gibson, G. M.

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[Crossref]

Gibson, L. J.

L. J. Gibson, S. Zhang, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Active rotational and translational microrheology beyond the linear spring regime,” Phys. Rev. E 95, 042608 (2017).
[Crossref]

J. S. Bennett, L. J. Gibson, R. M. Kelly, E. Brousse, B. Baudisch, D. Preece, T. A. Nieminen, T. Nicholson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Spatially-resolved rotational microrheology with an optically-trapped sphere,” Sci. Rep. 3, 1759 (2013).
[Crossref]

Heckenberg, N. R.

J. S. Bennett, L. J. Gibson, R. M. Kelly, E. Brousse, B. Baudisch, D. Preece, T. A. Nieminen, T. Nicholson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Spatially-resolved rotational microrheology with an optically-trapped sphere,” Sci. Rep. 3, 1759 (2013).
[Crossref]

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25, 11672–11679 (2009).
[Crossref]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. 10, 115005 (2008).
[Crossref]

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
[Crossref]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[Crossref]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[Crossref]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[Crossref]

Hill, R. M.

P. E. King-Smith, B. A. Fink, R. M. Hill, K. W. Koelling, and J. M. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29, 357–368 (2004).
[Crossref]

Johnson, M. E.

M. E. Johnson and P. J. Murphy, “Changes in the tear film and ocular surface from dry eye syndrome,” Prog. Retinal Eye Res. 23, 449–474 (2004).
[Crossref]

Jones, L.

J. Wang, D. Desmond Fonn, T. L. Simpson, and L. Jones, “Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 44, 2524–2528 (2003).
[Crossref]

Kamm, R. D.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Keen, S.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express 16, 15897–15902 (2008).
[Crossref]

Kelly, R. M.

J. S. Bennett, L. J. Gibson, R. M. Kelly, E. Brousse, B. Baudisch, D. Preece, T. A. Nieminen, T. Nicholson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Spatially-resolved rotational microrheology with an optically-trapped sphere,” Sci. Rep. 3, 1759 (2013).
[Crossref]

King-Smith, P. E.

P. E. King-Smith, B. A. Fink, R. M. Hill, K. W. Koelling, and J. M. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29, 357–368 (2004).
[Crossref]

Kinoshita, S.

K. Maruyama, N. Yokoi, A. Takamata, and S. Kinoshita, “Effect of environmental conditions on tear dynamics in soft contact lens wearers,” Invest. Ophthalmol. Visual Sci. 45, 2563–2568 (2004).
[Crossref]

Knöner, G.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
[Crossref]

Koelling, K. W.

P. E. King-Smith, B. A. Fink, R. M. Hill, K. W. Koelling, and J. M. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29, 357–368 (2004).
[Crossref]

Lang, M. J.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Leach, J.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express 16, 15897–15902 (2008).
[Crossref]

Lee, H.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Lin, M. C.

T. F. Svitova and M. C. Lin, “Racial variations in interfacial behavior of lipids extracted from worn soft contact lenses,” Optom. Vis. Sci. 90, 1361–1369 (2013).
[Crossref]

Liu, Q.

Q. Liu and A. Prosperetti, “Wall effects on a rotating sphere,” J. Fluid Mech. 657, 1–21 (2010).
[Crossref]

MacKintosh, F. C.

D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKintosh, “Nonequilibrium mechanics of active cytoskeletal networks,” Science 315, 370–373 (2007).
[Crossref]

Maruyama, K.

K. Maruyama, N. Yokoi, A. Takamata, and S. Kinoshita, “Effect of environmental conditions on tear dynamics in soft contact lens wearers,” Invest. Ophthalmol. Visual Sci. 45, 2563–2568 (2004).
[Crossref]

Mas, J.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10, 046006 (2013).
[Crossref]

Mason, T. G.

T. M. Squires and T. G. Mason, “Fluid mechanics of microrheology,” Annu. Rev. Fluid Mech. 42, 413–438 (2010).
[Crossref]

D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91, 4296–4305 (2006).
[Crossref]

Z. Cheng and T. G. Mason, “Rotational diffusion microrheology,” Phys. Rev. Lett. 90, 018304 (2003).
[Crossref]

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74, 1250–1253 (1995).
[Crossref]

Matsudaira, P.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Mizuno, D.

D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKintosh, “Nonequilibrium mechanics of active cytoskeletal networks,” Science 315, 370–373 (2007).
[Crossref]

Murphy, P. J.

M. E. Johnson and P. J. Murphy, “Changes in the tear film and ocular surface from dry eye syndrome,” Prog. Retinal Eye Res. 23, 449–474 (2004).
[Crossref]

Mushfique, H.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

Netti, P. A.

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, “Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements,” J. Opt. A 11, 034016 (2009).
[Crossref]

Nichols, K. K.

C. G. Begley, B. Caffery, and K. K. Nichols, “Responses of contact lens wearers to a dry eye survey,” Optom. Vis. Sci. 77, 40–46 (2000).
[Crossref]

Nicholson, T.

J. S. Bennett, L. J. Gibson, R. M. Kelly, E. Brousse, B. Baudisch, D. Preece, T. A. Nieminen, T. Nicholson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Spatially-resolved rotational microrheology with an optically-trapped sphere,” Sci. Rep. 3, 1759 (2013).
[Crossref]

Nieminen, T. A.

L. J. Gibson, S. Zhang, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Active rotational and translational microrheology beyond the linear spring regime,” Phys. Rev. E 95, 042608 (2017).
[Crossref]

J. S. Bennett, L. J. Gibson, R. M. Kelly, E. Brousse, B. Baudisch, D. Preece, T. A. Nieminen, T. Nicholson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Spatially-resolved rotational microrheology with an optically-trapped sphere,” Sci. Rep. 3, 1759 (2013).
[Crossref]

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25, 11672–11679 (2009).
[Crossref]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. 10, 115005 (2008).
[Crossref]

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
[Crossref]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[Crossref]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[Crossref]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[Crossref]

Oddershede, L. B.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10, 046006 (2013).
[Crossref]

Padgett, M.

Padgett, M. J.

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[Crossref]

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

Parkin, S. J.

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25, 11672–11679 (2009).
[Crossref]

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
[Crossref]

Persson, M.

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25, 11672–11679 (2009).
[Crossref]

Pesce, G.

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, “Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements,” J. Opt. A 11, 034016 (2009).
[Crossref]

Preece, D.

J. S. Bennett, L. J. Gibson, R. M. Kelly, E. Brousse, B. Baudisch, D. Preece, T. A. Nieminen, T. Nicholson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Spatially-resolved rotational microrheology with an optically-trapped sphere,” Sci. Rep. 3, 1759 (2013).
[Crossref]

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express 16, 15897–15902 (2008).
[Crossref]

Prosperetti, A.

Q. Liu and A. Prosperetti, “Wall effects on a rotating sphere,” J. Fluid Mech. 657, 1–21 (2010).
[Crossref]

Reihani, S. N. S.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10, 046006 (2013).
[Crossref]

Richardson, A. C.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10, 046006 (2013).
[Crossref]

Rubinsztein-Dunlop, H.

L. J. Gibson, S. Zhang, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Active rotational and translational microrheology beyond the linear spring regime,” Phys. Rev. E 95, 042608 (2017).
[Crossref]

J. S. Bennett, L. J. Gibson, R. M. Kelly, E. Brousse, B. Baudisch, D. Preece, T. A. Nieminen, T. Nicholson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Spatially-resolved rotational microrheology with an optically-trapped sphere,” Sci. Rep. 3, 1759 (2013).
[Crossref]

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25, 11672–11679 (2009).
[Crossref]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. 10, 115005 (2008).
[Crossref]

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
[Crossref]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[Crossref]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[Crossref]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[Crossref]

Ruocco, G.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

Rusciano, G.

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, “Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements,” J. Opt. A 11, 034016 (2009).
[Crossref]

Sasso, A.

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, “Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements,” J. Opt. A 11, 034016 (2009).
[Crossref]

Schmidt, C. F.

D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKintosh, “Nonequilibrium mechanics of active cytoskeletal networks,” Science 315, 370–373 (2007).
[Crossref]

Simpson, T. L.

J. Wang, D. Desmond Fonn, T. L. Simpson, and L. Jones, “Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 44, 2524–2528 (2003).
[Crossref]

Squires, T. M.

T. M. Squires and T. G. Mason, “Fluid mechanics of microrheology,” Annu. Rev. Fluid Mech. 42, 413–438 (2010).
[Crossref]

Stilgoe, A. B.

L. J. Gibson, S. Zhang, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Active rotational and translational microrheology beyond the linear spring regime,” Phys. Rev. E 95, 042608 (2017).
[Crossref]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. 10, 115005 (2008).
[Crossref]

Svitova, T. F.

T. F. Svitova and M. C. Lin, “Racial variations in interfacial behavior of lipids extracted from worn soft contact lenses,” Optom. Vis. Sci. 90, 1361–1369 (2013).
[Crossref]

Takamata, A.

K. Maruyama, N. Yokoi, A. Takamata, and S. Kinoshita, “Effect of environmental conditions on tear dynamics in soft contact lens wearers,” Invest. Ophthalmol. Visual Sci. 45, 2563–2568 (2004).
[Crossref]

Tam, B. K.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Tardin, C.

D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKintosh, “Nonequilibrium mechanics of active cytoskeletal networks,” Science 315, 370–373 (2007).
[Crossref]

Tarsa, P. B.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Tassieri, M.

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[Crossref]

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9, 2568–2575 (2009).
[Crossref]

Teitell, M. A.

D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91, 4296–4305 (2006).
[Crossref]

Tiffany, J. M.

P. E. King-Smith, B. A. Fink, R. M. Hill, K. W. Koelling, and J. M. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29, 357–368 (2004).
[Crossref]

J. M. Tiffany, “Viscoelastic properties of human tears and polymer solutions,” Adv. Exp. Med. Biol. 350, 267–270 (1994).
[Crossref]

J. M. Tiffany, “Composition and biophysical properties of the tear film: knowledge and uncertainty,” Adv. Exp. Med. Biol. 350, 231–238 (1994).
[Crossref]

J. M. Tiffany, “The viscosity of human tears,” Int. Ophthalmol. 15, 371–376 (1991).
[Crossref]

Tsubota, K.

K. Tsubota, “Tear dynamics and dry eye,” Prog. Retinal Eye Res. 17, 565–596 (1998).
[Crossref]

Vogel, R.

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25, 11672–11679 (2009).
[Crossref]

Waigh, T. A.

T. A. Waigh, “Microrheology of complex fluids,” Rep. Prog. Phys. 68, 685–742 (2005).
[Crossref]

Wang, J.

J. Wang, D. Desmond Fonn, T. L. Simpson, and L. Jones, “Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 44, 2524–2528 (2003).
[Crossref]

Warren, R.

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[Crossref]

Weihs, D.

D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91, 4296–4305 (2006).
[Crossref]

Weitz, D. A.

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74, 1250–1253 (1995).
[Crossref]

Wood, B.

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25, 11672–11679 (2009).
[Crossref]

Yao, A.

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9, 2568–2575 (2009).
[Crossref]

Yao, A. M.

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[Crossref]

Yokoi, N.

K. Maruyama, N. Yokoi, A. Takamata, and S. Kinoshita, “Effect of environmental conditions on tear dynamics in soft contact lens wearers,” Invest. Ophthalmol. Visual Sci. 45, 2563–2568 (2004).
[Crossref]

Zhang, S.

L. J. Gibson, S. Zhang, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Active rotational and translational microrheology beyond the linear spring regime,” Phys. Rev. E 95, 042608 (2017).
[Crossref]

Adv. Exp. Med. Biol. (2)

J. M. Tiffany, “Composition and biophysical properties of the tear film: knowledge and uncertainty,” Adv. Exp. Med. Biol. 350, 231–238 (1994).
[Crossref]

J. M. Tiffany, “Viscoelastic properties of human tears and polymer solutions,” Adv. Exp. Med. Biol. 350, 267–270 (1994).
[Crossref]

Annu. Rev. Fluid Mech. (1)

T. M. Squires and T. G. Mason, “Fluid mechanics of microrheology,” Annu. Rev. Fluid Mech. 42, 413–438 (2010).
[Crossref]

Biophys. J. (1)

D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91, 4296–4305 (2006).
[Crossref]

Curr. Eye Res. (1)

P. E. King-Smith, B. A. Fink, R. M. Hill, K. W. Koelling, and J. M. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29, 357–368 (2004).
[Crossref]

Int. Ophthalmol. (1)

J. M. Tiffany, “The viscosity of human tears,” Int. Ophthalmol. 15, 371–376 (1991).
[Crossref]

Invest. Ophthalmol. Visual Sci. (2)

J. Wang, D. Desmond Fonn, T. L. Simpson, and L. Jones, “Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 44, 2524–2528 (2003).
[Crossref]

K. Maruyama, N. Yokoi, A. Takamata, and S. Kinoshita, “Effect of environmental conditions on tear dynamics in soft contact lens wearers,” Invest. Ophthalmol. Visual Sci. 45, 2563–2568 (2004).
[Crossref]

J. Fluid Mech. (1)

Q. Liu and A. Prosperetti, “Wall effects on a rotating sphere,” J. Fluid Mech. 657, 1–21 (2010).
[Crossref]

J. Mod. Opt. (1)

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[Crossref]

J. Opt. (2)

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. 10, 115005 (2008).
[Crossref]

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

J. Opt. A (2)

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, “Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements,” J. Opt. A 11, 034016 (2009).
[Crossref]

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Lab Chip (1)

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9, 2568–2575 (2009).
[Crossref]

Langmuir (1)

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25, 11672–11679 (2009).
[Crossref]

Opt. Express (1)

Optom. Vis. Sci. (2)

T. F. Svitova and M. C. Lin, “Racial variations in interfacial behavior of lipids extracted from worn soft contact lenses,” Optom. Vis. Sci. 90, 1361–1369 (2013).
[Crossref]

C. G. Begley, B. Caffery, and K. K. Nichols, “Responses of contact lens wearers to a dry eye survey,” Optom. Vis. Sci. 77, 40–46 (2000).
[Crossref]

Phys. Biol. (1)

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10, 046006 (2013).
[Crossref]

Phys. Rev. A (1)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[Crossref]

Phys. Rev. E (4)

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
[Crossref]

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

L. J. Gibson, S. Zhang, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Active rotational and translational microrheology beyond the linear spring regime,” Phys. Rev. E 95, 042608 (2017).
[Crossref]

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[Crossref]

Phys. Rev. Lett. (3)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[Crossref]

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74, 1250–1253 (1995).
[Crossref]

Z. Cheng and T. G. Mason, “Rotational diffusion microrheology,” Phys. Rev. Lett. 90, 018304 (2003).
[Crossref]

Prog. Retinal Eye Res. (2)

M. E. Johnson and P. J. Murphy, “Changes in the tear film and ocular surface from dry eye syndrome,” Prog. Retinal Eye Res. 23, 449–474 (2004).
[Crossref]

K. Tsubota, “Tear dynamics and dry eye,” Prog. Retinal Eye Res. 17, 565–596 (1998).
[Crossref]

Quart. J. Mech. Appl. Math. (1)

M. Chaoui and F. Feuillebois, “Creeping flow around a sphere in a shear flow close to a wall,” Quart. J. Mech. Appl. Math. 56, 381–410 (2003).
[Crossref]

Rep. Prog. Phys. (1)

T. A. Waigh, “Microrheology of complex fluids,” Rep. Prog. Phys. 68, 685–742 (2005).
[Crossref]

Sci. Rep. (1)

J. S. Bennett, L. J. Gibson, R. M. Kelly, E. Brousse, B. Baudisch, D. Preece, T. A. Nieminen, T. Nicholson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Spatially-resolved rotational microrheology with an optically-trapped sphere,” Sci. Rep. 3, 1759 (2013).
[Crossref]

Science (1)

D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKintosh, “Nonequilibrium mechanics of active cytoskeletal networks,” Science 315, 370–373 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental apparatus. In the passive process, a vaterite probe particle is trapped in a linearly polarized beam for a sufficiently long time while it undergoes rotational Brownian motion about the beam axis. In the active process, the particle is held in different orientations due to the different directions of polarization of two linearly polarized traps. The transient angular displacement is created by means of two AOMs alternately switching on/off every few seconds. DM indicates a dichroic mirror. Camera (CAM) allows imaging of the optical trap.

Fig. 2.
Fig. 2.

Typical time record of the trajectory of and the optical torque on a 3 μm diameter particle flipping between trap1 and trap2 repeatedly switching every 4 s in water (red) and 25% by weight Celluvisc solution (blue). (a) Signals from the He–Ne detectors show the transient angular displacements as a particle flips between the two traps. The particle suspended in water flips from trap1 to trap2 very quickly (0.02  s), while it takes longer to flip in the Celluvisc solution (1  s). The difference between the viscoelastic natures of the two fluids is clear. (b) The data for the same particle are collected from IR detectors. This indicates that the experimentally measured maximum torque efficiencies on the particle in water and Celluvisc solutions are the same. The optical torque is small when the particle undergoes rotational Brownian diffusion within one trap. When the initial trap is turned off and the second turned on simultaneously, a sudden torque is applied on the particle. The peaks result from the angle between the directions of polarization of the two traps being more than π/4 (at which angle the maximum torque occurs). (c) From a single flip in water, the angle is tracked via the He–Ne laser and compared with the torque efficiency measured from the trapping laser. The measured values (red dots) show excellent agreement with the least squares fit (solid black line) of the expected nonlinear optical torque (τ) model τ(ϕ)sin(2(ϕ0ϕ)), where ϕ is the angular position of the vaterite probe particle such that ϕ=0 at the start of the flip, and ϕ0=π/3 is the angle between the directions of polarization of the two traps, and thus the angle traversed during the flip. Since the angle ϕ0 is greater than the angle at which the maximum torque occurs, the optical torque initially increases with the angular displacement of the particle, and then decreases. The maximum torque is achieved at the angular displacement ϕ0ϕ=π/4.

Fig. 3.
Fig. 3.

Storage (G) and loss (G) moduli versus frequency of a solution of water, and 25% w/w of Celluvisc in water. (a) The loss modulus of water is measured using both passive (black) and active (blue) methods. The storage modulus is not shown, as it is zero in water. (b) The complex shear modulus of a solution of 25% w/w of Celluvisc in water is measured by means of both passive and active microrheology. All data show a clear overlapping region of agreement between passive and active methods, and also show excellent agreement with conventional macrorheological measurements [storage (dots) and loss (circles) moduli].

Fig. 4.
Fig. 4.

(a)–(c) Comparison of the complex shear modulus of tear films of two subjects. (a) and (b) show the loss modulus (lines) and storage modulus (dash lines) versus frequency measured by means of both active rotational microrheology and rotational Brownian motion for the two subjects, respectively. The individual curves represent averages of three measurements taken at three different times of day. (c) The full viscoelastic spectrum is obtained by combing the results shown in (a) for low-frequency and (b) for high-frequency. (d)–(f) The variation of the complex shear modulus [loss modulus (lines) and storage modulus (dash lines)] versus frequency of tear films during the day. (d)–(e) The complex shear moduli are obtained using active and passive methods, respectively. Each line is the average value of results for the two subjects. (f) The complex shear modulus plotted on the same scale as in (d) and (e), showing that the low-frequency spectrum agrees well with the high-frequency spectrum.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϕ(t)=ϕ(t)ϕ(t+t)ϕ(t)2.
ϕ˜(ω)=0ϕ(t)eiωtdt,
G*(ω)=χ8πa3[iωϕ˜(ω)1iωϕ˜(ω)].
0=0tζ(tt)ϕ˙(t)dt+χ2sin(2ϕ),
ψ=tanϕtanϕ0.
0=0tζ(tt)ψ˙(t)dt+χψ,
G*(ω)=χ8πa3[iωψ˜(ω)1iωψ˜(ω)].

Metrics