Abstract

Plasmonic metamolecules have many peculiar properties and have been applied in biological and materials science such as in reconfigurable 3D building blocks for complex nano-architectures and imaging probes for high-resolution sensing. In these applications, fast detection of the bond angles of the sub-wavelength metamolecules is highly desired. However, angle detection is not the same as orientation detection. The two orientations must be determined simultaneously, and common orientation sensors can only measure one. In this work, we propose and demonstrate a method to resolve the bond angle of a plasmonic metamolecule composed of three spherical nanoparticles. The detection of the bond angle is achieved via modulation depth analysis of polarization-resolved dark-field images. The underlying mechanism is found to be the opposing responses of the longitudinal and transversal bonding modes to the polarization variation of the incident light. In addition, the spectrally degenerate structures are further distinguished by the spot center localization method. This method may pave the way for practical application of plasmonic metamolecules.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deterministic assembly of metamolecules by atomic force microscope-enabled manipulation of ultra-smooth, super-spherical gold nanoparticles

Minwoo Kim, Seungwoo Lee, Joohyun Lee, Dong Kwan Kim, Yoon Jo Hwang, Gaehang Lee, Gi-Ra Yi, and Young Jae Song
Opt. Express 23(10) 12766-12776 (2015)

Controlling plasmon-induced transparency of graphene metamolecules with external magnetic field

Jian-Qiang Liu, Yu-Xiu Zhou, Li Li, Pan Wang, and Anatoly V. Zayats
Opt. Express 23(10) 12524-12532 (2015)

Angle-resolved reflectance and surface plasmonics of the MAX phases

Oleksandr Kyriienko and Ivan A. Shelykh
Opt. Lett. 36(20) 3966-3968 (2011)

References

  • View by:
  • |
  • |
  • |

  1. V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
    [Crossref]
  2. T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501 (2011).
    [Crossref]
  3. P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
    [Crossref]
  4. F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alu, and X. Q. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8, 95–99 (2013).
    [Crossref]
  5. N. Born, I. Al-Naib, C. Jansen, T. Ozaki, R. Morandotti, and M. Koch, “Excitation of multiple trapped-eigenmodes in terahertz metamolecule lattices,” Appl. Phys. Lett. 104, 101107 (2014).
    [Crossref]
  6. K. Q. Le, A. Alu, and J. Bai, “Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers,” J. Appl. Phys. 117, 023118 (2015).
    [Crossref]
  7. P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–134 (2012).
    [Crossref]
  8. J. A. Scholl, A. Garcia-Etxarri, G. Aguirregabiria, R. Esteban, T. C. Narayan, A. Leen Koh, J. Aizpurua, and J. A. Dionne, “Evolution of plasmonic metamolecule modes in the quantum tunneling regime,” ACS Nano 10, 1346–1354 (2016).
    [Crossref]
  9. S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 1908 (2012).
    [Crossref]
  10. A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13, 862–866 (2014).
    [Crossref]
  11. C. Sonnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
    [Crossref]
  12. W.-S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. USA 107, 2781–2786 (2010).
    [Crossref]
  13. F. Shafiei, C. H. Wu, Y. W. Wu, A. B. Khanikaev, P. Putzke, A. Singh, X. Q. Li, and G. Shvets, “Plasmonic nano-protractor based on polarization spectro-tomography,” Nat. Photonics 7, 367–372 (2013).
    [Crossref]
  14. Editorial, “Artifacts of light,” Nat. Methods10, 1135 (2013).
    [Crossref]
  15. C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
    [Crossref]
  16. L. Xiao, Y. Qiao, Y. He, and E. S. Yeung, “Imaging translational and rotational diffusion of single anisotropic nanoparticles with planar illumination microscopy,” J. Am. Chem. Soc. 133, 10838–10645 (2011).
    [Crossref]
  17. D. Hu, J. Yu, K. Wong, B. Bagchi, P. J. Rossky, and P. F. Barbara, “Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations,” Nature 405, 1030–1033 (2000).
    [Crossref]
  18. B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. USA 104, 2667–2672 (2007).
    [Crossref]
  19. G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47–52 (2006).
    [Crossref]
  20. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
    [Crossref]
  21. T. Junno, K. Deppert, L. Montelius, and L. Samuelson, “Controlled manipulation of nanoparticles with an atomic force microscope,” Appl. Phys. Lett. 66, 3627–3629 (1995).
    [Crossref]
  22. S. Kim, D. C. Ratchford, and X. Li, “Atomic force microscope nanomanipulation with simultaneous visual guidance,” ACS Nano 3, 2989–2994 (2009).
    [Crossref]
  23. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
    [Crossref]
  24. D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110, 12302–12310 (2006).
    [Crossref]
  25. L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11, 2440–2445 (2011).
    [Crossref]
  26. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [Crossref]
  27. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref]
  28. L. Sun, T. Ma, S.-C. Yang, D.-K. Kim, G. Lee, J. Shi, I. Martinez, G.-R. Yi, G. Shvets, and X. Li, “The interplay between optical bianisotropy and magnetism in plasmonic metamolecules,” Nano Lett. 16, 4322–4328 (2016).
    [Crossref]

2016 (2)

J. A. Scholl, A. Garcia-Etxarri, G. Aguirregabiria, R. Esteban, T. C. Narayan, A. Leen Koh, J. Aizpurua, and J. A. Dionne, “Evolution of plasmonic metamolecule modes in the quantum tunneling regime,” ACS Nano 10, 1346–1354 (2016).
[Crossref]

L. Sun, T. Ma, S.-C. Yang, D.-K. Kim, G. Lee, J. Shi, I. Martinez, G.-R. Yi, G. Shvets, and X. Li, “The interplay between optical bianisotropy and magnetism in plasmonic metamolecules,” Nano Lett. 16, 4322–4328 (2016).
[Crossref]

2015 (1)

K. Q. Le, A. Alu, and J. Bai, “Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers,” J. Appl. Phys. 117, 023118 (2015).
[Crossref]

2014 (2)

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13, 862–866 (2014).
[Crossref]

N. Born, I. Al-Naib, C. Jansen, T. Ozaki, R. Morandotti, and M. Koch, “Excitation of multiple trapped-eigenmodes in terahertz metamolecule lattices,” Appl. Phys. Lett. 104, 101107 (2014).
[Crossref]

2013 (2)

F. Shafiei, C. H. Wu, Y. W. Wu, A. B. Khanikaev, P. Putzke, A. Singh, X. Q. Li, and G. Shvets, “Plasmonic nano-protractor based on polarization spectro-tomography,” Nat. Photonics 7, 367–372 (2013).
[Crossref]

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alu, and X. Q. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8, 95–99 (2013).
[Crossref]

2012 (2)

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–134 (2012).
[Crossref]

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 1908 (2012).
[Crossref]

2011 (4)

T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501 (2011).
[Crossref]

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

L. Xiao, Y. Qiao, Y. He, and E. S. Yeung, “Imaging translational and rotational diffusion of single anisotropic nanoparticles with planar illumination microscopy,” J. Am. Chem. Soc. 133, 10838–10645 (2011).
[Crossref]

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11, 2440–2445 (2011).
[Crossref]

2010 (2)

W.-S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. USA 107, 2781–2786 (2010).
[Crossref]

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[Crossref]

2009 (1)

S. Kim, D. C. Ratchford, and X. Li, “Atomic force microscope nanomanipulation with simultaneous visual guidance,” ACS Nano 3, 2989–2994 (2009).
[Crossref]

2008 (2)

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[Crossref]

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

2007 (1)

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. USA 104, 2667–2672 (2007).
[Crossref]

2006 (4)

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47–52 (2006).
[Crossref]

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110, 12302–12310 (2006).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

2005 (2)

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

C. Sonnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
[Crossref]

2000 (1)

D. Hu, J. Yu, K. Wong, B. Bagchi, P. J. Rossky, and P. F. Barbara, “Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations,” Nature 405, 1030–1033 (2000).
[Crossref]

1995 (1)

T. Junno, K. Deppert, L. Montelius, and L. Samuelson, “Controlled manipulation of nanoparticles with an atomic force microscope,” Appl. Phys. Lett. 66, 3627–3629 (1995).
[Crossref]

Aguirregabiria, G.

J. A. Scholl, A. Garcia-Etxarri, G. Aguirregabiria, R. Esteban, T. C. Narayan, A. Leen Koh, J. Aizpurua, and J. A. Dionne, “Evolution of plasmonic metamolecule modes in the quantum tunneling regime,” ACS Nano 10, 1346–1354 (2016).
[Crossref]

Aizpurua, J.

J. A. Scholl, A. Garcia-Etxarri, G. Aguirregabiria, R. Esteban, T. C. Narayan, A. Leen Koh, J. Aizpurua, and J. A. Dionne, “Evolution of plasmonic metamolecule modes in the quantum tunneling regime,” ACS Nano 10, 1346–1354 (2016).
[Crossref]

Albella, P.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

Alivisatos, A. P.

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. USA 104, 2667–2672 (2007).
[Crossref]

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47–52 (2006).
[Crossref]

C. Sonnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
[Crossref]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

Alkilany, A. M.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

Al-Naib, I.

N. Born, I. Al-Naib, C. Jansen, T. Ozaki, R. Morandotti, and M. Koch, “Excitation of multiple trapped-eigenmodes in terahertz metamolecule lattices,” Appl. Phys. Lett. 104, 101107 (2014).
[Crossref]

Alonso-Gonzalez, P.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

Alu, A.

K. Q. Le, A. Alu, and J. Bai, “Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers,” J. Appl. Phys. 117, 023118 (2015).
[Crossref]

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alu, and X. Q. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8, 95–99 (2013).
[Crossref]

Arju, N.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

Arzubiaga, L.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

Azad, A. K.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 1908 (2012).
[Crossref]

Bagchi, B.

D. Hu, J. Yu, K. Wong, B. Bagchi, P. J. Rossky, and P. F. Barbara, “Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations,” Nature 405, 1030–1033 (2000).
[Crossref]

Bai, J.

K. Q. Le, A. Alu, and J. Bai, “Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers,” J. Appl. Phys. 117, 023118 (2015).
[Crossref]

Barbara, P. F.

D. Hu, J. Yu, K. Wong, B. Bagchi, P. J. Rossky, and P. F. Barbara, “Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations,” Nature 405, 1030–1033 (2000).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Baxter, S. C.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

Bear, D. G.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47–52 (2006).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Bitzer, A.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[Crossref]

Boneberg, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Born, N.

N. Born, I. Al-Naib, C. Jansen, T. Ozaki, R. Morandotti, and M. Koch, “Excitation of multiple trapped-eigenmodes in terahertz metamolecule lattices,” Appl. Phys. Lett. 104, 101107 (2014).
[Crossref]

Brandl, D. W.

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110, 12302–12310 (2006).
[Crossref]

Bratschitsch, R.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[Crossref]

Casanova, F.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

Chang, W.-S.

W.-S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. USA 107, 2781–2786 (2010).
[Crossref]

Chen, F. F.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47–52 (2006).
[Crossref]

Chen, H.-T.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 1908 (2012).
[Crossref]

Chen, W. T.

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–134 (2012).
[Crossref]

Chuntonov, L.

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11, 2440–2445 (2011).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Deppert, K.

T. Junno, K. Deppert, L. Montelius, and L. Samuelson, “Controlled manipulation of nanoparticles with an atomic force microscope,” Appl. Phys. Lett. 66, 3627–3629 (1995).
[Crossref]

Dionne, J. A.

J. A. Scholl, A. Garcia-Etxarri, G. Aguirregabiria, R. Esteban, T. C. Narayan, A. Leen Koh, J. Aizpurua, and J. A. Dionne, “Evolution of plasmonic metamolecule modes in the quantum tunneling regime,” ACS Nano 10, 1346–1354 (2016).
[Crossref]

Esteban, R.

J. A. Scholl, A. Garcia-Etxarri, G. Aguirregabiria, R. Esteban, T. C. Narayan, A. Leen Koh, J. Aizpurua, and J. A. Dionne, “Evolution of plasmonic metamolecule modes in the quantum tunneling regime,” ACS Nano 10, 1346–1354 (2016).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[Crossref]

Garcia-Etxarri, A.

J. A. Scholl, A. Garcia-Etxarri, G. Aguirregabiria, R. Esteban, T. C. Narayan, A. Leen Koh, J. Aizpurua, and J. A. Dionne, “Evolution of plasmonic metamolecule modes in the quantum tunneling regime,” ACS Nano 10, 1346–1354 (2016).
[Crossref]

Gerion, D.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47–52 (2006).
[Crossref]

Goldsmith, E. C.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

Gole, A. M.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

Golmar, F.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

Govorov, A. O.

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13, 862–866 (2014).
[Crossref]

Gray, J. W.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47–52 (2006).
[Crossref]

Ha, J. W.

W.-S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. USA 107, 2781–2786 (2010).
[Crossref]

Halm, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[Crossref]

Haran, G.

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11, 2440–2445 (2011).
[Crossref]

Hartsfield, T.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alu, and X. Q. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8, 95–99 (2013).
[Crossref]

He, Y.

L. Xiao, Y. Qiao, Y. He, and E. S. Yeung, “Imaging translational and rotational diffusion of single anisotropic nanoparticles with planar illumination microscopy,” J. Am. Chem. Soc. 133, 10838–10645 (2011).
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Hillenbrand, R.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

Hsiao, C. T.

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–134 (2012).
[Crossref]

Hu, D.

D. Hu, J. Yu, K. Wong, B. Bagchi, P. J. Rossky, and P. F. Barbara, “Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations,” Nature 405, 1030–1033 (2000).
[Crossref]

Hueso, L. E.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

Jansen, C.

N. Born, I. Al-Naib, C. Jansen, T. Ozaki, R. Morandotti, and M. Koch, “Excitation of multiple trapped-eigenmodes in terahertz metamolecule lattices,” Appl. Phys. Lett. 104, 101107 (2014).
[Crossref]

Jenkins, S. D.

T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501 (2011).
[Crossref]

Jett, S. D.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47–52 (2006).
[Crossref]

Junno, T.

T. Junno, K. Deppert, L. Montelius, and L. Samuelson, “Controlled manipulation of nanoparticles with an atomic force microscope,” Appl. Phys. Lett. 66, 3627–3629 (1995).
[Crossref]

Kahl, M.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[Crossref]

Kao, T. S.

T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501 (2011).
[Crossref]

Khanikaev, A.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

Khanikaev, A. B.

F. Shafiei, C. H. Wu, Y. W. Wu, A. B. Khanikaev, P. Putzke, A. Singh, X. Q. Li, and G. Shvets, “Plasmonic nano-protractor based on polarization spectro-tomography,” Nat. Photonics 7, 367–372 (2013).
[Crossref]

Kim, D.-K.

L. Sun, T. Ma, S.-C. Yang, D.-K. Kim, G. Lee, J. Shi, I. Martinez, G.-R. Yi, G. Shvets, and X. Li, “The interplay between optical bianisotropy and magnetism in plasmonic metamolecules,” Nano Lett. 16, 4322–4328 (2016).
[Crossref]

Kim, S.

S. Kim, D. C. Ratchford, and X. Li, “Atomic force microscope nanomanipulation with simultaneous visual guidance,” ACS Nano 3, 2989–2994 (2009).
[Crossref]

Koch, M.

N. Born, I. Al-Naib, C. Jansen, T. Ozaki, R. Morandotti, and M. Koch, “Excitation of multiple trapped-eigenmodes in terahertz metamolecule lattices,” Appl. Phys. Lett. 104, 101107 (2014).
[Crossref]

Kunchakarra, S.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47–52 (2006).
[Crossref]

Kuo, P.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[Crossref]

Kuzyk, A.

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13, 862–866 (2014).
[Crossref]

Le, K. Q.

K. Q. Le, A. Alu, and J. Bai, “Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers,” J. Appl. Phys. 117, 023118 (2015).
[Crossref]

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alu, and X. Q. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8, 95–99 (2013).
[Crossref]

Lee, G.

L. Sun, T. Ma, S.-C. Yang, D.-K. Kim, G. Lee, J. Shi, I. Martinez, G.-R. Yi, G. Shvets, and X. Li, “The interplay between optical bianisotropy and magnetism in plasmonic metamolecules,” Nano Lett. 16, 4322–4328 (2016).
[Crossref]

Lee, L. P.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47–52 (2006).
[Crossref]

Leen Koh, A.

J. A. Scholl, A. Garcia-Etxarri, G. Aguirregabiria, R. Esteban, T. C. Narayan, A. Leen Koh, J. Aizpurua, and J. A. Dionne, “Evolution of plasmonic metamolecule modes in the quantum tunneling regime,” ACS Nano 10, 1346–1354 (2016).
[Crossref]

Leiderer, P.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[Crossref]

Leitenstorfer, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[Crossref]

Li, X.

L. Sun, T. Ma, S.-C. Yang, D.-K. Kim, G. Lee, J. Shi, I. Martinez, G.-R. Yi, G. Shvets, and X. Li, “The interplay between optical bianisotropy and magnetism in plasmonic metamolecules,” Nano Lett. 16, 4322–4328 (2016).
[Crossref]

S. Kim, D. C. Ratchford, and X. Li, “Atomic force microscope nanomanipulation with simultaneous visual guidance,” ACS Nano 3, 2989–2994 (2009).
[Crossref]

Li, X. Q.

F. Shafiei, C. H. Wu, Y. W. Wu, A. B. Khanikaev, P. Putzke, A. Singh, X. Q. Li, and G. Shvets, “Plasmonic nano-protractor based on polarization spectro-tomography,” Nat. Photonics 7, 367–372 (2013).
[Crossref]

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alu, and X. Q. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8, 95–99 (2013).
[Crossref]

Liedl, T.

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13, 862–866 (2014).
[Crossref]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Link, S.

W.-S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. USA 107, 2781–2786 (2010).
[Crossref]

Liphardt, J.

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. USA 104, 2667–2672 (2007).
[Crossref]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

Liu, A. Q.

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–134 (2012).
[Crossref]

Liu, G. L.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47–52 (2006).
[Crossref]

Liu, N.

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13, 862–866 (2014).
[Crossref]

Liu, X.-X.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alu, and X. Q. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8, 95–99 (2013).
[Crossref]

Ma, T.

L. Sun, T. Ma, S.-C. Yang, D.-K. Kim, G. Lee, J. Shi, I. Martinez, G.-R. Yi, G. Shvets, and X. Li, “The interplay between optical bianisotropy and magnetism in plasmonic metamolecules,” Nano Lett. 16, 4322–4328 (2016).
[Crossref]

Martinez, I.

L. Sun, T. Ma, S.-C. Yang, D.-K. Kim, G. Lee, J. Shi, I. Martinez, G.-R. Yi, G. Shvets, and X. Li, “The interplay between optical bianisotropy and magnetism in plasmonic metamolecules,” Nano Lett. 16, 4322–4328 (2016).
[Crossref]

Mastroianni, A.

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. USA 104, 2667–2672 (2007).
[Crossref]

Merlein, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[Crossref]

Mirin, N. A.

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110, 12302–12310 (2006).
[Crossref]

Montelius, L.

T. Junno, K. Deppert, L. Montelius, and L. Samuelson, “Controlled manipulation of nanoparticles with an atomic force microscope,” Appl. Phys. Lett. 66, 3627–3629 (1995).
[Crossref]

Monticone, F.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alu, and X. Q. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8, 95–99 (2013).
[Crossref]

Morandotti, R.

N. Born, I. Al-Naib, C. Jansen, T. Ozaki, R. Morandotti, and M. Koch, “Excitation of multiple trapped-eigenmodes in terahertz metamolecule lattices,” Appl. Phys. Lett. 104, 101107 (2014).
[Crossref]

Mukherjee, B.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47–52 (2006).
[Crossref]

Murphy, C. J.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

Nam, S.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 1908 (2012).
[Crossref]

Narayan, T. C.

J. A. Scholl, A. Garcia-Etxarri, G. Aguirregabiria, R. Esteban, T. C. Narayan, A. Leen Koh, J. Aizpurua, and J. A. Dionne, “Evolution of plasmonic metamolecule modes in the quantum tunneling regime,” ACS Nano 10, 1346–1354 (2016).
[Crossref]

Nordlander, P.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110, 12302–12310 (2006).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Ozaki, T.

N. Born, I. Al-Naib, C. Jansen, T. Ozaki, R. Morandotti, and M. Koch, “Excitation of multiple trapped-eigenmodes in terahertz metamolecule lattices,” Appl. Phys. Lett. 104, 101107 (2014).
[Crossref]

Papasimakis, N.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[Crossref]

Park, Y.-S.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 1908 (2012).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Plum, E.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[Crossref]

Putzke, P.

F. Shafiei, C. H. Wu, Y. W. Wu, A. B. Khanikaev, P. Putzke, A. Singh, X. Q. Li, and G. Shvets, “Plasmonic nano-protractor based on polarization spectro-tomography,” Nat. Photonics 7, 367–372 (2013).
[Crossref]

Qiao, Y.

L. Xiao, Y. Qiao, Y. He, and E. S. Yeung, “Imaging translational and rotational diffusion of single anisotropic nanoparticles with planar illumination microscopy,” J. Am. Chem. Soc. 133, 10838–10645 (2011).
[Crossref]

Ratchford, D. C.

S. Kim, D. C. Ratchford, and X. Li, “Atomic force microscope nanomanipulation with simultaneous visual guidance,” ACS Nano 3, 2989–2994 (2009).
[Crossref]

Reinhard, B. M.

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. USA 104, 2667–2672 (2007).
[Crossref]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

Rho, J.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 1908 (2012).
[Crossref]

Rossky, P. J.

D. Hu, J. Yu, K. Wong, B. Bagchi, P. J. Rossky, and P. F. Barbara, “Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations,” Nature 405, 1030–1033 (2000).
[Crossref]

Ruostekoski, J.

T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501 (2011).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Samuelson, L.

T. Junno, K. Deppert, L. Montelius, and L. Samuelson, “Controlled manipulation of nanoparticles with an atomic force microscope,” Appl. Phys. Lett. 66, 3627–3629 (1995).
[Crossref]

Sarriugarte, P.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

Schnell, M.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

Scholl, J. A.

J. A. Scholl, A. Garcia-Etxarri, G. Aguirregabiria, R. Esteban, T. C. Narayan, A. Leen Koh, J. Aizpurua, and J. A. Dionne, “Evolution of plasmonic metamolecule modes in the quantum tunneling regime,” ACS Nano 10, 1346–1354 (2016).
[Crossref]

Schreiber, R.

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13, 862–866 (2014).
[Crossref]

Schwartz, J. L.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Sell, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[Crossref]

Shafiei, F.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alu, and X. Q. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8, 95–99 (2013).
[Crossref]

F. Shafiei, C. H. Wu, Y. W. Wu, A. B. Khanikaev, P. Putzke, A. Singh, X. Q. Li, and G. Shvets, “Plasmonic nano-protractor based on polarization spectro-tomography,” Nat. Photonics 7, 367–372 (2013).
[Crossref]

Sheikholeslami, S.

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. USA 104, 2667–2672 (2007).
[Crossref]

Shi, J.

L. Sun, T. Ma, S.-C. Yang, D.-K. Kim, G. Lee, J. Shi, I. Martinez, G.-R. Yi, G. Shvets, and X. Li, “The interplay between optical bianisotropy and magnetism in plasmonic metamolecules,” Nano Lett. 16, 4322–4328 (2016).
[Crossref]

Shvets, G.

L. Sun, T. Ma, S.-C. Yang, D.-K. Kim, G. Lee, J. Shi, I. Martinez, G.-R. Yi, G. Shvets, and X. Li, “The interplay between optical bianisotropy and magnetism in plasmonic metamolecules,” Nano Lett. 16, 4322–4328 (2016).
[Crossref]

F. Shafiei, C. H. Wu, Y. W. Wu, A. B. Khanikaev, P. Putzke, A. Singh, X. Q. Li, and G. Shvets, “Plasmonic nano-protractor based on polarization spectro-tomography,” Nat. Photonics 7, 367–372 (2013).
[Crossref]

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

Singh, A.

F. Shafiei, C. H. Wu, Y. W. Wu, A. B. Khanikaev, P. Putzke, A. Singh, X. Q. Li, and G. Shvets, “Plasmonic nano-protractor based on polarization spectro-tomography,” Nat. Photonics 7, 367–372 (2013).
[Crossref]

Singh, R.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 1908 (2012).
[Crossref]

Sisco, P. N.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

Slaughter, L. S.

W.-S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. USA 107, 2781–2786 (2010).
[Crossref]

Sobhani, H.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

Sonnichsen, C.

C. Sonnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
[Crossref]

Sönnichsen, C.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Stone, J. W.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

Sun, G.

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–134 (2012).
[Crossref]

Sun, L.

L. Sun, T. Ma, S.-C. Yang, D.-K. Kim, G. Lee, J. Shi, I. Martinez, G.-R. Yi, G. Shvets, and X. Li, “The interplay between optical bianisotropy and magnetism in plasmonic metamolecules,” Nano Lett. 16, 4322–4328 (2016).
[Crossref]

Taylor, A. J.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 1908 (2012).
[Crossref]

Tsai, D. P.

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–134 (2012).
[Crossref]

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[Crossref]

Walther, M.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[Crossref]

Wong, K.

D. Hu, J. Yu, K. Wong, B. Bagchi, P. J. Rossky, and P. F. Barbara, “Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations,” Nature 405, 1030–1033 (2000).
[Crossref]

Wu, C.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

Wu, C. H.

F. Shafiei, C. H. Wu, Y. W. Wu, A. B. Khanikaev, P. Putzke, A. Singh, X. Q. Li, and G. Shvets, “Plasmonic nano-protractor based on polarization spectro-tomography,” Nat. Photonics 7, 367–372 (2013).
[Crossref]

Wu, P. C.

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–134 (2012).
[Crossref]

Wu, Y. W.

F. Shafiei, C. H. Wu, Y. W. Wu, A. B. Khanikaev, P. Putzke, A. Singh, X. Q. Li, and G. Shvets, “Plasmonic nano-protractor based on polarization spectro-tomography,” Nat. Photonics 7, 367–372 (2013).
[Crossref]

Xiao, L.

L. Xiao, Y. Qiao, Y. He, and E. S. Yeung, “Imaging translational and rotational diffusion of single anisotropic nanoparticles with planar illumination microscopy,” J. Am. Chem. Soc. 133, 10838–10645 (2011).
[Crossref]

Yang, K.-Y.

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–134 (2012).
[Crossref]

Yang, S.-C.

L. Sun, T. Ma, S.-C. Yang, D.-K. Kim, G. Lee, J. Shi, I. Martinez, G.-R. Yi, G. Shvets, and X. Li, “The interplay between optical bianisotropy and magnetism in plasmonic metamolecules,” Nano Lett. 16, 4322–4328 (2016).
[Crossref]

Yeung, E. S.

L. Xiao, Y. Qiao, Y. He, and E. S. Yeung, “Imaging translational and rotational diffusion of single anisotropic nanoparticles with planar illumination microscopy,” J. Am. Chem. Soc. 133, 10838–10645 (2011).
[Crossref]

Yi, G.-R.

L. Sun, T. Ma, S.-C. Yang, D.-K. Kim, G. Lee, J. Shi, I. Martinez, G.-R. Yi, G. Shvets, and X. Li, “The interplay between optical bianisotropy and magnetism in plasmonic metamolecules,” Nano Lett. 16, 4322–4328 (2016).
[Crossref]

Yin, X.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 1908 (2012).
[Crossref]

Yin, Y.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47–52 (2006).
[Crossref]

Yu, J.

D. Hu, J. Yu, K. Wong, B. Bagchi, P. J. Rossky, and P. F. Barbara, “Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations,” Nature 405, 1030–1033 (2000).
[Crossref]

Zhang, H.

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13, 862–866 (2014).
[Crossref]

Zhang, S.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 1908 (2012).
[Crossref]

Zhang, X.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 1908 (2012).
[Crossref]

Zheludev, N. I.

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–134 (2012).
[Crossref]

T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501 (2011).
[Crossref]

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[Crossref]

Zhou, J.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 1908 (2012).
[Crossref]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Zuschlag, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[Crossref]

Acc. Chem. Res. (1)

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

ACS Nano (2)

J. A. Scholl, A. Garcia-Etxarri, G. Aguirregabiria, R. Esteban, T. C. Narayan, A. Leen Koh, J. Aizpurua, and J. A. Dionne, “Evolution of plasmonic metamolecule modes in the quantum tunneling regime,” ACS Nano 10, 1346–1354 (2016).
[Crossref]

S. Kim, D. C. Ratchford, and X. Li, “Atomic force microscope nanomanipulation with simultaneous visual guidance,” ACS Nano 3, 2989–2994 (2009).
[Crossref]

Appl. Phys. Lett. (2)

T. Junno, K. Deppert, L. Montelius, and L. Samuelson, “Controlled manipulation of nanoparticles with an atomic force microscope,” Appl. Phys. Lett. 66, 3627–3629 (1995).
[Crossref]

N. Born, I. Al-Naib, C. Jansen, T. Ozaki, R. Morandotti, and M. Koch, “Excitation of multiple trapped-eigenmodes in terahertz metamolecule lattices,” Appl. Phys. Lett. 104, 101107 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

L. Xiao, Y. Qiao, Y. He, and E. S. Yeung, “Imaging translational and rotational diffusion of single anisotropic nanoparticles with planar illumination microscopy,” J. Am. Chem. Soc. 133, 10838–10645 (2011).
[Crossref]

J. Appl. Phys. (1)

K. Q. Le, A. Alu, and J. Bai, “Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers,” J. Appl. Phys. 117, 023118 (2015).
[Crossref]

J. Phys. Chem. B (1)

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110, 12302–12310 (2006).
[Crossref]

Nano Lett. (4)

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11, 2440–2445 (2011).
[Crossref]

L. Sun, T. Ma, S.-C. Yang, D.-K. Kim, G. Lee, J. Shi, I. Martinez, G.-R. Yi, G. Shvets, and X. Li, “The interplay between optical bianisotropy and magnetism in plasmonic metamolecules,” Nano Lett. 16, 4322–4328 (2016).
[Crossref]

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922–3926 (2011).
[Crossref]

C. Sonnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
[Crossref]

Nanophotonics (1)

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophotonics 1, 131–134 (2012).
[Crossref]

Nat. Biotechnol. (1)

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

Nat. Commun. (1)

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 1908 (2012).
[Crossref]

Nat. Mater. (1)

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13, 862–866 (2014).
[Crossref]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Nat. Nanotechnol. (2)

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47–52 (2006).
[Crossref]

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alu, and X. Q. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8, 95–99 (2013).
[Crossref]

Nat. Photonics (2)

F. Shafiei, C. H. Wu, Y. W. Wu, A. B. Khanikaev, P. Putzke, A. Singh, X. Q. Li, and G. Shvets, “Plasmonic nano-protractor based on polarization spectro-tomography,” Nat. Photonics 7, 367–372 (2013).
[Crossref]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[Crossref]

Nature (1)

D. Hu, J. Yu, K. Wong, B. Bagchi, P. J. Rossky, and P. F. Barbara, “Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations,” Nature 405, 1030–1033 (2000).
[Crossref]

Phys. Rev. Lett. (2)

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104, 223901 (2010).
[Crossref]

T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501 (2011).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. USA 104, 2667–2672 (2007).
[Crossref]

W.-S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. USA 107, 2781–2786 (2010).
[Crossref]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Other (1)

Editorial, “Artifacts of light,” Nat. Methods10, 1135 (2013).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       Extended data

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Illustration of sample assembly and M value measurement. (a) Schematic diagram of assembly method for the Au NP cluster via AFM manipulation. (b) Dark-field image of the fabricated sample. Scale bar: 20 μm. Inset shows the AFM image of an assembled metamolecule composed of three 60 nm Au NPs. Bond angle θ=110°. Scale bar: 150 nm. (c) Scattering images of the metamolecule when it is the brightest and the darkest as the polarization angle φ of the incident light being rotated from 0 to 180° anticlockwise, where 0° is along the horizontal axis. Wavelength range of the signal collected by the camera is 450–800 nm. Measured M value is 0.395. (d) Simulated scattering intensity versus incident light polarization angle φ of the same metamolecule. Simulated M value is 0.409.

Fig. 2.
Fig. 2.

Determining the metamolecule bond angle and orientation based on modulation depth analysis. (a) Trimers with varying angles assembled. (b) Experimental results of trimers with angles 180°, 110°, and 87°. Insets show the dark-field image evolution of the individual trimers as a function of illumination polarization angle. (c) Simulated polarization dependence of total scattering intensity for trimers with varying angles. The minimum of each curve indicates the orientation of the trimer angle bisector, i.e., the orientation of the metamolecule. (d) Modulation depth M of trimer with different bond angles. Dots represent the experimental data, and dashed curve is extracted from simulation results in (c).

Fig. 3.
Fig. 3.

Modal analysis of the scattering spectra of the metamolecules. (a) AFM images of the trimer with bond angle θ=120°. Arrows illustrate the typical transversal bonding mode (red) and the longitudinal bonding mode (blue). (b) Polarization-dependent scattering spectra of the metamolecule obtained from experiment. (c) Spectral peak intensities versus incident polarization angle φ. (d)–(f) Corresponding simulated results for comparison. Results for trimers with other bond angles can be found in Supplement 1.

Fig. 4.
Fig. 4.

Removal of structure degeneracy of symmetric metamolecules. (a) Illustration of the spot center localization method. Polarization of the incident light is rotated from horizontal to vertical direction. Blue spot denotes the equivalent dipole location of the longitudinal bonding mode when the polarization angle is 135°. The red and magenta spots represent the equivalent dipole location after mode interference under 0° and 90° polarized incident light, respectively. (b) Simulated electric field distribution of the longitudinal and transversal bonding modes recorded from the monitor plane 500 nm above the L-shape metamolecule, which is highlighted in the black dashed box in (a). Red arrows represent the polarization angle of the incident light. White dashed lines denotes the reference frame, with the horizontal (x) axis and vertical (y) axis along the two arms of the trimer. X and Y are the coordinates of the spot center. (c) AFM image of assembled structure: an L-shape metamolecule whose bond angle is 90°. The inset is the enlarged view of the metamolecule. The two dimers on the left and the bottom work as the reference frame to correct image drift. (d) Measured results of the spot center shift under the polarization angle 0° (red) and 90° (magenta). Simulated results are also shown in green circles, by integrating all the modes. The dashed arrows denote the moving path of the spot center with polarization angles rotated anticlockwise. The results of 7-shape metamolecule can be obtained by rotating images (b), (c), and (d) 180°.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M=ImaxIminImax+Imin,
I=Il+It=Cl+Alcos2(φ+φ0)+Ilb+Ct+Atcos2(φ+π2+φ0)+Itb,
Imax=Cl+Ct+(AlAt)+IbImin=Cl+Ct(AlAt)+Ib.
M=ImaxIminImax+IminAlAtAl+At+Ib.

Metrics