Abstract

The Faraday effect, caused by a magnetic-field-induced change in the optical properties, takes place in a vast variety of systems from a single atomic layer of graphenes to huge galaxies. Currently it plays a pivotal role in many applications such as the manipulation of light and the probing of magnetic fields and materials’ properties. Basically, this effect causes a polarization rotation of light during its propagation along the magnetic field in a medium. Here, we report an extreme case of the Faraday effect where a linearly polarized ultrashort laser pulse splits in time into two circularly polarized pulses of opposite handedness during its propagation in a highly magnetized plasma. This offers a new degree of freedom for manipulating ultrashort and ultrahigh-power laser pulses. Together with the technologies of ultra-strong magnetic fields, it may pave the way for novel optical devices such as magnetized plasma polarizers. In addition, it may offer a powerful means to measure strong magnetic fields in laser-produced plasmas.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theory of the Faraday effect with weak laser pulses

Betsy M. Harvey and Frank C. Spano
J. Opt. Soc. Am. B 11(7) 1177-1185 (1994)

Effect of an electron plasma wave on the propagation of an ultrashort laser pulse

Zheng-ming Sheng, Jin-xiu Ma, Zhi-zhan Xu, and Wei Yu
J. Opt. Soc. Am. B 10(1) 122-129 (1993)

Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics

Takashi Arikawa, Xiangfeng Wang, Alexey A. Belyanin, and Junichiro Kono
Opt. Express 20(17) 19484-19492 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Faraday, “On the magnetization of light and the illumination of magnetic lines of force,” Philos. Trans. R. Soc. London 136, 1–20 (1846).
    [Crossref]
  2. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  3. M. Liu and X. Zhang, “Nano-optics: plasmon-boosted magneto-optics,” Nat. Photonics 7, 429–430 (2013).
    [Crossref]
  4. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, 1984).
  5. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
    [Crossref]
  6. L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
    [Crossref]
  7. C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
    [Crossref]
  8. R. M. G. M. Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Simulations of efficient Raman amplification into the multipetawatt regime,” Nat. Phys. 7, 87–92 (2011).
    [Crossref]
  9. U. Klein and A. Fletcher, Galactic and Intergalactic Magnetic Fields (Springer, 2015).
  10. A. Brandenburg and K. Subramanian, “Astrophysical magnetic fields and nonlinear dynamo theory,” Phys. Rep. 417, 1–209 (2005).
    [Crossref]
  11. X. H. Yang, W. Yu, H. Xu, M. Y. Yu, Z. Y. Ge, B. B. Xu, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and M. Borghesi, “Propagation of intense laser pulses in strongly magnetized plasmas,” Appl. Phys. Lett. 106, 224103 (2015).
    [Crossref]
  12. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  13. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [Crossref]
  14. High magnetic field science and its application in the United States: current status and future directions, http://www.nap.edu/catalog.php?record_id=18355 .
  15. U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
    [Crossref]
  16. S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
    [Crossref]
  17. H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
    [Crossref]
  18. S. Eliezer, H. Hora, G. Korn, N. Nissim, and J. M. M. Val, “Avalanche proton-boron fusion based on elastic nuclear collisions,” Phys. Plasmas 23, 050704 (2016).
    [Crossref]
  19. G. H. Miley, H. Hora, and G. Kirchhoff, “Reactor for boron fusion with picosecond ultrahigh power laser pulses and ultrahigh magnetic field trapping,” J. Phys. 717, 012095 (2016).
    [Crossref]
  20. R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342–351 (2002).
    [Crossref]
  21. J. Tinbergen, Astronomical Polarimetry (Cambridge University, 1996).
  22. P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College, 2000).
  23. H. Hora, Laser Plasma Physics (SPIE, 2016).
  24. O. Shorokhov, A. Pukhov, and I. Kostyukov, “Self-compression of laser pulses in plasma,” Phys. Rev. Lett. 91, 265002 (2003).
    [Crossref]
  25. D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
    [Crossref]
  26. H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012).
    [Crossref]
  27. A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
    [Crossref]
  28. Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
    [Crossref]
  29. S. M. Weng, M. Liu, Z. M. Sheng, M. Murakami, M. Chen, L. L. Yu, and J. Zhang, “Dense blocks of energetic ions driven by multi-petawatt lasers,” Sci. Rep. 6, 22150 (2016).
    [Crossref]
  30. T. M. Antonsen and P. Mora, “Self-focusing and Raman scattering of laser pulses in tenuous plasmas,” Phys. Rev. Lett. 69, 2204–2207 (1992).
    [Crossref]
  31. E. Esarey, J. Krall, and P. Sprangle, “Envelope analysis of intense laser pulse self-modulation in plasmas,” Phys. Rev. Lett. 72, 2887–2890 (1994).
    [Crossref]
  32. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
    [Crossref]
  33. S. Eliezer, The Interaction of High-Power Lasers with Plasmas (Institute of Physics, 2002).
  34. S. M. Weng, Z. M. Sheng, and J. Zhang, “Inverse bremsstrahlung absorption with nonlinear effects of high laser intensity and non-Maxwellian distribution,” Phys. Rev. E 80, 056406 (2009).
    [Crossref]
  35. W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Magnetically assisted fast ignition,” Phys. Rev. Lett. 114, 015001 (2015).
    [Crossref]
  36. D. Grischkowsky, “Adiabatic following and slow optical pulse propagation in rubidium vapor,” Phys. Rev. A 7, 2096–2102 (1973).
    [Crossref]
  37. R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
    [Crossref]
  38. P. Gibbon, “Harmonic generation by femtosecond laser-solid interaction: a coherent “water-window” light source?” Phys. Rev. Lett. 76, 50–53 (1996).
    [Crossref]
  39. U. Teubner and P. Gibbon, “High-order harmonics from laser-irradiated plasma surfaces,” Rev. Mod. Phys. 81, 445–479 (2009).
    [Crossref]
  40. W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Tunable circularly polarized terahertz radiation from magnetized gas plasma,” Phys. Rev. Lett. 114, 253901 (2015).
    [Crossref]

2016 (5)

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref]

S. Eliezer, H. Hora, G. Korn, N. Nissim, and J. M. M. Val, “Avalanche proton-boron fusion based on elastic nuclear collisions,” Phys. Plasmas 23, 050704 (2016).
[Crossref]

G. H. Miley, H. Hora, and G. Kirchhoff, “Reactor for boron fusion with picosecond ultrahigh power laser pulses and ultrahigh magnetic field trapping,” J. Phys. 717, 012095 (2016).
[Crossref]

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

S. M. Weng, M. Liu, Z. M. Sheng, M. Murakami, M. Chen, L. L. Yu, and J. Zhang, “Dense blocks of energetic ions driven by multi-petawatt lasers,” Sci. Rep. 6, 22150 (2016).
[Crossref]

2015 (4)

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Magnetically assisted fast ignition,” Phys. Rev. Lett. 114, 015001 (2015).
[Crossref]

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Tunable circularly polarized terahertz radiation from magnetized gas plasma,” Phys. Rev. Lett. 114, 253901 (2015).
[Crossref]

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

X. H. Yang, W. Yu, H. Xu, M. Y. Yu, Z. Y. Ge, B. B. Xu, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and M. Borghesi, “Propagation of intense laser pulses in strongly magnetized plasmas,” Appl. Phys. Lett. 106, 224103 (2015).
[Crossref]

2013 (4)

M. Liu and X. Zhang, “Nano-optics: plasmon-boosted magneto-optics,” Nat. Photonics 7, 429–430 (2013).
[Crossref]

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

2012 (1)

H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012).
[Crossref]

2011 (1)

R. M. G. M. Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Simulations of efficient Raman amplification into the multipetawatt regime,” Nat. Phys. 7, 87–92 (2011).
[Crossref]

2009 (2)

S. M. Weng, Z. M. Sheng, and J. Zhang, “Inverse bremsstrahlung absorption with nonlinear effects of high laser intensity and non-Maxwellian distribution,” Phys. Rev. E 80, 056406 (2009).
[Crossref]

U. Teubner and P. Gibbon, “High-order harmonics from laser-irradiated plasma surfaces,” Rev. Mod. Phys. 81, 445–479 (2009).
[Crossref]

2007 (2)

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref]

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
[Crossref]

2006 (1)

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

2005 (1)

A. Brandenburg and K. Subramanian, “Astrophysical magnetic fields and nonlinear dynamo theory,” Phys. Rep. 417, 1–209 (2005).
[Crossref]

2004 (1)

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

2003 (2)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

O. Shorokhov, A. Pukhov, and I. Kostyukov, “Self-compression of laser pulses in plasma,” Phys. Rev. Lett. 91, 265002 (2003).
[Crossref]

2002 (1)

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342–351 (2002).
[Crossref]

1996 (1)

P. Gibbon, “Harmonic generation by femtosecond laser-solid interaction: a coherent “water-window” light source?” Phys. Rev. Lett. 76, 50–53 (1996).
[Crossref]

1994 (1)

E. Esarey, J. Krall, and P. Sprangle, “Envelope analysis of intense laser pulse self-modulation in plasmas,” Phys. Rev. Lett. 72, 2887–2890 (1994).
[Crossref]

1992 (1)

T. M. Antonsen and P. Mora, “Self-focusing and Raman scattering of laser pulses in tenuous plasmas,” Phys. Rev. Lett. 69, 2204–2207 (1992).
[Crossref]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

1973 (1)

D. Grischkowsky, “Adiabatic following and slow optical pulse propagation in rubidium vapor,” Phys. Rev. A 7, 2096–2102 (1973).
[Crossref]

1846 (1)

M. Faraday, “On the magnetization of light and the illumination of magnetic lines of force,” Philos. Trans. R. Soc. London 136, 1–20 (1846).
[Crossref]

Adam, J. C.

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342–351 (2002).
[Crossref]

André, Y.-B.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Antonsen, T. M.

T. M. Antonsen and P. Mora, “Self-focusing and Raman scattering of laser pulses in tenuous plasmas,” Phys. Rev. Lett. 69, 2204–2207 (1992).
[Crossref]

Arita, Y.

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

Audebert, P.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
[Crossref]

Azechi, H.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

Bee, F. N.

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

Beluze, A.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

Bingham, R.

R. M. G. M. Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Simulations of efficient Raman amplification into the multipetawatt regime,” Nat. Phys. 7, 87–92 (2011).
[Crossref]

Borghesi, M.

X. H. Yang, W. Yu, H. Xu, M. Y. Yu, Z. Y. Ge, B. B. Xu, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and M. Borghesi, “Propagation of intense laser pulses in strongly magnetized plasmas,” Appl. Phys. Lett. 106, 224103 (2015).
[Crossref]

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

Bougeard, M.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
[Crossref]

Bourayou, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Boyd, R. W.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref]

Brandenburg, A.

A. Brandenburg and K. Subramanian, “Astrophysical magnetic fields and nonlinear dynamo theory,” Phys. Rep. 417, 1–209 (2005).
[Crossref]

Bulanov, S. V.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

Cairns, R. A.

R. M. G. M. Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Simulations of efficient Raman amplification into the multipetawatt regime,” Nat. Phys. 7, 87–92 (2011).
[Crossref]

Camacho, R. M.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref]

Ceccotti, T.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
[Crossref]

Chen, F. F.

F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, 1984).

Chen, M.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref]

S. M. Weng, M. Liu, Z. M. Sheng, M. Murakami, M. Chen, L. L. Yu, and J. Zhang, “Dense blocks of energetic ions driven by multi-petawatt lasers,” Sci. Rep. 6, 22150 (2016).
[Crossref]

Chériaux, G.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

Clark, E. L.

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

d’Oliveira, P.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
[Crossref]

Daido, H.

H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012).
[Crossref]

Dangor, A. E.

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

Decyk, V. K.

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342–351 (2002).
[Crossref]

Deng, S.

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342–351 (2002).
[Crossref]

Dholakia, K.

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

Druon, F.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

Eliezer, S.

S. Eliezer, H. Hora, G. Korn, N. Nissim, and J. M. M. Val, “Avalanche proton-boron fusion based on elastic nuclear collisions,” Phys. Plasmas 23, 050704 (2016).
[Crossref]

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

S. Eliezer, The Interaction of High-Power Lasers with Plasmas (Institute of Physics, 2002).

Esarey, E.

E. Esarey, J. Krall, and P. Sprangle, “Envelope analysis of intense laser pulse self-modulation in plasmas,” Phys. Rev. Lett. 72, 2887–2890 (1994).
[Crossref]

Evans, R. G.

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

Faraday, M.

M. Faraday, “On the magnetization of light and the illumination of magnetic lines of force,” Philos. Trans. R. Soc. London 136, 1–20 (1846).
[Crossref]

Fiúza, F.

R. M. G. M. Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Simulations of efficient Raman amplification into the multipetawatt regime,” Nat. Phys. 7, 87–92 (2011).
[Crossref]

Fletcher, A.

U. Klein and A. Fletcher, Galactic and Intergalactic Magnetic Fields (Springer, 2015).

Fonseca, R. A.

R. M. G. M. Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Simulations of efficient Raman amplification into the multipetawatt regime,” Nat. Phys. 7, 87–92 (2011).
[Crossref]

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342–351 (2002).
[Crossref]

Fréneaux, A.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

Frey, S.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Fujioka, S.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

Ge, Z. Y.

X. H. Yang, W. Yu, H. Xu, M. Y. Yu, Z. Y. Ge, B. B. Xu, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and M. Borghesi, “Propagation of intense laser pulses in strongly magnetized plasmas,” Appl. Phys. Lett. 106, 224103 (2015).
[Crossref]

Geindre, J.-P.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
[Crossref]

Georges, P.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

Gibbon, P.

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Magnetically assisted fast ignition,” Phys. Rev. Lett. 114, 015001 (2015).
[Crossref]

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Tunable circularly polarized terahertz radiation from magnetized gas plasma,” Phys. Rev. Lett. 114, 253901 (2015).
[Crossref]

U. Teubner and P. Gibbon, “High-order harmonics from laser-irradiated plasma surfaces,” Rev. Mod. Phys. 81, 445–479 (2009).
[Crossref]

P. Gibbon, “Harmonic generation by femtosecond laser-solid interaction: a coherent “water-window” light source?” Phys. Rev. Lett. 76, 50–53 (1996).
[Crossref]

P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College, 2000).

Giuffrida, L.

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

Gopal, A.

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

Grischkowsky, D.

D. Grischkowsky, “Adiabatic following and slow optical pulse propagation in rubidium vapor,” Phys. Rev. A 7, 2096–2102 (1973).
[Crossref]

Haines, M. G.

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

Hironaka, Y.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

Hora, H.

S. Eliezer, H. Hora, G. Korn, N. Nissim, and J. M. M. Val, “Avalanche proton-boron fusion based on elastic nuclear collisions,” Phys. Plasmas 23, 050704 (2016).
[Crossref]

G. H. Miley, H. Hora, and G. Kirchhoff, “Reactor for boron fusion with picosecond ultrahigh power laser pulses and ultrahigh magnetic field trapping,” J. Phys. 717, 012095 (2016).
[Crossref]

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

H. Hora, Laser Plasma Physics (SPIE, 2016).

Howell, J. C.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref]

Ishihara, K.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

Jaroszynski, D. A.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref]

Johzaki, T.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

Jungwirth, K.

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

Kasparian, J.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Katsouleas, T.

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342–351 (2002).
[Crossref]

Kirchhoff, G.

G. H. Miley, H. Hora, and G. Kirchhoff, “Reactor for boron fusion with picosecond ultrahigh power laser pulses and ultrahigh magnetic field trapping,” J. Phys. 717, 012095 (2016).
[Crossref]

Klein, U.

U. Klein and A. Fletcher, Galactic and Intergalactic Magnetic Fields (Springer, 2015).

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Korn, G.

S. Eliezer, H. Hora, G. Korn, N. Nissim, and J. M. M. Val, “Avalanche proton-boron fusion based on elastic nuclear collisions,” Phys. Plasmas 23, 050704 (2016).
[Crossref]

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

Kostyukov, I.

O. Shorokhov, A. Pukhov, and I. Kostyukov, “Self-compression of laser pulses in plasma,” Phys. Rev. Lett. 91, 265002 (2003).
[Crossref]

Krall, J.

E. Esarey, J. Krall, and P. Sprangle, “Envelope analysis of intense laser pulse self-modulation in plasmas,” Phys. Rev. Lett. 72, 2887–2890 (1994).
[Crossref]

Krasa, J.

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

Krushelnick, K.

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

Lalousis, P.

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

Le Blanc, C.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

Lebas, N.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

Lee, S.

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342–351 (2002).
[Crossref]

Levy, A.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
[Crossref]

Li, Y. T.

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Magnetically assisted fast ignition,” Phys. Rev. Lett. 114, 015001 (2015).
[Crossref]

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Tunable circularly polarized terahertz radiation from magnetized gas plasma,” Phys. Rev. Lett. 114, 253901 (2015).
[Crossref]

Liu, M.

S. M. Weng, M. Liu, Z. M. Sheng, M. Murakami, M. Chen, L. L. Yu, and J. Zhang, “Dense blocks of energetic ions driven by multi-petawatt lasers,” Sci. Rep. 6, 22150 (2016).
[Crossref]

M. Liu and X. Zhang, “Nano-optics: plasmon-boosted magneto-optics,” Nat. Photonics 7, 429–430 (2013).
[Crossref]

Lu, W.

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342–351 (2002).
[Crossref]

Ma, Y. Y.

X. H. Yang, W. Yu, H. Xu, M. Y. Yu, Z. Y. Ge, B. B. Xu, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and M. Borghesi, “Propagation of intense laser pulses in strongly magnetized plasmas,” Appl. Phys. Lett. 106, 224103 (2015).
[Crossref]

Macchi, A.

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

Mangles, S. P. D.

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

Margarone, D.

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

Marjoribanks, R.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
[Crossref]

Martin, L.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

Martin, P.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
[Crossref]

Mathieu, F.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

Mazilu, M.

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

Méjean, G.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Mennerat, G.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

Miley, G. H.

G. H. Miley, H. Hora, and G. Kirchhoff, “Reactor for boron fusion with picosecond ultrahigh power laser pulses and ultrahigh magnetic field trapping,” J. Phys. 717, 012095 (2016).
[Crossref]

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

Monot, P.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
[Crossref]

Mora, P.

T. M. Antonsen and P. Mora, “Self-focusing and Raman scattering of laser pulses in tenuous plasmas,” Phys. Rev. Lett. 69, 2204–2207 (1992).
[Crossref]

Mori, W. B.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref]

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342–351 (2002).
[Crossref]

Mourou, G.

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Mourou, G. A.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

Moustaizis, S.

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

Murakami, M.

S. M. Weng, M. Liu, Z. M. Sheng, M. Murakami, M. Chen, L. L. Yu, and J. Zhang, “Dense blocks of energetic ions driven by multi-petawatt lasers,” Sci. Rep. 6, 22150 (2016).
[Crossref]

Mysyrowicz, A.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Nakashima, H.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

Nishimura, H.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

Nishiuchi, M.

H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012).
[Crossref]

Nissim, N.

S. Eliezer, H. Hora, G. Korn, N. Nissim, and J. M. M. Val, “Avalanche proton-boron fusion based on elastic nuclear collisions,” Phys. Plasmas 23, 050704 (2016).
[Crossref]

Norreys, P. A.

R. M. G. M. Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Simulations of efficient Raman amplification into the multipetawatt regime,” Nat. Phys. 7, 87–92 (2011).
[Crossref]

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

Pack, M. V.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref]

Papadopoulos, D. N.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

Passoni, M.

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

Picciotto, A.

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

Pirozhkov, A. S.

H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012).
[Crossref]

Pukhov, A.

O. Shorokhov, A. Pukhov, and I. Kostyukov, “Self-compression of laser pulses in plasma,” Phys. Rev. Lett. 91, 265002 (2003).
[Crossref]

Qian, L. J.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref]

Quéré, F.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
[Crossref]

Ramirez, P.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

Réau, F.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
[Crossref]

Ren, C.

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342–351 (2002).
[Crossref]

Rodriguez, M.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Salmon, E.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Sauerbrey, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Schweinsberg, A.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref]

Shao, F. Q.

X. H. Yang, W. Yu, H. Xu, M. Y. Yu, Z. Y. Ge, B. B. Xu, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and M. Borghesi, “Propagation of intense laser pulses in strongly magnetized plasmas,” Appl. Phys. Lett. 106, 224103 (2015).
[Crossref]

Sheng, Z. M.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref]

S. M. Weng, M. Liu, Z. M. Sheng, M. Murakami, M. Chen, L. L. Yu, and J. Zhang, “Dense blocks of energetic ions driven by multi-petawatt lasers,” Sci. Rep. 6, 22150 (2016).
[Crossref]

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Magnetically assisted fast ignition,” Phys. Rev. Lett. 114, 015001 (2015).
[Crossref]

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Tunable circularly polarized terahertz radiation from magnetized gas plasma,” Phys. Rev. Lett. 114, 253901 (2015).
[Crossref]

S. M. Weng, Z. M. Sheng, and J. Zhang, “Inverse bremsstrahlung absorption with nonlinear effects of high laser intensity and non-Maxwellian distribution,” Phys. Rev. E 80, 056406 (2009).
[Crossref]

Shigemori, K.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

Shiraga, H.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

Shorokhov, O.

O. Shorokhov, A. Pukhov, and I. Kostyukov, “Self-compression of laser pulses in plasma,” Phys. Rev. Lett. 91, 265002 (2003).
[Crossref]

Silva, L. O.

R. M. G. M. Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Simulations of efficient Raman amplification into the multipetawatt regime,” Nat. Phys. 7, 87–92 (2011).
[Crossref]

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342–351 (2002).
[Crossref]

Sprangle, P.

E. Esarey, J. Krall, and P. Sprangle, “Envelope analysis of intense laser pulse self-modulation in plasmas,” Phys. Rev. Lett. 72, 2887–2890 (1994).
[Crossref]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Subramanian, K.

A. Brandenburg and K. Subramanian, “Astrophysical magnetic fields and nonlinear dynamo theory,” Phys. Rep. 417, 1–209 (2005).
[Crossref]

Sunahara, A.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

Tajima, T.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

Tatarakis, M.

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Teubner, U.

U. Teubner and P. Gibbon, “High-order harmonics from laser-irradiated plasma surfaces,” Rev. Mod. Phys. 81, 445–479 (2009).
[Crossref]

Thaury, C.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
[Crossref]

Tinbergen, J.

J. Tinbergen, Astronomical Polarimetry (Cambridge University, 1996).

Trines, R. M. G. M.

R. M. G. M. Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Simulations of efficient Raman amplification into the multipetawatt regime,” Nat. Phys. 7, 87–92 (2011).
[Crossref]

Tsung, F. S.

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342–351 (2002).
[Crossref]

Ullschmied, J.

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

Val, J. M. M.

S. Eliezer, H. Hora, G. Korn, N. Nissim, and J. M. M. Val, “Avalanche proton-boron fusion based on elastic nuclear collisions,” Phys. Plasmas 23, 050704 (2016).
[Crossref]

Wagner, U.

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

Wang, W. M.

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Magnetically assisted fast ignition,” Phys. Rev. Lett. 114, 015001 (2015).
[Crossref]

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Tunable circularly polarized terahertz radiation from magnetized gas plasma,” Phys. Rev. Lett. 114, 253901 (2015).
[Crossref]

Watanabe, T.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

Wei, M. S.

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

Weng, S. M.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref]

S. M. Weng, M. Liu, Z. M. Sheng, M. Murakami, M. Chen, L. L. Yu, and J. Zhang, “Dense blocks of energetic ions driven by multi-petawatt lasers,” Sci. Rep. 6, 22150 (2016).
[Crossref]

S. M. Weng, Z. M. Sheng, and J. Zhang, “Inverse bremsstrahlung absorption with nonlinear effects of high laser intensity and non-Maxwellian distribution,” Phys. Rev. E 80, 056406 (2009).
[Crossref]

Wille, H.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Wolf, J.-P.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Wöste, L.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Xu, B. B.

X. H. Yang, W. Yu, H. Xu, M. Y. Yu, Z. Y. Ge, B. B. Xu, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and M. Borghesi, “Propagation of intense laser pulses in strongly magnetized plasmas,” Appl. Phys. Lett. 106, 224103 (2015).
[Crossref]

Xu, H.

X. H. Yang, W. Yu, H. Xu, M. Y. Yu, Z. Y. Ge, B. B. Xu, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and M. Borghesi, “Propagation of intense laser pulses in strongly magnetized plasmas,” Appl. Phys. Lett. 106, 224103 (2015).
[Crossref]

Yamamoto, N.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

Yang, X. H.

X. H. Yang, W. Yu, H. Xu, M. Y. Yu, Z. Y. Ge, B. B. Xu, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and M. Borghesi, “Propagation of intense laser pulses in strongly magnetized plasmas,” Appl. Phys. Lett. 106, 224103 (2015).
[Crossref]

Yu, J.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Yu, L. L.

S. M. Weng, M. Liu, Z. M. Sheng, M. Murakami, M. Chen, L. L. Yu, and J. Zhang, “Dense blocks of energetic ions driven by multi-petawatt lasers,” Sci. Rep. 6, 22150 (2016).
[Crossref]

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref]

Yu, M. Y.

X. H. Yang, W. Yu, H. Xu, M. Y. Yu, Z. Y. Ge, B. B. Xu, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and M. Borghesi, “Propagation of intense laser pulses in strongly magnetized plasmas,” Appl. Phys. Lett. 106, 224103 (2015).
[Crossref]

Yu, W.

X. H. Yang, W. Yu, H. Xu, M. Y. Yu, Z. Y. Ge, B. B. Xu, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and M. Borghesi, “Propagation of intense laser pulses in strongly magnetized plasmas,” Appl. Phys. Lett. 106, 224103 (2015).
[Crossref]

Zepf, M.

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

Zhang, J.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref]

S. M. Weng, M. Liu, Z. M. Sheng, M. Murakami, M. Chen, L. L. Yu, and J. Zhang, “Dense blocks of energetic ions driven by multi-petawatt lasers,” Sci. Rep. 6, 22150 (2016).
[Crossref]

S. M. Weng, Z. M. Sheng, and J. Zhang, “Inverse bremsstrahlung absorption with nonlinear effects of high laser intensity and non-Maxwellian distribution,” Phys. Rev. E 80, 056406 (2009).
[Crossref]

Zhang, X.

M. Liu and X. Zhang, “Nano-optics: plasmon-boosted magneto-optics,” Nat. Photonics 7, 429–430 (2013).
[Crossref]

Zhang, Z.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

Zhao, Y.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref]

Zhuo, H. B.

X. H. Yang, W. Yu, H. Xu, M. Y. Yu, Z. Y. Ge, B. B. Xu, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and M. Borghesi, “Propagation of intense laser pulses in strongly magnetized plasmas,” Appl. Phys. Lett. 106, 224103 (2015).
[Crossref]

Zou, J. P.

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

Appl. Phys. Lett. (1)

X. H. Yang, W. Yu, H. Xu, M. Y. Yu, Z. Y. Ge, B. B. Xu, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and M. Borghesi, “Propagation of intense laser pulses in strongly magnetized plasmas,” Appl. Phys. Lett. 106, 224103 (2015).
[Crossref]

High Power Laser Sci. Eng. (1)

D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).
[Crossref]

J. Phys. (1)

G. H. Miley, H. Hora, and G. Kirchhoff, “Reactor for boron fusion with picosecond ultrahigh power laser pulses and ultrahigh magnetic field trapping,” J. Phys. 717, 012095 (2016).
[Crossref]

Laser Part. Beams (1)

H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses,” Laser Part. Beams 33, 607–619 (2015).
[Crossref]

Lect. Notes Comput. Sci. (1)

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, “OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342–351 (2002).
[Crossref]

Nat. Commun. (2)

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref]

Nat. Photonics (1)

M. Liu and X. Zhang, “Nano-optics: plasmon-boosted magneto-optics,” Nat. Photonics 7, 429–430 (2013).
[Crossref]

Nat. Phys. (2)

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).
[Crossref]

R. M. G. M. Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Simulations of efficient Raman amplification into the multipetawatt regime,” Nat. Phys. 7, 87–92 (2011).
[Crossref]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Philos. Trans. R. Soc. London (1)

M. Faraday, “On the magnetization of light and the illumination of magnetic lines of force,” Philos. Trans. R. Soc. London 136, 1–20 (1846).
[Crossref]

Phys. Plasmas (1)

S. Eliezer, H. Hora, G. Korn, N. Nissim, and J. M. M. Val, “Avalanche proton-boron fusion based on elastic nuclear collisions,” Phys. Plasmas 23, 050704 (2016).
[Crossref]

Phys. Rep. (1)

A. Brandenburg and K. Subramanian, “Astrophysical magnetic fields and nonlinear dynamo theory,” Phys. Rep. 417, 1–209 (2005).
[Crossref]

Phys. Rev. A (1)

D. Grischkowsky, “Adiabatic following and slow optical pulse propagation in rubidium vapor,” Phys. Rev. A 7, 2096–2102 (1973).
[Crossref]

Phys. Rev. E (2)

U. Wagner, M. Tatarakis, A. Gopal, F. N. Bee, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E 70, 026401 (2004).
[Crossref]

S. M. Weng, Z. M. Sheng, and J. Zhang, “Inverse bremsstrahlung absorption with nonlinear effects of high laser intensity and non-Maxwellian distribution,” Phys. Rev. E 80, 056406 (2009).
[Crossref]

Phys. Rev. Lett. (7)

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Magnetically assisted fast ignition,” Phys. Rev. Lett. 114, 015001 (2015).
[Crossref]

T. M. Antonsen and P. Mora, “Self-focusing and Raman scattering of laser pulses in tenuous plasmas,” Phys. Rev. Lett. 69, 2204–2207 (1992).
[Crossref]

E. Esarey, J. Krall, and P. Sprangle, “Envelope analysis of intense laser pulse self-modulation in plasmas,” Phys. Rev. Lett. 72, 2887–2890 (1994).
[Crossref]

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref]

P. Gibbon, “Harmonic generation by femtosecond laser-solid interaction: a coherent “water-window” light source?” Phys. Rev. Lett. 76, 50–53 (1996).
[Crossref]

O. Shorokhov, A. Pukhov, and I. Kostyukov, “Self-compression of laser pulses in plasma,” Phys. Rev. Lett. 91, 265002 (2003).
[Crossref]

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Tunable circularly polarized terahertz radiation from magnetized gas plasma,” Phys. Rev. Lett. 114, 253901 (2015).
[Crossref]

Rep. Prog. Phys. (1)

H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012).
[Crossref]

Rev. Mod. Phys. (3)

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

U. Teubner and P. Gibbon, “High-order harmonics from laser-irradiated plasma surfaces,” Rev. Mod. Phys. 81, 445–479 (2009).
[Crossref]

Sci. Rep. (2)

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).
[Crossref]

S. M. Weng, M. Liu, Z. M. Sheng, M. Murakami, M. Chen, L. L. Yu, and J. Zhang, “Dense blocks of energetic ions driven by multi-petawatt lasers,” Sci. Rep. 6, 22150 (2016).
[Crossref]

Science (1)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Other (9)

S. Eliezer, The Interaction of High-Power Lasers with Plasmas (Institute of Physics, 2002).

J. Tinbergen, Astronomical Polarimetry (Cambridge University, 1996).

P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College, 2000).

H. Hora, Laser Plasma Physics (SPIE, 2016).

High magnetic field science and its application in the United States: current status and future directions, http://www.nap.edu/catalog.php?record_id=18355 .

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, 1984).

U. Klein and A. Fletcher, Galactic and Intergalactic Magnetic Fields (Springer, 2015).

Supplementary Material (1)

NameDescription
» Visualization 1       Movie version of Fig. 5(a).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Sketch of the magnetic splitting of an ultrashort LP laser pulse, which is incident along the magnetic field B into plasma. The incident LP pulse will split into RCP and LCP subpulses due to their differential group velocities. The RCP subpulse follows the LCP subpulse in time. Here the electric field vector of the RCP pulse at a fixed position rotates clockwise in time as viewed along the wave vector of the laser pulse, and vice versa for the LCP pulse.

Fig. 2.
Fig. 2.

(a, b) Group velocities from Eqs. (2) and (3) for the LCP and RCP waves, respectively; (c) the difference in the group velocities, (d) the minimum field (ωc,min) required for an obvious magnetic splitting as a function of the frequency spread (Δω) of the pulse.

Fig. 3.
Fig. 3.

Stokes parameters from 1D PIC simulations with varying laser pulse duration tp and magnetic field B (a) at t=300  ps with tp=500  fs (Δω/ω00.0029) and B=50  T (ωc/ω00.005), (b) at t=30  ps with tp=500  fs and B=500  T, (c) at t=3  ps with tp=50  fs and B=500  T, and (d) at t=30  ps with tp=50  fs and B=50  T. The Stokes parameter I denotes the intensity regardless of polarization, Q and U describe the state of linear polarization, and V represents the circular polarization [21]. All parameters are normalized to the instantaneous peak intensity Imax. Here the laser intensity is low enough (the dimensionless amplitude a|eE/ωmec|=0.01) that the nonlinear effects [22,23] due to the laser field itself can be ignored.

Fig. 4.
Fig. 4.

Stokes parameters at t=333  fs with an extremely strong magnetic field B=6000  T (ωc/ω00.6). Other parameters are the same as those in Fig. 3(c).

Fig. 5.
Fig. 5.

(a) Isosurface of intensity I=I0/4 at t=5  ps (yellow ellipsoids). Ey and Ez cross sections at z=0 are given on the rear and the bottom of the box, respectively, while the right side displays the transversal distribution of the intensity. (b) The distributions of the Stokes parameters I, Q, U, and V on the x axis, where all parameters are normalized to the initial peak intensity I0. (c, d) The time evolutions of the endpoint of the electric-field vector E in the yz plane in the time intervals (c) 54λ<(ctx)<66λ and (d) 85λ<(ctx)<97λ; the arrows indicate that the electric-field vectors rotate anticlockwise and clockwise, respectively, as viewed along B. Here Ey and Ez are normalized to meωc/e.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

c2k2ω2=1ωp2ω2(1±ωc/ω),
vg,Lc=(1ωp2/ω21+ωc/ω)1/2[1ωcωp2/ω32(1+ωc/ω)2]1,
vg,Rc=(1ωp2/ω21ωc/ω)1/2[1+ωcωp2/ω32(1ωc/ω)2]1,
ts=vg,RΔvgtp,
Δvgc2nencωcω,
vg,R|ω=ω0+Δω/2<vg,L|ω=ω0Δω/2.
ωcωc,min=Δω
r02ωcω(nenc)1/2>λtpvg,R2π[P17.5GW]1/2.
Δnene<8ne(r0ωc)2nc(ctpω)2.

Metrics