Abstract

Fluorescent stand-alone laser particles that are implantable into biological tissues have the potential to enable novel optical imaging, diagnosis, and therapy. Here we demonstrate several types of biocompatible microlasers and their lasing action within biological systems. Dye-doped polystyrene beads were embedded in the cornea and optically pumped to generate narrowband emission. We fabricated microbeads with poly(lactic-co-glycolic acid) and poly(lactic acid)-substances approved for medical use-and demonstrate lasing from within tissues and whole blood. Furthermore, we demonstrate biocompatible cholesterol-derivative microdroplet lasers via self-assembly to an onion-like radially resonant photonic crystal structure. These types of implanted lasers may enable real-time monitoring of physiological information, such as temperature.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
    [Crossref]
  2. M. Humar, S. J. J. Kwok, M. Choi, S. Cho, A. K. Yetisen, and S.-H. Yun, “Towards biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
    [Crossref]
  3. Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. (Int. Ed.) 51, 1236–1239 (2012).
  4. M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics 9, 572–576 (2015).
    [Crossref]
  5. S. Cho, M. Humar, N. Martino, and S. H. Yun, “Laser particle stimulated emission microscopy,” Phys. Rev. Lett. 117, 193902 (2016).
    [Crossref]
  6. M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5, 406–410 (2011).
    [Crossref]
  7. M. Humar, M. C. Gather, and S.-H. Yun, “Cellular dye lasers: lasing thresholds and sensing in a planar resonator,” Opt. Express 23, 27865–27879 (2015).
    [Crossref]
  8. Y.-C. Chen, Q. Chen, T. Zhang, W. Wang, and X. Fan, “Versatile tissue lasers based on high-Q Fabry-Pérot microcavities,” Lab Chip 17, 538–548 (2017).
    [Crossref]
  9. M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. C. Gather, “Lasing within live cells containing intracellular optical micro-resonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
    [Crossref]
  10. H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [Crossref]
  11. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
    [Crossref]
  12. E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
    [Crossref]
  13. C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13, 2675–2678 (2013).
    [Crossref]
  14. Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15, 642–645 (2015).
    [Crossref]
  15. A. Jonas and A. Kiraz, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab Chip 14, 3093–3100 (2014).
    [Crossref]
  16. S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,” Adv. Mater. 25, 5943–5947 (2013).
    [Crossref]
  17. Y.-L. Sun, Z.-S. Hou, S.-M. Sun, B.-Y. Zheng, J.-F. Ku, W.-F. Dong, Q.-D. Chen, and H.-B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
    [Crossref]
  18. M. Humar and S. H. Yun, “Whispering-gallery-mode emission from biological luminescent protein microcavity assemblies,” Optica 4, 222–228 (2017).
    [Crossref]
  19. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref]
  20. M. Humar, A. Upadhya, and S. H. Yun, “Spectral reading of optical resonance-encoded cells in microfluidics,” Lab Chip 17, 2777–2784 (2017).
    [Crossref]
  21. S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
    [Crossref]
  22. V. D. Ta, S. Caixeiro, F. M. Fernandes, and R. Sapienza, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5, 1601022 (2017).
    [Crossref]
  23. S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
    [Crossref]
  24. S. Freiberg and X. X. Zhu, “Polymer microspheres for controlled drug release,” Int. J. Pharm. 282, 1–18 (2004).
    [Crossref]
  25. H. K. Makadia and S. J. Siegel, “Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier,” Polymers 3, 1377–1397 (2011).
    [Crossref]
  26. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
    [Crossref]
  27. M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
    [Crossref]
  28. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films 499, 322–328 (2006).
    [Crossref]
  29. C. F. Soon, M. Youseffi, N. Blagden, R. Berends, S. B. Lobo, F. A. Javid, and M. Denyer, “Characterization and biocompatibility study of nematic and cholesteryl liquid crystals,” in Proceedings of the World Congress on Engineering (2009), Vol. 2, pp. 1872–1875.
  30. C. F. Soon, W. I. W. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. T. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
    [Crossref]
  31. Y.-C. Chen, Q. Chen, and X. Fan, “Lasing in blood,” Optica 3, 809–815 (2016).
    [Crossref]
  32. D. Seč, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
    [Crossref]
  33. G. Posnjak, S. Čopar, and I. Muševič, “Points, skyrmions and torons in chiral nematic droplets,” Sci. Rep. 6, 26361 (2016).
    [Crossref]
  34. G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773–5778 (2011).
    [Crossref]
  35. M. Humar, F. Araoka, H. Takezoe, and I. Muševič, “Lasing properties of polymerized chiral nematic Bragg onion microlasers,” Opt. Express 24, 19237–19244 (2016).
    [Crossref]
  36. M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
    [Crossref]
  37. S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72, 227–232 (2012).
    [Crossref]
  38. P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules 39, 3986–3992 (2006).
    [Crossref]
  39. P. V. Shibaev, R. L. Sanford, D. Chiappetta, and P. Rivera, “Novel color changing pH sensors based on cholesteric polymers,” Mol. Cryst. Liq. Cryst. 479, 161–167/1199–1205 (2007).
    [Crossref]
  40. M. C. Gather and S. H. Yun, “Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers,” Nat. Commun. 5, 5722 (2014).
    [Crossref]
  41. Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14, 4590–4595 (2014).
    [Crossref]
  42. S. H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1, 0008 (2017).
    [Crossref]

2017 (7)

M. Humar, S. J. J. Kwok, M. Choi, S. Cho, A. K. Yetisen, and S.-H. Yun, “Towards biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

Y.-C. Chen, Q. Chen, T. Zhang, W. Wang, and X. Fan, “Versatile tissue lasers based on high-Q Fabry-Pérot microcavities,” Lab Chip 17, 538–548 (2017).
[Crossref]

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

M. Humar and S. H. Yun, “Whispering-gallery-mode emission from biological luminescent protein microcavity assemblies,” Optica 4, 222–228 (2017).
[Crossref]

M. Humar, A. Upadhya, and S. H. Yun, “Spectral reading of optical resonance-encoded cells in microfluidics,” Lab Chip 17, 2777–2784 (2017).
[Crossref]

V. D. Ta, S. Caixeiro, F. M. Fernandes, and R. Sapienza, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5, 1601022 (2017).
[Crossref]

S. H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1, 0008 (2017).
[Crossref]

2016 (7)

G. Posnjak, S. Čopar, and I. Muševič, “Points, skyrmions and torons in chiral nematic droplets,” Sci. Rep. 6, 26361 (2016).
[Crossref]

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Y.-C. Chen, Q. Chen, and X. Fan, “Lasing in blood,” Optica 3, 809–815 (2016).
[Crossref]

M. Humar, F. Araoka, H. Takezoe, and I. Muševič, “Lasing properties of polymerized chiral nematic Bragg onion microlasers,” Opt. Express 24, 19237–19244 (2016).
[Crossref]

M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

S. Cho, M. Humar, N. Martino, and S. H. Yun, “Laser particle stimulated emission microscopy,” Phys. Rev. Lett. 117, 193902 (2016).
[Crossref]

2015 (5)

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. C. Gather, “Lasing within live cells containing intracellular optical micro-resonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref]

M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics 9, 572–576 (2015).
[Crossref]

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15, 642–645 (2015).
[Crossref]

M. Humar, M. C. Gather, and S.-H. Yun, “Cellular dye lasers: lasing thresholds and sensing in a planar resonator,” Opt. Express 23, 27865–27879 (2015).
[Crossref]

Y.-L. Sun, Z.-S. Hou, S.-M. Sun, B.-Y. Zheng, J.-F. Ku, W.-F. Dong, Q.-D. Chen, and H.-B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref]

2014 (5)

C. F. Soon, W. I. W. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. T. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref]

A. Jonas and A. Kiraz, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab Chip 14, 3093–3100 (2014).
[Crossref]

X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
[Crossref]

M. C. Gather and S. H. Yun, “Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers,” Nat. Commun. 5, 5722 (2014).
[Crossref]

Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14, 4590–4595 (2014).
[Crossref]

2013 (2)

S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,” Adv. Mater. 25, 5943–5947 (2013).
[Crossref]

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13, 2675–2678 (2013).
[Crossref]

2012 (3)

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. (Int. Ed.) 51, 1236–1239 (2012).

D. Seč, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
[Crossref]

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72, 227–232 (2012).
[Crossref]

2011 (3)

H. K. Makadia and S. J. Siegel, “Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier,” Polymers 3, 1377–1397 (2011).
[Crossref]

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5, 406–410 (2011).
[Crossref]

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773–5778 (2011).
[Crossref]

2010 (2)

2008 (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

2007 (1)

P. V. Shibaev, R. L. Sanford, D. Chiappetta, and P. Rivera, “Novel color changing pH sensors based on cholesteric polymers,” Mol. Cryst. Liq. Cryst. 479, 161–167/1199–1205 (2007).
[Crossref]

2006 (2)

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films 499, 322–328 (2006).
[Crossref]

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules 39, 3986–3992 (2006).
[Crossref]

2004 (2)

S. Freiberg and X. X. Zhu, “Polymer microspheres for controlled drug release,” Int. J. Pharm. 282, 1–18 (2004).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[Crossref]

1999 (1)

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Araoka, F.

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Arts, R.

M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Bartolino, R.

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773–5778 (2011).
[Crossref]

Basri, H.

C. F. Soon, W. I. W. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. T. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref]

Berends, R.

C. F. Soon, M. Youseffi, N. Blagden, R. Berends, S. B. Lobo, F. A. Javid, and M. Denyer, “Characterization and biocompatibility study of nematic and cholesteryl liquid crystals,” in Proceedings of the World Congress on Engineering (2009), Vol. 2, pp. 1872–1875.

Berends, R. F.

C. F. Soon, W. I. W. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. T. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref]

Biris, A. S.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

Blagden, N.

C. F. Soon, W. I. W. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. T. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref]

C. F. Soon, M. Youseffi, N. Blagden, R. Berends, S. B. Lobo, F. A. Javid, and M. Denyer, “Characterization and biocompatibility study of nematic and cholesteryl liquid crystals,” in Proceedings of the World Congress on Engineering (2009), Vol. 2, pp. 1872–1875.

Braun, P. V.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Caixeiro, S.

V. D. Ta, S. Caixeiro, F. M. Fernandes, and R. Sapienza, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5, 1601022 (2017).
[Crossref]

Campbell, E. C.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. C. Gather, “Lasing within live cells containing intracellular optical micro-resonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref]

Cao, H.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Cao, W.

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules 39, 3986–3992 (2006).
[Crossref]

Chang, R.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Chen, Q.

Y.-C. Chen, Q. Chen, T. Zhang, W. Wang, and X. Fan, “Versatile tissue lasers based on high-Q Fabry-Pérot microcavities,” Lab Chip 17, 538–548 (2017).
[Crossref]

Y.-C. Chen, Q. Chen, and X. Fan, “Lasing in blood,” Optica 3, 809–815 (2016).
[Crossref]

Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14, 4590–4595 (2014).
[Crossref]

Chen, Q.-D.

Y.-L. Sun, Z.-S. Hou, S.-M. Sun, B.-Y. Zheng, J.-F. Ku, W.-F. Dong, Q.-D. Chen, and H.-B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref]

Chen, Y.-C.

Y.-C. Chen, Q. Chen, T. Zhang, W. Wang, and X. Fan, “Versatile tissue lasers based on high-Q Fabry-Pérot microcavities,” Lab Chip 17, 538–548 (2017).
[Crossref]

Y.-C. Chen, Q. Chen, and X. Fan, “Lasing in blood,” Optica 3, 809–815 (2016).
[Crossref]

Cheng, H.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Cheng, J.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Chiappetta, D.

P. V. Shibaev, R. L. Sanford, D. Chiappetta, and P. Rivera, “Novel color changing pH sensors based on cholesteric polymers,” Mol. Cryst. Liq. Cryst. 479, 161–167/1199–1205 (2007).
[Crossref]

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules 39, 3986–3992 (2006).
[Crossref]

Cho, S.

M. Humar, S. J. J. Kwok, M. Choi, S. Cho, A. K. Yetisen, and S.-H. Yun, “Towards biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

S. Cho, M. Humar, N. Martino, and S. H. Yun, “Laser particle stimulated emission microscopy,” Phys. Rev. Lett. 117, 193902 (2016).
[Crossref]

Choi, M.

M. Humar, S. J. J. Kwok, M. Choi, S. Cho, A. K. Yetisen, and S.-H. Yun, “Towards biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Choi, Y.

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15, 642–645 (2015).
[Crossref]

Chung, S.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Cipparrone, G.

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773–5778 (2011).
[Crossref]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]

Copar, S.

G. Posnjak, S. Čopar, and I. Muševič, “Points, skyrmions and torons in chiral nematic droplets,” Sci. Rep. 6, 26361 (2016).
[Crossref]

Denyer, M.

C. F. Soon, M. Youseffi, N. Blagden, R. Berends, S. B. Lobo, F. A. Javid, and M. Denyer, “Characterization and biocompatibility study of nematic and cholesteryl liquid crystals,” in Proceedings of the World Congress on Engineering (2009), Vol. 2, pp. 1872–1875.

Denyer, M. C. T.

C. F. Soon, W. I. W. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. T. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref]

Dong, W.-F.

Y.-L. Sun, Z.-S. Hou, S.-M. Sun, B.-Y. Zheng, J.-F. Ku, W.-F. Dong, Q.-D. Chen, and H.-B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref]

Fan, X.

Y.-C. Chen, Q. Chen, T. Zhang, W. Wang, and X. Fan, “Versatile tissue lasers based on high-Q Fabry-Pérot microcavities,” Lab Chip 17, 538–548 (2017).
[Crossref]

Y.-C. Chen, Q. Chen, and X. Fan, “Lasing in blood,” Optica 3, 809–815 (2016).
[Crossref]

Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14, 4590–4595 (2014).
[Crossref]

X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
[Crossref]

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. (Int. Ed.) 51, 1236–1239 (2012).

Fernandes, F. M.

V. D. Ta, S. Caixeiro, F. M. Fernandes, and R. Sapienza, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5, 1601022 (2017).
[Crossref]

Freiberg, S.

S. Freiberg and X. X. Zhu, “Polymer microspheres for controlled drug release,” Int. J. Pharm. 282, 1–18 (2004).
[Crossref]

Furumi, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films 499, 322–328 (2006).
[Crossref]

Galanzha, E. I.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

Gamble, P.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Gather, M. C.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. C. Gather, “Lasing within live cells containing intracellular optical micro-resonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref]

M. Humar, M. C. Gather, and S.-H. Yun, “Cellular dye lasers: lasing thresholds and sensing in a planar resonator,” Opt. Express 23, 27865–27879 (2015).
[Crossref]

M. C. Gather and S. H. Yun, “Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers,” Nat. Commun. 5, 5722 (2014).
[Crossref]

S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,” Adv. Mater. 25, 5943–5947 (2013).
[Crossref]

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5, 406–410 (2011).
[Crossref]

Green, M. M.

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules 39, 3986–3992 (2006).
[Crossref]

Gujar, A. D.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Hahn, S. K.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Harburg, D. V.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Harrington, W.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

Hernandez, R. J.

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773–5778 (2011).
[Crossref]

Ho, S.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Hou, Z.-S.

Y.-L. Sun, Z.-S. Hou, S.-M. Sun, B.-Y. Zheng, J.-F. Ku, W.-F. Dong, Q.-D. Chen, and H.-B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref]

Huang, Y.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Humar, M.

M. Humar, S. J. J. Kwok, M. Choi, S. Cho, A. K. Yetisen, and S.-H. Yun, “Towards biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

M. Humar, A. Upadhya, and S. H. Yun, “Spectral reading of optical resonance-encoded cells in microfluidics,” Lab Chip 17, 2777–2784 (2017).
[Crossref]

M. Humar and S. H. Yun, “Whispering-gallery-mode emission from biological luminescent protein microcavity assemblies,” Optica 4, 222–228 (2017).
[Crossref]

M. Humar, F. Araoka, H. Takezoe, and I. Muševič, “Lasing properties of polymerized chiral nematic Bragg onion microlasers,” Opt. Express 24, 19237–19244 (2016).
[Crossref]

S. Cho, M. Humar, N. Martino, and S. H. Yun, “Laser particle stimulated emission microscopy,” Phys. Rev. Lett. 117, 193902 (2016).
[Crossref]

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics 9, 572–576 (2015).
[Crossref]

M. Humar, M. C. Gather, and S.-H. Yun, “Cellular dye lasers: lasing thresholds and sensing in a planar resonator,” Opt. Express 23, 27865–27879 (2015).
[Crossref]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
[Crossref]

Hwang, S.-W.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Javid, F. A.

C. F. Soon, M. Youseffi, N. Blagden, R. Berends, S. B. Lobo, F. A. Javid, and M. Denyer, “Characterization and biocompatibility study of nematic and cholesteryl liquid crystals,” in Proceedings of the World Congress on Engineering (2009), Vol. 2, pp. 1872–1875.

Jeon, H.

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15, 642–645 (2015).
[Crossref]

Jonas, A.

A. Jonas and A. Kiraz, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab Chip 14, 3093–3100 (2014).
[Crossref]

Kado, S.

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72, 227–232 (2012).
[Crossref]

Kang, S.-K.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Karl, M.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. C. Gather, “Lasing within live cells containing intracellular optical micro-resonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref]

Kim, A. H.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Kim, J.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Kim, K. S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Kim, S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15, 642–645 (2015).
[Crossref]

Kimura, K.

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72, 227–232 (2012).
[Crossref]

Kiraz, A.

A. Jonas and A. Kiraz, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab Chip 14, 3093–3100 (2014).
[Crossref]

Kristensen, A.

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13, 2675–2678 (2013).
[Crossref]

Kronenberg, N. M.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. C. Gather, “Lasing within live cells containing intracellular optical micro-resonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref]

Krueger, N. A.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Ku, J.-F.

Y.-L. Sun, Z.-S. Hou, S.-M. Sun, B.-Y. Zheng, J.-F. Ku, W.-F. Dong, Q.-D. Chen, and H.-B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref]

Kuchyanov, A. S.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

Kwok, S. J. J.

M. Humar, S. J. J. Kwok, M. Choi, S. Cho, A. K. Yetisen, and S.-H. Yun, “Towards biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

S. H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1, 0008 (2017).
[Crossref]

Lee, C. H.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Lee, K.-M.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Lee, S. H.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Lee, S. M.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Lemmer, U.

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13, 2675–2678 (2013).
[Crossref]

Liehm, P.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. C. Gather, “Lasing within live cells containing intracellular optical micro-resonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref]

Liu, Z.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Lobo, S. B.

C. F. Soon, M. Youseffi, N. Blagden, R. Berends, S. B. Lobo, F. A. Javid, and M. Denyer, “Characterization and biocompatibility study of nematic and cholesteryl liquid crystals,” in Proceedings of the World Congress on Engineering (2009), Vol. 2, pp. 1872–1875.

Maier-Flaig, F.

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13, 2675–2678 (2013).
[Crossref]

Makadia, H. K.

H. K. Makadia and S. J. Siegel, “Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier,” Polymers 3, 1377–1397 (2011).
[Crossref]

Martino, N.

S. Cho, M. Humar, N. Martino, and S. H. Yun, “Laser particle stimulated emission microscopy,” Phys. Rev. Lett. 117, 193902 (2016).
[Crossref]

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films 499, 322–328 (2006).
[Crossref]

Mazzulla, A.

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773–5778 (2011).
[Crossref]

McCall, J. G.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Merkx, M.

M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Moirangthem, M.

M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Moreira, M.

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules 39, 3986–3992 (2006).
[Crossref]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]

Murphy, R. K. J.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Muševic, I.

Nakahara, Y.

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72, 227–232 (2012).
[Crossref]

Nayan, N.

C. F. Soon, W. I. W. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. T. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref]

Nedosekin, D. A.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

Nima, Z.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

Nizamoglu, S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,” Adv. Mater. 25, 5943–5947 (2013).
[Crossref]

Nolan, J.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

Omar, W. I. W.

C. F. Soon, W. I. W. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. T. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films 499, 322–328 (2006).
[Crossref]

Palffy-Muhoray, P.

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules 39, 3986–3992 (2006).
[Crossref]

Pane, A.

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773–5778 (2011).
[Crossref]

Park, G.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Parkhomenko, R. G.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

Plekhanov, A. I.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[Crossref]

Porenta, T.

D. Seč, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
[Crossref]

Posnjak, G.

G. Posnjak, S. Čopar, and I. Muševič, “Points, skyrmions and torons in chiral nematic droplets,” Sci. Rep. 6, 26361 (2016).
[Crossref]

Powis, S. J.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. C. Gather, “Lasing within live cells containing intracellular optical micro-resonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref]

Randolph, M.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Ravnik, M.

D. Seč, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
[Crossref]

Ray, W. Z.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Redmond, R. W.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Ritt, M.

Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14, 4590–4595 (2014).
[Crossref]

Rivera, P.

P. V. Shibaev, R. L. Sanford, D. Chiappetta, and P. Rivera, “Novel color changing pH sensors based on cholesteric polymers,” Mol. Cryst. Liq. Cryst. 479, 161–167/1199–1205 (2007).
[Crossref]

Rogers, J. A.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Sanford, R. L.

P. V. Shibaev, R. L. Sanford, D. Chiappetta, and P. Rivera, “Novel color changing pH sensors based on cholesteric polymers,” Mol. Cryst. Liq. Cryst. 479, 161–167/1199–1205 (2007).
[Crossref]

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules 39, 3986–3992 (2006).
[Crossref]

Sapienza, R.

V. D. Ta, S. Caixeiro, F. M. Fernandes, and R. Sapienza, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5, 1601022 (2017).
[Crossref]

Sarimollaoglu, M.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

Scarcelli, G.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Schenning, A. P. H. J.

M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Schubert, M.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. C. Gather, “Lasing within live cells containing intracellular optical micro-resonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref]

Sec, D.

D. Seč, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
[Crossref]

Seelig, E.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Shibaev, P. V.

P. V. Shibaev, R. L. Sanford, D. Chiappetta, and P. Rivera, “Novel color changing pH sensors based on cholesteric polymers,” Mol. Cryst. Liq. Cryst. 479, 161–167/1199–1205 (2007).
[Crossref]

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules 39, 3986–3992 (2006).
[Crossref]

Shin, J.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Siegel, S. J.

H. K. Makadia and S. J. Siegel, “Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier,” Polymers 3, 1377–1397 (2011).
[Crossref]

Sivaramakrishnan, S.

Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14, 4590–4595 (2014).
[Crossref]

Soon, C. F.

C. F. Soon, W. I. W. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. T. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref]

C. F. Soon, M. Youseffi, N. Blagden, R. Berends, S. B. Lobo, F. A. Javid, and M. Denyer, “Characterization and biocompatibility study of nematic and cholesteryl liquid crystals,” in Proceedings of the World Congress on Engineering (2009), Vol. 2, pp. 1872–1875.

Stephen, M.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Steude, A.

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. C. Gather, “Lasing within live cells containing intracellular optical micro-resonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref]

Stockman, M. I.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

Sun, H.-B.

Y.-L. Sun, Z.-S. Hou, S.-M. Sun, B.-Y. Zheng, J.-F. Ku, W.-F. Dong, Q.-D. Chen, and H.-B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref]

Sun, S.-M.

Y.-L. Sun, Z.-S. Hou, S.-M. Sun, B.-Y. Zheng, J.-F. Ku, W.-F. Dong, Q.-D. Chen, and H.-B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref]

Sun, Y.

Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14, 4590–4595 (2014).
[Crossref]

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. (Int. Ed.) 51, 1236–1239 (2012).

Sun, Y.-L.

Y.-L. Sun, Z.-S. Hou, S.-M. Sun, B.-Y. Zheng, J.-F. Ku, W.-F. Dong, Q.-D. Chen, and H.-B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref]

Ta, V. D.

V. D. Ta, S. Caixeiro, F. M. Fernandes, and R. Sapienza, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5, 1601022 (2017).
[Crossref]

Takeshima, Y.

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72, 227–232 (2012).
[Crossref]

Takezoe, H.

Tee, K. S.

C. F. Soon, W. I. W. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. T. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref]

Upadhya, A.

M. Humar, A. Upadhya, and S. H. Yun, “Spectral reading of optical resonance-encoded cells in microfluidics,” Lab Chip 17, 2777–2784 (2017).
[Crossref]

Vannahme, C.

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13, 2675–2678 (2013).
[Crossref]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[Crossref]

Vemulapalli, B.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Wang, Q.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Wang, W.

Y.-C. Chen, Q. Chen, T. Zhang, W. Wang, and X. Fan, “Versatile tissue lasers based on high-Q Fabry-Pérot microcavities,” Lab Chip 17, 538–548 (2017).
[Crossref]

Watanabe, F.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

Webb, R. C.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Weingold, R.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

Wie, D. S.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Yetisen, A. K.

M. Humar, S. J. J. Kwok, M. Choi, S. Cho, A. K. Yetisen, and S.-H. Yun, “Towards biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

Ying, H.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films 499, 322–328 (2006).
[Crossref]

Youseffi, M.

C. F. Soon, W. I. W. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. T. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref]

C. F. Soon, M. Youseffi, N. Blagden, R. Berends, S. B. Lobo, F. A. Javid, and M. Denyer, “Characterization and biocompatibility study of nematic and cholesteryl liquid crystals,” in Proceedings of the World Congress on Engineering (2009), Vol. 2, pp. 1872–1875.

Yu, S.

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Yun, S. H.

M. Humar, A. Upadhya, and S. H. Yun, “Spectral reading of optical resonance-encoded cells in microfluidics,” Lab Chip 17, 2777–2784 (2017).
[Crossref]

M. Humar and S. H. Yun, “Whispering-gallery-mode emission from biological luminescent protein microcavity assemblies,” Optica 4, 222–228 (2017).
[Crossref]

S. H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1, 0008 (2017).
[Crossref]

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

S. Cho, M. Humar, N. Martino, and S. H. Yun, “Laser particle stimulated emission microscopy,” Phys. Rev. Lett. 117, 193902 (2016).
[Crossref]

M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics 9, 572–576 (2015).
[Crossref]

M. C. Gather and S. H. Yun, “Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers,” Nat. Commun. 5, 5722 (2014).
[Crossref]

S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,” Adv. Mater. 25, 5943–5947 (2013).
[Crossref]

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5, 406–410 (2011).
[Crossref]

Yun, S.-H.

M. Humar, S. J. J. Kwok, M. Choi, S. Cho, A. K. Yetisen, and S.-H. Yun, “Towards biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

M. Humar, M. C. Gather, and S.-H. Yun, “Cellular dye lasers: lasing thresholds and sensing in a planar resonator,” Opt. Express 23, 27865–27879 (2015).
[Crossref]

X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
[Crossref]

Zhang, T.

Y.-C. Chen, Q. Chen, T. Zhang, W. Wang, and X. Fan, “Versatile tissue lasers based on high-Q Fabry-Pérot microcavities,” Lab Chip 17, 538–548 (2017).
[Crossref]

Zhao, Y.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Zharov, V. P.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

Zheng, B.-Y.

Y.-L. Sun, Z.-S. Hou, S.-M. Sun, B.-Y. Zheng, J.-F. Ku, W.-F. Dong, Q.-D. Chen, and H.-B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref]

Zhu, X. X.

S. Freiberg and X. X. Zhu, “Polymer microspheres for controlled drug release,” Int. J. Pharm. 282, 1–18 (2004).
[Crossref]

Žumer, S.

D. Seč, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
[Crossref]

Adv. Funct. Mater. (1)

M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Adv. Funct. Mater. 26, 1154–1160 (2016).
[Crossref]

Adv. Mater. (2)

S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,” Adv. Mater. 25, 5943–5947 (2013).
[Crossref]

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773–5778 (2011).
[Crossref]

Adv. Opt. Mater. (1)

V. D. Ta, S. Caixeiro, F. M. Fernandes, and R. Sapienza, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5, 1601022 (2017).
[Crossref]

Angew. Chem. (Int. Ed.) (1)

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. (Int. Ed.) 51, 1236–1239 (2012).

Appl. Phys. Lett. (1)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[Crossref]

Int. J. Pharm. (1)

S. Freiberg and X. X. Zhu, “Polymer microspheres for controlled drug release,” Int. J. Pharm. 282, 1–18 (2004).
[Crossref]

J. Incl. Phenom. Macrocycl. Chem. (1)

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72, 227–232 (2012).
[Crossref]

Lab Chip (6)

M. Humar, A. Upadhya, and S. H. Yun, “Spectral reading of optical resonance-encoded cells in microfluidics,” Lab Chip 17, 2777–2784 (2017).
[Crossref]

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13, 2675–2678 (2013).
[Crossref]

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15, 642–645 (2015).
[Crossref]

A. Jonas and A. Kiraz, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab Chip 14, 3093–3100 (2014).
[Crossref]

Y.-C. Chen, Q. Chen, T. Zhang, W. Wang, and X. Fan, “Versatile tissue lasers based on high-Q Fabry-Pérot microcavities,” Lab Chip 17, 538–548 (2017).
[Crossref]

Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14, 4590–4595 (2014).
[Crossref]

Macromolecules (1)

P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, and M. M. Green, “Color changing cholesteric polymer films sensitive to amino acids,” Macromolecules 39, 3986–3992 (2006).
[Crossref]

Micron (1)

C. F. Soon, W. I. W. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. T. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

P. V. Shibaev, R. L. Sanford, D. Chiappetta, and P. Rivera, “Novel color changing pH sensors based on cholesteric polymers,” Mol. Cryst. Liq. Cryst. 479, 161–167/1199–1205 (2007).
[Crossref]

Nano Lett. (1)

M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, S. J. Powis, and M. C. Gather, “Lasing within live cells containing intracellular optical micro-resonators for barcode-type cell tagging and tracking,” Nano Lett. 15, 5647–5652 (2015).
[Crossref]

Nanophotonics (1)

M. Humar, S. J. J. Kwok, M. Choi, S. Cho, A. K. Yetisen, and S.-H. Yun, “Towards biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

Nat. Biomed. Eng. (1)

S. H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1, 0008 (2017).
[Crossref]

Nat. Commun. (3)

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref]

M. C. Gather and S. H. Yun, “Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers,” Nat. Commun. 5, 5722 (2014).
[Crossref]

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Nat. Methods (2)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
[Crossref]

Nat. Photonics (3)

M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics 9, 572–576 (2015).
[Crossref]

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5, 406–410 (2011).
[Crossref]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]

Nature (1)

S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, and J. A. Rogers, “Bioresorbable silicon electronic sensors for the brain,” Nature 530, 71–76 (2016).
[Crossref]

Opt. Express (3)

Optica (2)

Phys. Rev. Lett. (2)

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

S. Cho, M. Humar, N. Martino, and S. H. Yun, “Laser particle stimulated emission microscopy,” Phys. Rev. Lett. 117, 193902 (2016).
[Crossref]

Polymers (1)

H. K. Makadia and S. J. Siegel, “Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier,” Polymers 3, 1377–1397 (2011).
[Crossref]

Sci. Rep. (2)

Y.-L. Sun, Z.-S. Hou, S.-M. Sun, B.-Y. Zheng, J.-F. Ku, W.-F. Dong, Q.-D. Chen, and H.-B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref]

G. Posnjak, S. Čopar, and I. Muševič, “Points, skyrmions and torons in chiral nematic droplets,” Sci. Rep. 6, 26361 (2016).
[Crossref]

Soft Matter (1)

D. Seč, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
[Crossref]

Thin Solid Films (1)

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films 499, 322–328 (2006).
[Crossref]

Other (1)

C. F. Soon, M. Youseffi, N. Blagden, R. Berends, S. B. Lobo, F. A. Javid, and M. Denyer, “Characterization and biocompatibility study of nematic and cholesteryl liquid crystals,” in Proceedings of the World Congress on Engineering (2009), Vol. 2, pp. 1872–1875.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Lasing of polystyrene beads in bovine cornea. (a) Site of injection of the bead dispersion. (b) Fluorescence image of the injected beads. The out-of-focus beads are on the eye surface. (c) Optical setup. (d) Lasing spectrum of a single illuminated bead (inset) inside the bovine cornea. Scale bars, 20 mm in (a), 200 μm in (b), and 10 μm in (d).

Fig. 2.
Fig. 2.

Whispering gallery mode lasers made from biodegradable polymers. (a) PLA beads doped with Nile Red. (b) PLGA beads doped with Nile Red. (c) Lasing spectrum of a single 26 μm PLA bead in water. Bright-field image (left inset) and lasing (right inset). Spectrum from a 15 μm bead, which is not lasing (bottom inset). The spontaneous emission spectrum is the same as the fluorescence spectrum from the dye used. (d) Lasing spectrum of a single 26 μm PLGA bead in water. Bright-field image (left inset) and lasing (right inset). (e) Output of PLA as the pump energy is increased shows typical threshold behavior. (f) A 40 μm diameter PLA bead in blood. The bead is surrounded by red blood cells. (g) Lasing of the same PLA bead in blood and (h) the emission spectrum. Scale bars are 100 μm in (a) and (b), 10 μm in (c) and (d), and 20 μm in (f) and (g).

Fig. 3.
Fig. 3.

Lasers implanted into skin. (a) Principle of operation of a laser in skin tissue. (b) Implantation of lasers into porcine skin using a standard tattoo machine. (c) Light from a laser embedded approximately 100 μm below the skin surface. Because of light scattering, the laser itself cannot be clearly distinguished. (d) Output spectrum from Fig. 3(c) showing WGM laser peaks at 615–625 nm superimposed on a broad fluorescent background. Scale bar, 50 μm in (c).

Fig. 4.
Fig. 4.

Cholesterol lasers. (a) Schematic of a dye-doped cholesterol droplet. When optically pumped, the periodic liquid crystal helix supports optical resonance in the radial direction. (b) Reflection spectra from a 100 μm thick layer of cholesterol, which did not contain any dye. (c) Cholesterol droplets in glycerol between crossed polarizers. (d) A single droplet between crossed polarizers with the defect line visible. Arrow indicates the topological defect line. (e) Lasing from a single droplet is observed as a bright spot in the center of the droplet. Weak background light and pulsed laser were used to illuminate the droplet. (f) Lasing spectra at 25°C and 39°C. (g) Positions of the lasing peaks at the short and long bandedges as a function of temperature. The shaded area is the physiologically relevant temperature range. Scale bars are 50 μm in (b) and 20 μm in (c) and (d).