Abstract

Plasmonic dimer nanoantennas can significantly boost the electric field strength in the gap region, allowing for a modification of the feed gap geometry by femtosecond laser illumination. Using resonant bowtie antennas to enhance the electric field of a low-fluence femtosecond oscillator, here we experimentally demonstrate highly localized reshaping of the antennas, resulting in a self-optimization of the antenna shape. From high-resolution scanning electron micrographs and two-dimensional energy dispersive x-ray maps, we analyze the near-field enhanced subwavelength ablation at the nanotips and the resulting deposition of ablated materials in the feed gap. The dominant ablation mechanism is attributed to the nonthermal transient unbonding of atoms and electrostatic acceleration of ions. This process is driven by surface plasmon enhanced electron emission, with subsequent acceleration in the vacuum. This ablation is impeded in the presence of an ambient gas. A maximum of sixfold enhancement of the third-harmonic yield is observed during the reshaping process.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metamorphic plasmonic nanoantennas for self-enhanced nonlinear light generation

Konrad Schraml, Armin Regler, Johannes Bartl, Glenn Glashagen, Jakob Wierzbowski, Jonathan J. Finley, and Michael Kaniber
Optica 3(12) 1453-1459 (2016)

Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures

M. F. Ciappina, Srdjan S. Aćimović, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein
Opt. Express 20(24) 26261-26274 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
    [Crossref]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref]
  3. G. Herink, D. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
    [Crossref]
  4. M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).
    [Crossref]
  5. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
    [Crossref]
  6. N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
    [Crossref]
  7. M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,” Nat. Phys. 9, 304–309 (2013).
    [Crossref]
  8. T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
    [Crossref]
  9. S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7, 13105 (2016).
    [Crossref]
  10. G. Vampa, B. Ghamsari, S. S. Mousavi, T. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. Villeneuve, A. Staudte, P. Berini, and P. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13, 659–662 (2017).
    [Crossref]
  11. L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
    [Crossref]
  12. A. Hu, Y. Zhou, and W. Duley, “Femtosecond laser-induced nanowelding: fundamentals and applications,” Open Surf. Sci. J. 3, 42–49 (2011).
    [Crossref]
  13. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44–47 (2006).
    [Crossref]
  14. H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
    [Crossref]
  15. M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
    [Crossref]
  16. B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D 50, 193001 (2017).
    [Crossref]
  17. E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508, 91–243 (2011).
    [Crossref]
  18. S. Musazzi and U. Perini, Laser-Induced Breakdown Spectroscopy: Theory and Applications (Springer, 2014), Vol. 182.
  19. S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, and R. Velotta, “Thermal and nonthermal ion emission during high-fluence femtosecond laser ablation of metallic targets,” Appl. Phys. Lett. 77, 3728–3730 (2000).
    [Crossref]
  20. K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
    [Crossref]
  21. A. Rode, E. Gamaly, B. Luther-Davies, B. Taylor, J. Dawes, A. Chan, R. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92, 2153–2158 (2002).
    [Crossref]
  22. M. Shaheen, J. Gagnon, and B. Fryer, “Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study,” Laser Phys. 24, 106102 (2014).
    [Crossref]
  23. L. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  24. R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, 1928), Vol. 119, pp. 173–181.
  25. F. Brunel, “Not-so-resonant, resonant absorption,” Phys. Rev. Lett. 59, 52–55 (1987).
    [Crossref]
  26. J. Weisshaupt, V. Juvé, M. Holtz, M. Woerner, and T. Elsaesser, “Theoretical analysis of hard x-ray generation by nonperturbative interaction of ultrashort light pulses with a metal,” Struct. Dyn. 2, 024102 (2015).
    [Crossref]
  27. S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
    [Crossref]
  28. J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
    [Crossref]
  29. H. Mamin, S. Chiang, H. Birk, P. Guethner, and D. Rugar, “Gold deposition from a scanning tunneling microscope tip,” J. Vac. Sci. Technol. B 9, 1398–1402 (1991).
    [Crossref]
  30. M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
    [Crossref]
  31. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
    [Crossref]
  32. E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Electrostatic mechanism of ablation by femtosecond lasers,” Appl. Surf. Sci. 197, 699–704 (2002).
    [Crossref]
  33. R. L. Petry, “Secondary electron emission from tungsten, copper and gold,” Phys. Rev. 28, 362–366 (1926).
    [Crossref]

2017 (2)

G. Vampa, B. Ghamsari, S. S. Mousavi, T. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. Villeneuve, A. Staudte, P. Berini, and P. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13, 659–662 (2017).
[Crossref]

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D 50, 193001 (2017).
[Crossref]

2016 (2)

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7, 13105 (2016).
[Crossref]

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

2015 (3)

J. Weisshaupt, V. Juvé, M. Holtz, M. Woerner, and T. Elsaesser, “Theoretical analysis of hard x-ray generation by nonperturbative interaction of ultrashort light pulses with a metal,” Struct. Dyn. 2, 024102 (2015).
[Crossref]

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref]

2014 (4)

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

M. Shaheen, J. Gagnon, and B. Fryer, “Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study,” Laser Phys. 24, 106102 (2014).
[Crossref]

2013 (2)

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,” Nat. Phys. 9, 304–309 (2013).
[Crossref]

2012 (2)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

G. Herink, D. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
[Crossref]

2011 (3)

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).
[Crossref]

A. Hu, Y. Zhou, and W. Duley, “Femtosecond laser-induced nanowelding: fundamentals and applications,” Open Surf. Sci. J. 3, 42–49 (2011).
[Crossref]

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508, 91–243 (2011).
[Crossref]

2010 (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

2008 (1)

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

2006 (1)

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44–47 (2006).
[Crossref]

2002 (4)

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

A. Rode, E. Gamaly, B. Luther-Davies, B. Taylor, J. Dawes, A. Chan, R. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92, 2153–2158 (2002).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[Crossref]

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Electrostatic mechanism of ablation by femtosecond lasers,” Appl. Surf. Sci. 197, 699–704 (2002).
[Crossref]

2000 (1)

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, and R. Velotta, “Thermal and nonthermal ion emission during high-fluence femtosecond laser ablation of metallic targets,” Appl. Phys. Lett. 77, 3728–3730 (2000).
[Crossref]

1999 (1)

K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
[Crossref]

1991 (1)

H. Mamin, S. Chiang, H. Birk, P. Guethner, and D. Rugar, “Gold deposition from a scanning tunneling microscope tip,” J. Vac. Sci. Technol. B 9, 1398–1402 (1991).
[Crossref]

1987 (1)

F. Brunel, “Not-so-resonant, resonant absorption,” Phys. Rev. Lett. 59, 52–55 (1987).
[Crossref]

1965 (1)

L. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

1926 (1)

R. L. Petry, “Secondary electron emission from tungsten, copper and gold,” Phys. Rev. 28, 362–366 (1926).
[Crossref]

Abel, B.

M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,” Nat. Phys. 9, 304–309 (2013).
[Crossref]

Aizpurua, J.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Akemeier, D.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

Altucci, C.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, and R. Velotta, “Thermal and nonthermal ion emission during high-fluence femtosecond laser ablation of metallic targets,” Appl. Phys. Lett. 77, 3728–3730 (2000).
[Crossref]

Amoruso, S.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, and R. Velotta, “Thermal and nonthermal ion emission during high-fluence femtosecond laser ablation of metallic targets,” Appl. Phys. Lett. 77, 3728–3730 (2000).
[Crossref]

Anisimov, S. I.

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D 50, 193001 (2017).
[Crossref]

Aouani, H.

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Armenante, M.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, and R. Velotta, “Thermal and nonthermal ion emission during high-fluence femtosecond laser ablation of metallic targets,” Appl. Phys. Lett. 77, 3728–3730 (2000).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Barnard, J. S.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Baumberg, J. J.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Berini, P.

G. Vampa, B. Ghamsari, S. S. Mousavi, T. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. Villeneuve, A. Staudte, P. Berini, and P. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13, 659–662 (2017).
[Crossref]

Birk, H.

H. Mamin, S. Chiang, H. Birk, P. Guethner, and D. Rugar, “Gold deposition from a scanning tunneling microscope tip,” J. Vac. Sci. Technol. B 9, 1398–1402 (1991).
[Crossref]

Boneberg, J.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44–47 (2006).
[Crossref]

Bratschitsch, R.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Brunel, F.

F. Brunel, “Not-so-resonant, resonant absorption,” Phys. Rev. Lett. 59, 52–55 (1987).
[Crossref]

Bruzzese, R.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, and R. Velotta, “Thermal and nonthermal ion emission during high-fluence femtosecond laser ablation of metallic targets,” Appl. Phys. Lett. 77, 3728–3730 (2000).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Chan, A.

A. Rode, E. Gamaly, B. Luther-Davies, B. Taylor, J. Dawes, A. Chan, R. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92, 2153–2158 (2002).
[Crossref]

Chiang, S.

H. Mamin, S. Chiang, H. Birk, P. Guethner, and D. Rugar, “Gold deposition from a scanning tunneling microscope tip,” J. Vac. Sci. Technol. B 9, 1398–1402 (1991).
[Crossref]

Corkum, P.

G. Vampa, B. Ghamsari, S. S. Mousavi, T. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. Villeneuve, A. Staudte, P. Berini, and P. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13, 659–662 (2017).
[Crossref]

Dawes, J.

A. Rode, E. Gamaly, B. Luther-Davies, B. Taylor, J. Dawes, A. Chan, R. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92, 2153–2158 (2002).
[Crossref]

De Lisio, C.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, and R. Velotta, “Thermal and nonthermal ion emission during high-fluence femtosecond laser ablation of metallic targets,” Appl. Phys. Lett. 77, 3728–3730 (2000).
[Crossref]

Duley, W.

A. Hu, Y. Zhou, and W. Duley, “Femtosecond laser-induced nanowelding: fundamentals and applications,” Open Surf. Sci. J. 3, 42–49 (2011).
[Crossref]

Duwe, M.

M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,” Nat. Phys. 9, 304–309 (2013).
[Crossref]

Elsaesser, T.

J. Weisshaupt, V. Juvé, M. Holtz, M. Woerner, and T. Elsaesser, “Theoretical analysis of hard x-ray generation by nonperturbative interaction of ultrashort light pulses with a metal,” Struct. Dyn. 2, 024102 (2015).
[Crossref]

Emmerling, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Fowler, R. H.

R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, 1928), Vol. 119, pp. 173–181.

Fryer, B.

M. Shaheen, J. Gagnon, and B. Fryer, “Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study,” Laser Phys. 24, 106102 (2014).
[Crossref]

Furusawa, K.

K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
[Crossref]

Gagnon, J.

M. Shaheen, J. Gagnon, and B. Fryer, “Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study,” Laser Phys. 24, 106102 (2014).
[Crossref]

Gamaly, E.

A. Rode, E. Gamaly, B. Luther-Davies, B. Taylor, J. Dawes, A. Chan, R. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92, 2153–2158 (2002).
[Crossref]

Gamaly, E. G.

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508, 91–243 (2011).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[Crossref]

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Electrostatic mechanism of ablation by femtosecond lasers,” Appl. Surf. Sci. 197, 699–704 (2002).
[Crossref]

Garcia, M. E.

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D 50, 193001 (2017).
[Crossref]

Garg, M.

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref]

Gengler, R. Y.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Ghamsari, B.

G. Vampa, B. Ghamsari, S. S. Mousavi, T. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. Villeneuve, A. Staudte, P. Berini, and P. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13, 659–662 (2017).
[Crossref]

Giessen, H.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Goulielmakis, E.

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref]

Guethner, P.

H. Mamin, S. Chiang, H. Birk, P. Guethner, and D. Rugar, “Gold deposition from a scanning tunneling microscope tip,” J. Vac. Sci. Technol. B 9, 1398–1402 (1991).
[Crossref]

Gulde, M.

G. Herink, D. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
[Crossref]

Hada, M.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Hammond, T.

G. Vampa, B. Ghamsari, S. S. Mousavi, T. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. Villeneuve, A. Staudte, P. Berini, and P. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13, 659–662 (2017).
[Crossref]

Han, S.

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7, 13105 (2016).
[Crossref]

Hannaford, P.

A. Rode, E. Gamaly, B. Luther-Davies, B. Taylor, J. Dawes, A. Chan, R. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92, 2153–2158 (2002).
[Crossref]

Hassan, M. T.

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref]

Hayes, S. A.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Hecht, B.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Hentschel, M.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Herink, G.

G. Herink, D. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
[Crossref]

Herrmann, L. O.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Hirscht, J.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Holtz, M.

J. Weisshaupt, V. Juvé, M. Holtz, M. Woerner, and T. Elsaesser, “Theoretical analysis of hard x-ray generation by nonperturbative interaction of ultrashort light pulses with a metal,” Struct. Dyn. 2, 024102 (2015).
[Crossref]

Hommelhoff, P.

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).
[Crossref]

Hu, A.

A. Hu, Y. Zhou, and W. Duley, “Femtosecond laser-induced nanowelding: fundamentals and applications,” Open Surf. Sci. J. 3, 42–49 (2011).
[Crossref]

Hutten, A.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

Ivanov, D. S.

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D 50, 193001 (2017).
[Crossref]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Juvé, V.

J. Weisshaupt, V. Juvé, M. Holtz, M. Woerner, and T. Elsaesser, “Theoretical analysis of hard x-ray generation by nonperturbative interaction of ultrashort light pulses with a metal,” Struct. Dyn. 2, 024102 (2015).
[Crossref]

Kamp, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Kasera, S.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Keldysh, L.

L. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Kern, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Kim, H.

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7, 13105 (2016).
[Crossref]

Kim, S.

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7, 13105 (2016).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

Kim, S.-W.

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7, 13105 (2016).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

Kim, Y. W.

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7, 13105 (2016).
[Crossref]

Kim, Y.-J.

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7, 13105 (2016).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

Knittel, V.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

Kochman, M. A.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Kotaidis, V.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44–47 (2006).
[Crossref]

Kovacev, M.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

Kruchinin, S. Y.

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref]

Krüger, M.

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).
[Crossref]

Kullock, R.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Kumagai, H.

K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
[Crossref]

Leitenstorfer, A.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

Lisicka-Skrek, E.

G. Vampa, B. Ghamsari, S. S. Mousavi, T. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. Villeneuve, A. Staudte, P. Berini, and P. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13, 659–662 (2017).
[Crossref]

Lorenc, M.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44–47 (2006).
[Crossref]

Lowe, R.

A. Rode, E. Gamaly, B. Luther-Davies, B. Taylor, J. Dawes, A. Chan, R. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92, 2153–2158 (2002).
[Crossref]

Luther-Davies, B.

A. Rode, E. Gamaly, B. Luther-Davies, B. Taylor, J. Dawes, A. Chan, R. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92, 2153–2158 (2002).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[Crossref]

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Electrostatic mechanism of ablation by femtosecond lasers,” Appl. Surf. Sci. 197, 699–704 (2002).
[Crossref]

Luu, T. T.

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref]

Maier, S. A.

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Mamin, H.

H. Mamin, S. Chiang, H. Birk, P. Guethner, and D. Rugar, “Gold deposition from a scanning tunneling microscope tip,” J. Vac. Sci. Technol. B 9, 1398–1402 (1991).
[Crossref]

Manz, S.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Matsuo, J.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Mazur, E.

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

Mesch, M.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Metzger, B.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Midorikawa, K.

K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
[Crossref]

Miller, R. J. D.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Morgner, U.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

Moriena, G.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Morrison, C. A.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Moulet, A.

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref]

Mousavi, S. S.

G. Vampa, B. Ghamsari, S. S. Mousavi, T. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. Villeneuve, A. Staudte, P. Berini, and P. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13, 659–662 (2017).
[Crossref]

Musazzi, S.

S. Musazzi and U. Perini, Laser-Induced Breakdown Spectroscopy: Theory and Applications (Springer, 2014), Vol. 182.

Nagy, T.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

Naumov, A. Y.

G. Vampa, B. Ghamsari, S. S. Mousavi, T. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. Villeneuve, A. Staudte, P. Berini, and P. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13, 659–662 (2017).
[Crossref]

Navarro-Ca, M.

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Noack, M.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

Nordheim, L.

R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, 1928), Vol. 119, pp. 173–181.

Obara, M.

K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
[Crossref]

Olivieri, A.

G. Vampa, B. Ghamsari, S. S. Mousavi, T. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. Villeneuve, A. Staudte, P. Berini, and P. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13, 659–662 (2017).
[Crossref]

Park, I.-Y.

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7, 13105 (2016).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

Perini, U.

S. Musazzi and U. Perini, Laser-Induced Breakdown Spectroscopy: Theory and Applications (Springer, 2014), Vol. 182.

Petry, R. L.

R. L. Petry, “Secondary electron emission from tungsten, copper and gold,” Phys. Rev. 28, 362–366 (1926).
[Crossref]

Pfullmann, N.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

Pichugin, K.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Plech, A.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44–47 (2006).
[Crossref]

Prangsma, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Rahmani, M.

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Rausch, S.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

Reinhardt, C.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

Rethfeld, B.

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D 50, 193001 (2017).
[Crossref]

Rode, A.

A. Rode, E. Gamaly, B. Luther-Davies, B. Taylor, J. Dawes, A. Chan, R. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92, 2153–2158 (2002).
[Crossref]

Rode, A. V.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[Crossref]

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Electrostatic mechanism of ablation by femtosecond lasers,” Appl. Surf. Sci. 197, 699–704 (2002).
[Crossref]

Ropers, C.

M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,” Nat. Phys. 9, 304–309 (2013).
[Crossref]

G. Herink, D. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
[Crossref]

Rugar, D.

H. Mamin, S. Chiang, H. Birk, P. Guethner, and D. Rugar, “Gold deposition from a scanning tunneling microscope tip,” J. Vac. Sci. Technol. B 9, 1398–1402 (1991).
[Crossref]

Schenk, M.

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).
[Crossref]

Scherman, O. A.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Sciaini, G.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Seki, T.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Shaheen, M.

M. Shaheen, J. Gagnon, and B. Fryer, “Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study,” Laser Phys. 24, 106102 (2014).
[Crossref]

Sivis, M.

M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,” Nat. Phys. 9, 304–309 (2013).
[Crossref]

Solli, D.

G. Herink, D. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
[Crossref]

Staudte, A.

G. Vampa, B. Ghamsari, S. S. Mousavi, T. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. Villeneuve, A. Staudte, P. Berini, and P. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13, 659–662 (2017).
[Crossref]

Sundaram, S.

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

Takahashi, K.

K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
[Crossref]

Taylor, B.

A. Rode, E. Gamaly, B. Luther-Davies, B. Taylor, J. Dawes, A. Chan, R. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92, 2153–2158 (2002).
[Crossref]

Tikhonchuk, V. T.

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Electrostatic mechanism of ablation by femtosecond lasers,” Appl. Surf. Sci. 197, 699–704 (2002).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[Crossref]

Tserkezis, C.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Valev, V. K.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

Vampa, G.

G. Vampa, B. Ghamsari, S. S. Mousavi, T. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. Villeneuve, A. Staudte, P. Berini, and P. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13, 659–662 (2017).
[Crossref]

Velotta, R.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, and R. Velotta, “Thermal and nonthermal ion emission during high-fluence femtosecond laser ablation of metallic targets,” Appl. Phys. Lett. 77, 3728–3730 (2000).
[Crossref]

Villeneuve, D.

G. Vampa, B. Ghamsari, S. S. Mousavi, T. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. Villeneuve, A. Staudte, P. Berini, and P. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13, 659–662 (2017).
[Crossref]

Waltermann, C.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

Wang, X.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, and R. Velotta, “Thermal and nonthermal ion emission during high-fluence femtosecond laser ablation of metallic targets,” Appl. Phys. Lett. 77, 3728–3730 (2000).
[Crossref]

Wann, D. A.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Weisshaupt, J.

J. Weisshaupt, V. Juvé, M. Holtz, M. Woerner, and T. Elsaesser, “Theoretical analysis of hard x-ray generation by nonperturbative interaction of ultrashort light pulses with a metal,” Struct. Dyn. 2, 024102 (2015).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Woerner, M.

J. Weisshaupt, V. Juvé, M. Holtz, M. Woerner, and T. Elsaesser, “Theoretical analysis of hard x-ray generation by nonperturbative interaction of ultrashort light pulses with a metal,” Struct. Dyn. 2, 024102 (2015).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Zhang, D.

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Zhou, Y.

A. Hu, Y. Zhou, and W. Duley, “Femtosecond laser-induced nanowelding: fundamentals and applications,” Open Surf. Sci. J. 3, 42–49 (2011).
[Crossref]

Appl. Phys. A (1)

K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
[Crossref]

Appl. Phys. Lett. (1)

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, and R. Velotta, “Thermal and nonthermal ion emission during high-fluence femtosecond laser ablation of metallic targets,” Appl. Phys. Lett. 77, 3728–3730 (2000).
[Crossref]

Appl. Surf. Sci. (1)

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Electrostatic mechanism of ablation by femtosecond lasers,” Appl. Surf. Sci. 197, 699–704 (2002).
[Crossref]

J. Appl. Phys. (1)

A. Rode, E. Gamaly, B. Luther-Davies, B. Taylor, J. Dawes, A. Chan, R. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92, 2153–2158 (2002).
[Crossref]

J. Phys. D (1)

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D 50, 193001 (2017).
[Crossref]

J. Vac. Sci. Technol. B (1)

H. Mamin, S. Chiang, H. Birk, P. Guethner, and D. Rugar, “Gold deposition from a scanning tunneling microscope tip,” J. Vac. Sci. Technol. B 9, 1398–1402 (1991).
[Crossref]

Laser Phys. (1)

M. Shaheen, J. Gagnon, and B. Fryer, “Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study,” Laser Phys. 24, 106102 (2014).
[Crossref]

Nano Lett. (1)

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Nat. Commun. (3)

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5, 4568 (2014).
[Crossref]

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7, 13105 (2016).
[Crossref]

M. Hada, D. Zhang, K. Pichugin, J. Hirscht, M. A. Kochman, S. A. Hayes, S. Manz, R. Y. Gengler, D. A. Wann, T. Seki, G. Moriena, C. A. Morrison, J. Matsuo, G. Sciaini, and R. J. D. Miller, “Cold ablation driven by localized forces in alkali halides,” Nat. Commun. 5, 3863 (2014).
[Crossref]

Nat. Mater. (2)

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Nat. Nanotechnol. (1)

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Nat. Photonics (2)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Nat. Phys. (3)

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44–47 (2006).
[Crossref]

G. Vampa, B. Ghamsari, S. S. Mousavi, T. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. Villeneuve, A. Staudte, P. Berini, and P. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13, 659–662 (2017).
[Crossref]

M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,” Nat. Phys. 9, 304–309 (2013).
[Crossref]

Nature (4)

T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).
[Crossref]

G. Herink, D. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
[Crossref]

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref]

New J. Phys. (1)

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hutten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15, 093027 (2013).
[Crossref]

Open Surf. Sci. J. (1)

A. Hu, Y. Zhou, and W. Duley, “Femtosecond laser-induced nanowelding: fundamentals and applications,” Open Surf. Sci. J. 3, 42–49 (2011).
[Crossref]

Phys. Plasmas (1)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[Crossref]

Phys. Rep. (1)

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508, 91–243 (2011).
[Crossref]

Phys. Rev. (1)

R. L. Petry, “Secondary electron emission from tungsten, copper and gold,” Phys. Rev. 28, 362–366 (1926).
[Crossref]

Phys. Rev. Lett. (1)

F. Brunel, “Not-so-resonant, resonant absorption,” Phys. Rev. Lett. 59, 52–55 (1987).
[Crossref]

Sov. Phys. JETP (1)

L. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Struct. Dyn. (1)

J. Weisshaupt, V. Juvé, M. Holtz, M. Woerner, and T. Elsaesser, “Theoretical analysis of hard x-ray generation by nonperturbative interaction of ultrashort light pulses with a metal,” Struct. Dyn. 2, 024102 (2015).
[Crossref]

Other (2)

R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, 1928), Vol. 119, pp. 173–181.

S. Musazzi and U. Perini, Laser-Induced Breakdown Spectroscopy: Theory and Applications (Springer, 2014), Vol. 182.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Illustration of a three-step process describing the erosion of the bowtie tip by a few-cycle laser (red transient). (1) An electron tunnels into the vacuum, (2) which is redirected back into the tip after one half-cycle and deposits its kinetic energy to locally heat the surface electron gas, which induces (3) unbonding and subsequent possible ejection of a gold atom. Surface THG (blue transient) is employed to probe the damage of bowtie tips. (b) Temporal evolution of THG emission from two fresh bowtie nanoantenna arrays in vacuum. The squares enclosed in red and green are enlarged in (c) and (d), respectively.

Fig. 2.
Fig. 2.

SEM images of a (a) laser-ablated and (b) pristine gold bowtie antenna.

Fig. 3.
Fig. 3.

Two-dimensional EDX maps of (a)–(g) laser-ablated antennas and (h)–(n) pristine antennas. The corresponding elements of the rows from top to bottom are Au, Si, O, Al, C, Cr, and Ga, respectively.

Fig. 4.
Fig. 4.

(a) Temporal evolution of THG from three fresh arrays, which progressively increases over time. (b) THG spectra from the same array at the beginning (lower counts) and after 8 min of laser illumination in nitrogen (higher counts). (c) Evolution of THG with laser pulse duration of 8 fs (higher counts) and 16 fs (lower counts). (d) THG emission from a fresh array during long-term exposure. SEM image of antennas after (e) 8 min and (f) 165 min of laser irradiation in nitrogen, with the red squared areas enlarged in (g) (II) and (g) (III), respectively. Note that (g) (I–III) are enlarged SEM images corresponding to time frame I to III as indicated (red arrows) in (d), with the dashed curves sketching the initial profile of the tips.

Fig. 5.
Fig. 5.

(a) Schematic illustration of the electric field distribution (green curve) when a laser illuminates a bulk metal. Free electrons (blue spheres) in the skin layer are accelerated by the electric field of light wave (yellow curve) and experience collisional heating (red arrow). (b) Finite-difference time-domain (FDTD)-based numerical simulation of electric near-field distribution of a gold bowtie nanoantenna. The dashed white line denotes the interface between the vacuum and gold surface. (c) Schematic illustration of the field distribution (green curve) of the plasmonic nanoantenna. The electric field is significantly enhanced in the vacuum, peaks at the interface (red line), and dramatically decreases inside the metal. In addition to collisional heating, electron emission from the surface and subsequent collisionless vacuum heating (black arrow) should also be considered. The significant near-field enhancement caused by the plasmon resonance can assist a nanoscale subwavelength ablation at the surface layer. (d) Schematic illustration of two possible near-field enhanced ablation processes at the surface layer of the gold nanoantenna. I: Brunel electrons deposit energy into the surface, causing the nonthermal transient unbonding of atoms. II: electrostatic acceleration induced by charge separation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ=ω2meϕqeE,
t(E)=exp(832qemeEϕ32).
tesc2ωpe(mAume)12(ϵescϵescϵb)12.

Metrics