Abstract

Soliton mode-locking in microresonators enables chip-scale coherent optical frequency comb generation. However, it usually leads to multi-soliton combs with a structured spectrum. Instead, the smooth spectrum of a single soliton is favored for applications. Here, we introduce, experimentally and numerically, a passive mechanism for single temporal soliton formation arising from spatial mode-interaction in microresonators. Deterministic single soliton generation is observed for microresonators with strong mode-interaction in experiments and simulations. Further simulations demonstrate that the soliton number is reduced to one in order to lower the nonlinear loss into mode-interaction induced Cherenkov radiation (CR). Our results give important insights into soliton–CR interaction in cavities.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multicolor cavity soliton

Rui Luo, Hanxiao Liang, and Qiang Lin
Opt. Express 24(15) 16777-16787 (2016)

Self-locking of the frequency comb repetition rate in microring resonators with higher order dispersions

D.V. Skryabin and Y.V. Kartashov
Opt. Express 25(22) 27442-27451 (2017)

Stably accessing octave-spanning microresonator frequency combs in the soliton regime

Qing Li, Travis C. Briles, Daron A. Westly, Tara E. Drake, Jordan R. Stone, B. Robert Ilic, Scott A. Diddams, Scott B. Papp, and Kartik Srinivasan
Optica 4(2) 193-203 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  2. T. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  3. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
    [Crossref]
  4. M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
    [Crossref]
  5. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
    [Crossref]
  6. T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
    [Crossref]
  7. X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
    [Crossref]
  8. H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
    [Crossref]
  9. J. A. Jaramillo-Villegas, X. Xue, P.-H. Wang, D. E. Leaird, and A. M. Weiner, “Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region,” Opt. Express 23, 9618–9626 (2015).
    [Crossref]
  10. X. Yi, Q.-F. Yang, K. Youl, and K. Vahala, “Active capture and stabilization of temporal solitons in microresonators,” Opt. Lett. 41, 2037–2040 (2016).
    [Crossref]
  11. V. Lobanov, G. Lihachev, N. Pavlov, A. Cherenkov, T. Kippenberg, and M. Gorodetsky, “Harmonization of chaos into a soliton in Kerr frequency combs,” Opt. Express 24, 27382–27394 (2016).
    [Crossref]
  12. H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Soliton formation in whispering-gallery-mode resonators via input phase modulation,” IEEE Photon. J. 7, 1–9 (2015).
    [Crossref]
  13. Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).
    [Crossref]
  14. T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
    [Crossref]
  15. A. B. Matsko, W. Liang, A. A. Savchenkov, D. Eliyahu, and L. Maleki, “Optical Cherenkov radiation in overmoded microresonators,” Opt. Lett. 41, 2907–2910 (2016).
    [Crossref]
  16. Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Spatial-mode-interaction-induced dispersive waves and their active tuning in microresonators,” Optica 3, 1132–1135 (2016).
    [Crossref]
  17. X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, X. Li, and K. Vahala, “Single-mode dispersive waves and soliton microcomb dynamics,” Nat. Commun. 8, 14869 (2017).
    [Crossref]
  18. D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” arXiv:1610.00080 (2016).
  19. Y. Wang, F. Leo, J. Fatome, M. Erkintalo, S. G. Murdoch, and S. Coen, “Universal mechanism for the binding of temporal cavity solitons,” Optica 4, 855–863 (2017).
    [Crossref]
  20. H. Taheri, A. B. Matsko, and L. Maleki, “Optical lattice trap for Kerr solitons,” Eur. Phys. J. D 71, 153 (2017).
    [Crossref]
  21. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).
    [Crossref]
  22. S. Wabnitz, “Suppression of interactions in a phase-locked soliton optical memory,” Opt. Lett. 18, 601–603 (1993).
    [Crossref]
  23. D. V. Skryabin and A. V. Gorbach, “Colloquium: looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
    [Crossref]
  24. L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
    [Crossref]
  25. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
    [Crossref]
  26. P.-H. Wang, J. A. Jaramillo-Villegas, Y. Xuan, X. Xue, C. Bao, D. E. Leaird, M. Qi, and A. M. Weiner, “Intracavity characterization of micro-comb generation in the single-soliton regime,” Opt. Express 24, 10890–10897 (2016).
    [Crossref]
  27. C. Bao, Y. Xuan, J. A. Jaramillo-Villegas, D. E. Leaird, and A. M. Weiner, “Direct soliton generation in microresonators,” Opt. Lett. 42, 2519–2522 (2017).
    [Crossref]
  28. C. Bao, J. A. Jaramillo-Villegas, Y. Xuan, D. E. Leaird, M. Qi, and A. M. Weiner, “Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator,” Phys. Rev. Lett. 117, 163901 (2016).
    [Crossref]
  29. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [Crossref]
  30. X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal‐dispersion microcombs enabled by controllable mode interactions,” Laser Photon. Rev. 9, L23–L28 (2015).
    [Crossref]

2017 (5)

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, X. Li, and K. Vahala, “Single-mode dispersive waves and soliton microcomb dynamics,” Nat. Commun. 8, 14869 (2017).
[Crossref]

H. Taheri, A. B. Matsko, and L. Maleki, “Optical lattice trap for Kerr solitons,” Eur. Phys. J. D 71, 153 (2017).
[Crossref]

C. Bao, Y. Xuan, J. A. Jaramillo-Villegas, D. E. Leaird, and A. M. Weiner, “Direct soliton generation in microresonators,” Opt. Lett. 42, 2519–2522 (2017).
[Crossref]

Y. Wang, F. Leo, J. Fatome, M. Erkintalo, S. G. Murdoch, and S. Coen, “Universal mechanism for the binding of temporal cavity solitons,” Optica 4, 855–863 (2017).
[Crossref]

2016 (7)

2015 (4)

H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Soliton formation in whispering-gallery-mode resonators via input phase modulation,” IEEE Photon. J. 7, 1–9 (2015).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal‐dispersion microcombs enabled by controllable mode interactions,” Laser Photon. Rev. 9, L23–L28 (2015).
[Crossref]

J. A. Jaramillo-Villegas, X. Xue, P.-H. Wang, D. E. Leaird, and A. M. Weiner, “Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region,” Opt. Express 23, 9618–9626 (2015).
[Crossref]

2014 (4)

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

2013 (1)

2011 (2)

T. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

2010 (1)

D. V. Skryabin and A. V. Gorbach, “Colloquium: looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

1997 (1)

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

1993 (1)

1991 (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

Adibi, A.

H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Soliton formation in whispering-gallery-mode resonators via input phase modulation,” IEEE Photon. J. 7, 1–9 (2015).
[Crossref]

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Bao, C.

Beha, K.

Brasch, V.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Chen, S.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).
[Crossref]

Cherenkov, A.

Coen, S.

Cole, D. C.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” arXiv:1610.00080 (2016).

Del’Haye, P.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” arXiv:1610.00080 (2016).

Diddams, S.

T. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Diddams, S. A.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” arXiv:1610.00080 (2016).

Eftekhar, A. A.

H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Soliton formation in whispering-gallery-mode resonators via input phase modulation,” IEEE Photon. J. 7, 1–9 (2015).
[Crossref]

Eliyahu, D.

Erkintalo, M.

Fatome, J.

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Gorbach, A. V.

D. V. Skryabin and A. V. Gorbach, “Colloquium: looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

Gorodetsky, M.

V. Lobanov, G. Lihachev, N. Pavlov, A. Cherenkov, T. Kippenberg, and M. Gorodetsky, “Harmonization of chaos into a soliton in Kerr frequency combs,” Opt. Express 24, 27382–27394 (2016).
[Crossref]

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Gorodetsky, M. L.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

Guo, H.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

Haus, H.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Haus, H. A.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

Herr, T.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

Holzwarth, R.

T. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Huang, W.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

Ippen, E.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Jaramillo-Villegas, J. A.

Jones, D.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Jost, J.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

Karpov, M.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

Kippenberg, T.

V. Lobanov, G. Lihachev, N. Pavlov, A. Cherenkov, T. Kippenberg, and M. Gorodetsky, “Harmonization of chaos into a soliton in Kerr frequency combs,” Opt. Express 24, 27382–27394 (2016).
[Crossref]

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

T. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Kippenberg, T. J.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Kondratiev, N.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Kordts, A.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

Lamb, E. S.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” arXiv:1610.00080 (2016).

Leaird, D. E.

C. Bao, Y. Xuan, J. A. Jaramillo-Villegas, D. E. Leaird, and A. M. Weiner, “Direct soliton generation in microresonators,” Opt. Lett. 42, 2519–2522 (2017).
[Crossref]

P.-H. Wang, J. A. Jaramillo-Villegas, Y. Xuan, X. Xue, C. Bao, D. E. Leaird, M. Qi, and A. M. Weiner, “Intracavity characterization of micro-comb generation in the single-soliton regime,” Opt. Express 24, 10890–10897 (2016).
[Crossref]

C. Bao, J. A. Jaramillo-Villegas, Y. Xuan, D. E. Leaird, M. Qi, and A. M. Weiner, “Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator,” Phys. Rev. Lett. 117, 163901 (2016).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

J. A. Jaramillo-Villegas, X. Xue, P.-H. Wang, D. E. Leaird, and A. M. Weiner, “Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region,” Opt. Express 23, 9618–9626 (2015).
[Crossref]

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal‐dispersion microcombs enabled by controllable mode interactions,” Laser Photon. Rev. 9, L23–L28 (2015).
[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Lee, H.

Leo, F.

Li, X.

X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, X. Li, and K. Vahala, “Single-mode dispersive waves and soliton microcomb dynamics,” Nat. Commun. 8, 14869 (2017).
[Crossref]

Liang, W.

Lihachev, G.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

V. Lobanov, G. Lihachev, N. Pavlov, A. Cherenkov, T. Kippenberg, and M. Gorodetsky, “Harmonization of chaos into a soliton in Kerr frequency combs,” Opt. Express 24, 27382–27394 (2016).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

Liu, Y.

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal‐dispersion microcombs enabled by controllable mode interactions,” Laser Photon. Rev. 9, L23–L28 (2015).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).
[Crossref]

Lobanov, V.

Lobanov, V. E.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

Lucas, E.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

Maleki, L.

Matsko, A. B.

Metcalf, A. J.

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Mirgorodskiy, I.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

Murdoch, S. G.

Nelson, L.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Papp, S. B.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” arXiv:1610.00080 (2016).

Pavlov, N.

Pfeiffer, M. H. P.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

Qi, M.

P.-H. Wang, J. A. Jaramillo-Villegas, Y. Xuan, X. Xue, C. Bao, D. E. Leaird, M. Qi, and A. M. Weiner, “Intracavity characterization of micro-comb generation in the single-soliton regime,” Opt. Express 24, 10890–10897 (2016).
[Crossref]

C. Bao, J. A. Jaramillo-Villegas, Y. Xuan, D. E. Leaird, M. Qi, and A. M. Weiner, “Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator,” Phys. Rev. Lett. 117, 163901 (2016).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal‐dispersion microcombs enabled by controllable mode interactions,” Laser Photon. Rev. 9, L23–L28 (2015).
[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).
[Crossref]

Quinlan, F.

Randle, H. G.

Savchenkov, A. A.

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Skryabin, D. V.

D. V. Skryabin and A. V. Gorbach, “Colloquium: looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Suh, M.-G.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Sylvestre, T.

Taheri, H.

H. Taheri, A. B. Matsko, and L. Maleki, “Optical lattice trap for Kerr solitons,” Eur. Phys. J. D 71, 153 (2017).
[Crossref]

H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Soliton formation in whispering-gallery-mode resonators via input phase modulation,” IEEE Photon. J. 7, 1–9 (2015).
[Crossref]

Tamura, K.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Vahala, K.

Vahala, K. J.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Wabnitz, S.

Wang, C.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Wang, J.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Wang, P. H.

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal‐dispersion microcombs enabled by controllable mode interactions,” Laser Photon. Rev. 9, L23–L28 (2015).
[Crossref]

Wang, P.-H.

Wang, Y.

Weiner, A. M.

C. Bao, Y. Xuan, J. A. Jaramillo-Villegas, D. E. Leaird, and A. M. Weiner, “Direct soliton generation in microresonators,” Opt. Lett. 42, 2519–2522 (2017).
[Crossref]

P.-H. Wang, J. A. Jaramillo-Villegas, Y. Xuan, X. Xue, C. Bao, D. E. Leaird, M. Qi, and A. M. Weiner, “Intracavity characterization of micro-comb generation in the single-soliton regime,” Opt. Express 24, 10890–10897 (2016).
[Crossref]

C. Bao, J. A. Jaramillo-Villegas, Y. Xuan, D. E. Leaird, M. Qi, and A. M. Weiner, “Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator,” Phys. Rev. Lett. 117, 163901 (2016).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

J. A. Jaramillo-Villegas, X. Xue, P.-H. Wang, D. E. Leaird, and A. M. Weiner, “Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region,” Opt. Express 23, 9618–9626 (2015).
[Crossref]

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal‐dispersion microcombs enabled by controllable mode interactions,” Laser Photon. Rev. 9, L23–L28 (2015).
[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Wiesenfeld, K.

H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Soliton formation in whispering-gallery-mode resonators via input phase modulation,” IEEE Photon. J. 7, 1–9 (2015).
[Crossref]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Xuan, Y.

C. Bao, Y. Xuan, J. A. Jaramillo-Villegas, D. E. Leaird, and A. M. Weiner, “Direct soliton generation in microresonators,” Opt. Lett. 42, 2519–2522 (2017).
[Crossref]

P.-H. Wang, J. A. Jaramillo-Villegas, Y. Xuan, X. Xue, C. Bao, D. E. Leaird, M. Qi, and A. M. Weiner, “Intracavity characterization of micro-comb generation in the single-soliton regime,” Opt. Express 24, 10890–10897 (2016).
[Crossref]

C. Bao, J. A. Jaramillo-Villegas, Y. Xuan, D. E. Leaird, M. Qi, and A. M. Weiner, “Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator,” Phys. Rev. Lett. 117, 163901 (2016).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal‐dispersion microcombs enabled by controllable mode interactions,” Laser Photon. Rev. 9, L23–L28 (2015).
[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).
[Crossref]

Xue, X.

Yang, K. Y.

X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, X. Li, and K. Vahala, “Single-mode dispersive waves and soliton microcomb dynamics,” Nat. Commun. 8, 14869 (2017).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Spatial-mode-interaction-induced dispersive waves and their active tuning in microresonators,” Optica 3, 1132–1135 (2016).
[Crossref]

Yang, Q.-F.

X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, X. Li, and K. Vahala, “Single-mode dispersive waves and soliton microcomb dynamics,” Nat. Commun. 8, 14869 (2017).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

X. Yi, Q.-F. Yang, K. Youl, and K. Vahala, “Active capture and stabilization of temporal solitons in microresonators,” Opt. Lett. 41, 2037–2040 (2016).
[Crossref]

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Spatial-mode-interaction-induced dispersive waves and their active tuning in microresonators,” Optica 3, 1132–1135 (2016).
[Crossref]

Yi, X.

X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, X. Li, and K. Vahala, “Single-mode dispersive waves and soliton microcomb dynamics,” Nat. Commun. 8, 14869 (2017).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

X. Yi, Q.-F. Yang, K. Youl, and K. Vahala, “Active capture and stabilization of temporal solitons in microresonators,” Opt. Lett. 41, 2037–2040 (2016).
[Crossref]

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Spatial-mode-interaction-induced dispersive waves and their active tuning in microresonators,” Optica 3, 1132–1135 (2016).
[Crossref]

Youl, K.

Zhang, X.

X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, X. Li, and K. Vahala, “Single-mode dispersive waves and soliton microcomb dynamics,” Nat. Commun. 8, 14869 (2017).
[Crossref]

Appl. Phys. B (1)

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Eur. Phys. J. D (1)

H. Taheri, A. B. Matsko, and L. Maleki, “Optical lattice trap for Kerr solitons,” Eur. Phys. J. D 71, 153 (2017).
[Crossref]

IEEE Photon. J. (1)

H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Soliton formation in whispering-gallery-mode resonators via input phase modulation,” IEEE Photon. J. 7, 1–9 (2015).
[Crossref]

Laser Photon. Rev. (1)

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal‐dispersion microcombs enabled by controllable mode interactions,” Laser Photon. Rev. 9, L23–L28 (2015).
[Crossref]

Nat. Commun. (1)

X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, X. Li, and K. Vahala, “Single-mode dispersive waves and soliton microcomb dynamics,” Nat. Commun. 8, 14869 (2017).
[Crossref]

Nat. Photonics (3)

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Nat. Phys. (1)

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2017).
[Crossref]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Optica (4)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

Phys. Rev. Lett. (2)

C. Bao, J. A. Jaramillo-Villegas, Y. Xuan, D. E. Leaird, M. Qi, and A. M. Weiner, “Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator,” Phys. Rev. Lett. 117, 163901 (2016).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

Proc. IEEE (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

Rev. Mod. Phys. (1)

D. V. Skryabin and A. V. Gorbach, “Colloquium: looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

Science (2)

T. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Other (1)

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” arXiv:1610.00080 (2016).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Measured relative cavity resonance frequencies (circles) of the two devices and their quadratic fits (lines). There is a strong mode-interaction perturbed resonance shift for Device 1, while this shift is much weaker for Device 2. The resonance frequencies of Device 1, 2 are shifted away from each other for clarity.

Fig. 2.
Fig. 2.

Soliton generation in two similar devices. (a) Histogram plot of 40 overlaid converted comb power traces for Device 1, when tuning the laser across the resonance. The color density represents the count of trials in which a certain power level occurs during the given time slot. Soliton-step comprising a single soliton is observed in all 40 scans. (b) Single soliton spectrum of Device 1, showing an abrupt jump, 11 dB stronger than sech2 fit (red lines). (c) Spectrum of the multi-soliton of Device 2. (d) Single soliton spectrum of Device 2 showing a much smaller (2 dB) jump at the mode-interaction region.

Fig. 3.
Fig. 3.

Numerical simulations on single soliton generation from mode-interaction. (a) An example of the soliton generation dynamics under weak mode-interaction. Four solitons are generated from the chaotic state. (b) Histogram of 50 overlaid intracavity power traces during the laser scan under weak mode-interaction. The number of the generated soliton is stochastic, with 3 and 4 being the dominant cases. (c) Comparison of the simulated and experimental spectrum of the single soliton under a strong mode-interaction, (d) the corresponding temporal soliton; the logarithmic plot in the inset clearly shows an oscillating tail. (e) An example of generation dynamics of a single soliton under strong mode-interaction; (f) the corresponding histogram of 50 overlaid power traces during the laser scan, showing deterministic single soliton generation.

Fig. 4.
Fig. 4.

Cherenkov radiation and single soliton generation. (a) Single soliton generation under a=2π×3.8  GHz when seeding with 2 solitons separated by 2.2 ps. One of the soliton annihilates in propagation (see the arrow). Prior to the annihilation, solitons breathe, as shown by the dashed box. (b) Change of the separation between the 2 solitons in propagation. (c) Change of CR power; the CR power reaches a maximum transient power (Pt), which is 3.2 times the steady CR power (Ps) when a single soliton is formed. (d) Simulated histogram of 50 overlaid power traces when tuning the laser to induce solitons under a=2π×2.7  GHz. 2 solitons are always obtained in the 50 scans. (e) Soliton evolution under a=2π×2.7  GHz when seeding with 3 solitons separated by 1.5 ps; one of the solitons annihilate (see the arrow), generating 2 solitons. (f) Change of the soliton separation between the 2nd and 3rd soliton. (g) Change of the CR power; CR reaches a Pt, 2.18 times of Ps.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

(tRt+α+κ2+iβ2L22τ2+iδ)EκEiniγL(E+R(τ)|E(t,ττ)|2dτ)=0,
Sn(ω)=F.T.{j=1j=nE1(ττj)}=S1(ω)eiωτ1j=1j=neiω(τjτ1),

Metrics