Abstract

Ultrafast laser microexplosions in bulk material create extreme conditions at mesoscopic scales and are essential to the synthesis of extraordinary matter structural phases and to light structuring beyond the diffraction limit. Observing the transformation cycle can elucidate their evolution. We discuss multiscale relaxation dynamics in the formation of nanoscale structures in laser-irradiated fused silica. Tightly focused ultrafast nondiffractive Bessel beams are used to generate microexplosions that lead to uniform voids. These trigger thermodynamic nonequilibrium conditions in one-dimensional geometries with record excitation confinement down to 100 nm and electronic pressures in the gigapascal range. Time-resolved phase-contrast microscopy on nanosecond to microsecond scales indicates that void formation is a slow process developing from low-viscosity phases after persistent plasma fluid stages signaled via nanosecond-long luminescence. The void evolution is not necessarily driven by rarefaction following initial pressure relaxation, but involves molecular kinetics and stress mechanisms that interfere with the evolution of the liquid phase and induce cavitation. Heat transport is also visualized. Higher energy leads to hydrodynamic instabilities and void fragmentation. The dynamic view helps us understand material transformation under confinement.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation and control of ultrafast laser-induced isotropic and anisotropic nanoscale-modulated index patterns in bulk fused silica

R. Stoian, K. Mishchik, G. Cheng, C. Mauclair, C. D’Amico, J. P. Colombier, and M. Zamfirescu
Opt. Mater. Express 3(10) 1755-1768 (2013)

Void-nanograting transition by ultrashort laser pulse irradiation in silica glass

Ye Dai, Aabid Patel, Juan Song, Martynas Beresna, and Peter G. Kazansky
Opt. Express 24(17) 19344-19353 (2016)

Relaxation dynamics of nanosecond laser superheated material in dielectrics

Stavros G. Demos, Raluca A. Negres, Rajesh N. Raman, Michael D. Feit, Kenneth R. Manes, and Alexander M. Rubenchik
Optica 2(8) 765-772 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
    [Crossref]
  2. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
    [Crossref]
  3. L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
    [Crossref]
  4. Y. Shen, S. B. Jester, T. Qi, and E. J. Reed, “Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2,” Nat. Mater. 15, 60–65 (2016).
    [Crossref]
  5. C. A. McCoy, M. C. Gregor, D. N. Polsin, D. E. Fratanduono, P. M. Celliers, T. R. Boehly, and D. D. Meyerhofer, “Shock-wave equation-of-state measurements in fused silica up to 1600 GPa,” J. Appl. Phys. 119, 215901 (2016).
    [Crossref]
  6. S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
    [Crossref]
  7. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
    [Crossref]
  8. J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112, 033901 (2014).
    [Crossref]
  9. G. A. Lyzenga and T. J. Ahrens, “Shock temperatures of SiO2 and their geophysical implications,” J. Geophys. Res. 88, 2431–2444 (1983).
    [Crossref]
  10. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [Crossref]
  11. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
    [Crossref]
  12. M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
    [Crossref]
  13. P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
    [Crossref]
  14. L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Corvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
    [Crossref]
  15. J. Mcleod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954).
    [Crossref]
  16. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989).
    [Crossref]
  17. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991).
    [Crossref]
  18. A. Mermillod-Blondin, H. Mentzel, and A. Rosenfeld, “Time-resolved microscopy with random lasers,” Opt. Lett. 38, 4112–4115 (2013).
    [Crossref]
  19. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
    [Crossref]
  20. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
    [Crossref]
  21. P. Polesana, M. Franco, A. Couairon, D. Faccio, and P. Di Trapani, “Filamentation in Kerr media from pulsed Bessel beams,” Phys. Rev. A 77, 043814 (2008).
    [Crossref]
  22. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
    [Crossref]
  23. T. Deschamps, J. Margueritat, C. Martinet, A. Mermet, and B. Champagnon, “Elastic moduli of permanently densified silica glasses,” Sci. Rep. 4, 7193 (2014).
    [Crossref]
  24. G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
    [Crossref]
  25. K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114, 133502 (2013).
    [Crossref]
  26. N. S. Shcheblanov and M. E. Povarnitsyn, “Bond-breaking mechanism of vitreous silica densification by IR femtosecond laser pulses,” Eur. Phys. Lett. 114, 26004 (2016).
    [Crossref]
  27. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1, 711–723 (2011).
    [Crossref]
  28. H. J. Melosh, “A hydrocode equation of state for SiO2,” Meteorit. Planet. Sci. 42, 2079–2098 (2007).
    [Crossref]
  29. J. Eggers, “Nonlinear dynamics and breakup of free-surface flows,” Rev. Mod. Phys. 69, 865–930 (1997).
    [Crossref]
  30. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2, 26–46 (2008).
    [Crossref]
  31. W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys. 73, 106501 (2010).
    [Crossref]
  32. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
    [Crossref]

2016 (5)

Y. Shen, S. B. Jester, T. Qi, and E. J. Reed, “Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2,” Nat. Mater. 15, 60–65 (2016).
[Crossref]

C. A. McCoy, M. C. Gregor, D. N. Polsin, D. E. Fratanduono, P. M. Celliers, T. R. Boehly, and D. D. Meyerhofer, “Shock-wave equation-of-state measurements in fused silica up to 1600 GPa,” J. Appl. Phys. 119, 215901 (2016).
[Crossref]

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Corvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref]

N. S. Shcheblanov and M. E. Povarnitsyn, “Bond-breaking mechanism of vitreous silica densification by IR femtosecond laser pulses,” Eur. Phys. Lett. 114, 26004 (2016).
[Crossref]

2015 (1)

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

2014 (3)

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112, 033901 (2014).
[Crossref]

T. Deschamps, J. Margueritat, C. Martinet, A. Mermet, and B. Champagnon, “Elastic moduli of permanently densified silica glasses,” Sci. Rep. 4, 7193 (2014).
[Crossref]

2013 (2)

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114, 133502 (2013).
[Crossref]

A. Mermillod-Blondin, H. Mentzel, and A. Rosenfeld, “Time-resolved microscopy with random lasers,” Opt. Lett. 38, 4112–4115 (2013).
[Crossref]

2011 (2)

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1, 711–723 (2011).
[Crossref]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref]

2010 (3)

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys. 73, 106501 (2010).
[Crossref]

2008 (2)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2, 26–46 (2008).
[Crossref]

P. Polesana, M. Franco, A. Couairon, D. Faccio, and P. Di Trapani, “Filamentation in Kerr media from pulsed Bessel beams,” Phys. Rev. A 77, 043814 (2008).
[Crossref]

2007 (2)

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

H. J. Melosh, “A hydrocode equation of state for SiO2,” Meteorit. Planet. Sci. 42, 2079–2098 (2007).
[Crossref]

2006 (2)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

2004 (1)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref]

2002 (1)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

1997 (2)

J. Eggers, “Nonlinear dynamics and breakup of free-surface flows,” Rev. Mod. Phys. 69, 865–930 (1997).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

1995 (1)

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[Crossref]

1991 (1)

1989 (1)

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

1983 (1)

G. A. Lyzenga and T. J. Ahrens, “Shock temperatures of SiO2 and their geophysical implications,” J. Geophys. Res. 88, 2431–2444 (1983).
[Crossref]

1954 (1)

Ahrens, T. J.

G. A. Lyzenga and T. J. Ahrens, “Shock temperatures of SiO2 and their geophysical implications,” J. Geophys. Res. 88, 2431–2444 (1983).
[Crossref]

Audouard, E.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Beresna, M.

Bhuyan, M. K.

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Boehly, T. R.

C. A. McCoy, M. C. Gregor, D. N. Polsin, D. E. Fratanduono, P. M. Celliers, T. R. Boehly, and D. D. Meyerhofer, “Shock-wave equation-of-state measurements in fused silica up to 1600 GPa,” J. Appl. Phys. 119, 215901 (2016).
[Crossref]

Boukenter, A.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114, 133502 (2013).
[Crossref]

Bradby, J. E.

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

Bulgakova, N. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Burakov, I. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Carr, C. W.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref]

Celliers, P. M.

C. A. McCoy, M. C. Gregor, D. N. Polsin, D. E. Fratanduono, P. M. Celliers, T. R. Boehly, and D. D. Meyerhofer, “Shock-wave equation-of-state measurements in fused silica up to 1600 GPa,” J. Appl. Phys. 119, 215901 (2016).
[Crossref]

Chahid-Erraji, A.

Champagnon, B.

T. Deschamps, J. Margueritat, C. Martinet, A. Mermet, and B. Champagnon, “Elastic moduli of permanently densified silica glasses,” Sci. Rep. 4, 7193 (2014).
[Crossref]

Colombier, J. P.

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

Corvoisier, F.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Corvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref]

Couairon, A.

P. Polesana, M. Franco, A. Couairon, D. Faccio, and P. Di Trapani, “Filamentation in Kerr media from pulsed Bessel beams,” Phys. Rev. A 77, 043814 (2008).
[Crossref]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

Courvoisier, F.

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

D’Amico, C.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114, 133502 (2013).
[Crossref]

Demos, S. G.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref]

Deschamps, T.

T. Deschamps, J. Margueritat, C. Martinet, A. Mermet, and B. Champagnon, “Elastic moduli of permanently densified silica glasses,” Sci. Rep. 4, 7193 (2014).
[Crossref]

Di Trapani, P.

P. Polesana, M. Franco, A. Couairon, D. Faccio, and P. Di Trapani, “Filamentation in Kerr media from pulsed Bessel beams,” Phys. Rev. A 77, 043814 (2008).
[Crossref]

Dudley, J. M.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Corvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Eggers, J.

J. Eggers, “Nonlinear dynamics and breakup of free-surface flows,” Rev. Mod. Phys. 69, 865–930 (1997).
[Crossref]

Faccio, D.

P. Polesana, M. Franco, A. Couairon, D. Faccio, and P. Di Trapani, “Filamentation in Kerr media from pulsed Bessel beams,” Phys. Rev. A 77, 043814 (2008).
[Crossref]

Faure, N.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

Feit, M. D.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref]

Franco, M.

P. Polesana, M. Franco, A. Couairon, D. Faccio, and P. Di Trapani, “Filamentation in Kerr media from pulsed Bessel beams,” Phys. Rev. A 77, 043814 (2008).
[Crossref]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

Fratanduono, D. E.

C. A. McCoy, M. C. Gregor, D. N. Polsin, D. E. Fratanduono, P. M. Celliers, T. R. Boehly, and D. D. Meyerhofer, “Shock-wave equation-of-state measurements in fused silica up to 1600 GPa,” J. Appl. Phys. 119, 215901 (2016).
[Crossref]

Furfaro, L.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Corvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Gamaly, E. G.

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Gecevicius, M.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112, 033901 (2014).
[Crossref]

Ghosh, G.

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[Crossref]

Giust, R.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Corvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref]

Glezer, E. N.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

Gregor, M. C.

C. A. McCoy, M. C. Gregor, D. N. Polsin, D. E. Fratanduono, P. M. Celliers, T. R. Boehly, and D. D. Meyerhofer, “Shock-wave equation-of-state measurements in fused silica up to 1600 GPa,” J. Appl. Phys. 119, 215901 (2016).
[Crossref]

Haberl, B.

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

Hallo, L.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Herman, R. M.

Hertel, I. V.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Hirao, N.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2, 26–46 (2008).
[Crossref]

Husakou, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Indebetouw, G.

Jacquot, M.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Corvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Jester, S. B.

Y. Shen, S. B. Jester, T. Qi, and E. J. Reed, “Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2,” Nat. Mater. 15, 60–65 (2016).
[Crossref]

Juodkazis, S.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Kazansky, P. G.

Kohara, S.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

Kurz, T.

W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys. 73, 106501 (2010).
[Crossref]

Lacourt, P. A.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Corvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

Lancry, M.

Lauterborn, W.

W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys. 73, 106501 (2010).
[Crossref]

Luther-Davies, B.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Lyzenga, G. A.

G. A. Lyzenga and T. J. Ahrens, “Shock temperatures of SiO2 and their geophysical implications,” J. Geophys. Res. 88, 2431–2444 (1983).
[Crossref]

Margueritat, J.

T. Deschamps, J. Margueritat, C. Martinet, A. Mermet, and B. Champagnon, “Elastic moduli of permanently densified silica glasses,” Sci. Rep. 4, 7193 (2014).
[Crossref]

Martinet, C.

T. Deschamps, J. Margueritat, C. Martinet, A. Mermet, and B. Champagnon, “Elastic moduli of permanently densified silica glasses,” Sci. Rep. 4, 7193 (2014).
[Crossref]

Mauclair, C.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114, 133502 (2013).
[Crossref]

Mazur, E.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

McCoy, C. A.

C. A. McCoy, M. C. Gregor, D. N. Polsin, D. E. Fratanduono, P. M. Celliers, T. R. Boehly, and D. D. Meyerhofer, “Shock-wave equation-of-state measurements in fused silica up to 1600 GPa,” J. Appl. Phys. 119, 215901 (2016).
[Crossref]

Mcleod, J.

Melosh, H. J.

H. J. Melosh, “A hydrocode equation of state for SiO2,” Meteorit. Planet. Sci. 42, 2079–2098 (2007).
[Crossref]

Mentzel, H.

Mermet, A.

T. Deschamps, J. Margueritat, C. Martinet, A. Mermet, and B. Champagnon, “Elastic moduli of permanently densified silica glasses,” Sci. Rep. 4, 7193 (2014).
[Crossref]

Mermillod-Blondin, A.

A. Mermillod-Blondin, H. Mentzel, and A. Rosenfeld, “Time-resolved microscopy with random lasers,” Opt. Lett. 38, 4112–4115 (2013).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Meyer, R.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Corvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref]

Meyerhofer, D. D.

C. A. McCoy, M. C. Gregor, D. N. Polsin, D. E. Fratanduono, P. M. Celliers, T. R. Boehly, and D. D. Meyerhofer, “Shock-wave equation-of-state measurements in fused silica up to 1600 GPa,” J. Appl. Phys. 119, 215901 (2016).
[Crossref]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Misawa, H.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Mishchik, K.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114, 133502 (2013).
[Crossref]

Mizeikis, V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

Mysyrowicz, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

Nicolai, P.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Nishimura, K.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Ohishi, Y.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

Olivier, T.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

Ouerdane, Y.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114, 133502 (2013).
[Crossref]

Pickard, C. J.

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

Polesana, P.

P. Polesana, M. Franco, A. Couairon, D. Faccio, and P. Di Trapani, “Filamentation in Kerr media from pulsed Bessel beams,” Phys. Rev. A 77, 043814 (2008).
[Crossref]

Polsin, D. N.

C. A. McCoy, M. C. Gregor, D. N. Polsin, D. E. Fratanduono, P. M. Celliers, T. R. Boehly, and D. D. Meyerhofer, “Shock-wave equation-of-state measurements in fused silica up to 1600 GPa,” J. Appl. Phys. 119, 215901 (2016).
[Crossref]

Poumellec, B.

Povarnitsyn, M. E.

N. S. Shcheblanov and M. E. Povarnitsyn, “Bond-breaking mechanism of vitreous silica densification by IR femtosecond laser pulses,” Eur. Phys. Lett. 114, 26004 (2016).
[Crossref]

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

Qi, T.

Y. Shen, S. B. Jester, T. Qi, and E. J. Reed, “Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2,” Nat. Mater. 15, 60–65 (2016).
[Crossref]

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref]

Rapp, L.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Corvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref]

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

Reed, E. J.

Y. Shen, S. B. Jester, T. Qi, and E. J. Reed, “Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2,” Nat. Mater. 15, 60–65 (2016).
[Crossref]

Rode, A.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

Rode, A. V.

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref]

Rosenfeld, A.

A. Mermillod-Blondin, H. Mentzel, and A. Rosenfeld, “Time-resolved microscopy with random lasers,” Opt. Lett. 38, 4112–4115 (2013).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Rubenchik, A. M.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref]

Saito, A.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

Salut, R.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Shcheblanov, N. S.

N. S. Shcheblanov and M. E. Povarnitsyn, “Bond-breaking mechanism of vitreous silica densification by IR femtosecond laser pulses,” Eur. Phys. Lett. 114, 26004 (2016).
[Crossref]

Shen, Y.

Y. Shen, S. B. Jester, T. Qi, and E. J. Reed, “Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2,” Nat. Mater. 15, 60–65 (2016).
[Crossref]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2, 26–46 (2008).
[Crossref]

Stoian, R.

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114, 133502 (2013).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2, 26–46 (2008).
[Crossref]

Tikhonchuk, V. T.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

Vailionis, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

Velpula, P. K.

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114, 133502 (2013).
[Crossref]

Wiggins, T. A.

Williams, J. S.

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

Yang, W.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref]

Zhang, H.

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

Zhang, J.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112, 033901 (2014).
[Crossref]

Appl. Phys. Lett. (3)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

Eur. Phys. Lett. (1)

N. S. Shcheblanov and M. E. Povarnitsyn, “Bond-breaking mechanism of vitreous silica densification by IR femtosecond laser pulses,” Eur. Phys. Lett. 114, 26004 (2016).
[Crossref]

J. Appl. Phys. (3)

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114, 133502 (2013).
[Crossref]

C. A. McCoy, M. C. Gregor, D. N. Polsin, D. E. Fratanduono, P. M. Celliers, T. R. Boehly, and D. D. Meyerhofer, “Shock-wave equation-of-state measurements in fused silica up to 1600 GPa,” J. Appl. Phys. 119, 215901 (2016).
[Crossref]

J. Geophys. Res. (1)

G. A. Lyzenga and T. J. Ahrens, “Shock temperatures of SiO2 and their geophysical implications,” J. Geophys. Res. 88, 2431–2444 (1983).
[Crossref]

J. Non-Cryst. Solids (1)

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[Crossref]

J. Opt. (1)

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Laser Photon. Rev. (2)

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photon. Rev. 10, 230–244 (2016).
[Crossref]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2, 26–46 (2008).
[Crossref]

Meteorit. Planet. Sci. (1)

H. J. Melosh, “A hydrocode equation of state for SiO2,” Meteorit. Planet. Sci. 42, 2079–2098 (2007).
[Crossref]

Nat. Commun. (2)

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref]

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

Nat. Mater. (1)

Y. Shen, S. B. Jester, T. Qi, and E. J. Reed, “Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2,” Nat. Mater. 15, 60–65 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. A (1)

P. Polesana, M. Franco, A. Couairon, D. Faccio, and P. Di Trapani, “Filamentation in Kerr media from pulsed Bessel beams,” Phys. Rev. A 77, 043814 (2008).
[Crossref]

Phys. Rev. B (1)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Phys. Rev. Lett. (5)

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112, 033901 (2014).
[Crossref]

Rep. Prog. Phys. (1)

W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys. 73, 106501 (2010).
[Crossref]

Rev. Mod. Phys. (1)

J. Eggers, “Nonlinear dynamics and breakup of free-surface flows,” Rev. Mod. Phys. 69, 865–930 (1997).
[Crossref]

Sci. Rep. (2)

T. Deschamps, J. Margueritat, C. Martinet, A. Mermet, and B. Champagnon, “Elastic moduli of permanently densified silica glasses,” Sci. Rep. 4, 7193 (2014).
[Crossref]

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Corvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Example of a typical uniform void induced by a tightly focused, 50 fs, 3 μJ, single Bessel laser pulse (conical half-angle θ=15°) in bulk fused silica, imaged by PCM. The inset shows an SEM image of its cross section. (b) Nonlinear simulation of the energy deposited during propagation (ΣabsV) for a 3 μJ, 50 fs input pulse in the same focusing conditions.

Fig. 2.
Fig. 2.

(a) Time-resolved sequence of PCM images corresponding to the appearance of a void-like region (uniform void) induced by a single laser pulse for a time domain ranging from 1 ns to 11 μs. Input laser pulse parameters: 1.8 μJ and 50 fs. The laser comes from the left. A typical OTM snapshot at early times is given at the top. Scale bars are given for optical transmissivity and relative index change. (b) Blow-up of the images at 1 ns and 11 μs, mapping the regions of interest of the orthogonal projection. A section describing the excitation yield at 1 ns is superimposed. (c) Orthogonal views corresponding to zones I, III, and II marked on the figure, namely void formation, intermediate region, and index increase, respectively. For each time delay, regions corresponding to zones I, II, and III were selected and concatenated together to give a complete temporal perspective of each specific region. Transient modifications of interest 1–4 are indicated in the text. A logarithmic timescale is used.

Fig. 3.
Fig. 3.

(a) Time-resolved sequence of PCM images corresponding to the appearance of a fragmented void-like region in single-shot regime, for a time domain ranging from 1 ns to 15 μs. Input laser parameters: 6 μJ and 50 fs. The laser pulse comes from the left. The inset shows the succession of multiple spherical voids characteristic to the fragmented void. A typical OTM snapshot at early times is given at the top. Scale bars are given for optical transmissivity and relative index change. (b) Orthogonal projections corresponding to the fragmentation regime with observed dynamics down to 50 μs. A logarithmic timescale is used.

Fig. 4.
Fig. 4.

Time-resolved photoluminescence from the excitation region in uniform void conditions. The photoemission yield is integrated over a gate of 5 ns, controllably delayed with respect to the ultrashort laser excitation pulse. The laser pulse (1 μJ, 50 fs) comes from the left.

Fig. 5.
Fig. 5.

(a) Time-resolved sequence of PCM images for single pulse interaction just below the threshold for the formation of permanently depressed void-like regions, for a time domain ranging from 1 ns to 4 μs. Input laser parameters: 0.25 μJ and 50 fs. The laser pulse comes from the left. The heat wave diffusion is seen as a transient index change. Scale bar is given for the relative index change. (b) Corresponding orthogonal projections. A logarithmic timescale is used.