Abstract

Electromagnetically-induced transparency (EIT), classically generated by the coherent interaction between light and multilevel atoms, is a cutting-edge research theme in optical memories. Unfortunately, the strict requirements of gaseous atoms and particular frequencies that obey atomic transitions pose a challenge to practical application. Here we propose an all-fiber monolithic microfiber bridged ring resonator (MBRR), and experimentally demonstrate its EIT-like effect called microfiber resonator induced transparency (MRIT). Because the MRIT is induced by destructive interference between two counter propagating modes inside the cavity, the MBRR shows excellent light velocity control ability, with both fast light and slow light up to several nanoseconds in theory. Continuous pulse delay tuning from 60  ps (fast light) to +160  ps (slow light) within one MBRR was experimentally achieved. The pulse retardation of the MBRR is one order of magnitude larger than that of previously reported microfiber resonators. The proposed MBRR with unique bridged structure features such as multi-channels, all-fiber structure, compact size, and low cost, could be applied in quantum computation, information storage, optical processing, and fiber sensing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Slow light and fast light in microfiber double-knot resonator with a parallel structure

Yiping Xu, Liyong Ren, Chengju Ma, Xudong Kong, and Kaili Ren
Appl. Opt. 55(30) 8612-8617 (2016)

Enhanced fast light in microfiber ring resonator with a Sagnac loop reflector

Tao Wang, Xiaohui Li, Fangfei Liu, Weihong Long, Ziyang Zhang, Limin Tong, and Yikai Su
Opt. Express 18(15) 16156-16161 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  2. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
    [Crossref]
  3. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
    [Crossref]
  4. B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 6082, 1–9 (2014).
  5. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
    [Crossref]
  6. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
    [Crossref]
  7. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [Crossref]
  8. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulse,” Nature 409, 490–493 (2001).
    [Crossref]
  9. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [Crossref]
  10. C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms,” Optica 2, 353–356 (2015).
    [Crossref]
  11. B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
    [Crossref]
  12. U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055081 (2000).
  13. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
    [Crossref]
  14. F. Zimmer and M. Fleischhauer, “Sagnac interferometry based on ultraslow polaritons in cold atomic vapors,” Phys. Rev. Lett. 92, 253201 (2004).
    [Crossref]
  15. Y. Zheng, J. Yang, Z. Shen, J. Cao, X. Chen, X. Liang, and W. Wan, “Optically induced transparency in a micro-cavity,” Light: Sci. Appl. 5, 72 (2016).
    [Crossref]
  16. M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
    [Crossref]
  17. H. Kang, J. S. Kim, S. I. Hwang, Y. H. Park, D. Ko, and J. Lee, “Electromagnetically induced transparency on GaAs quantum well to observe hole spin dephasing,” Opt. Express 16, 15728–15732 (2008).
    [Crossref]
  18. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
    [Crossref]
  19. X. Wei, Y. Wang, J. Zhang, and Y. Zhu, “Broadband cavity electromagnetically induced transparency,” Phys. Rev. A 84, 045806 (2011).
    [Crossref]
  20. D. D. Smith, H. Chang, and K. A. Fuller, “Whispering-gallery mode splitting in coupled microresonators,” J. Opt. Soc. Am. A 20, 1967–1974 (2003).
    [Crossref]
  21. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [Crossref]
  22. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
    [Crossref]
  23. M. F. Yanik, W. Suh, and Z. Wang, “Stopping light in a waveguide with an all-optical analogue of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
    [Crossref]
  24. K. Totsuka, K. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
    [Crossref]
  25. X. D. Yang, M. B. Yu, D. L. Kwong, and C. W. Wong, “All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
    [Crossref]
  26. R. Y. Chiao and P. W. Milonni, “Fast light, slow light,” Opt. Photon. News 13(6), 26–30 (2002).
    [Crossref]
  27. K. Totsuka and M. Tomita, “Slow and fast light in a microsphere-optical fiber system,” J. Opt. Soc. Am. B 23, 2194–2199 (2006).
    [Crossref]
  28. H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H. J. Chang, R. W. Boyd, Q. H. Park, and D. J. Gauthier, “Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier,” Opt. Lett. 32, 906–908 (2007).
    [Crossref]
  29. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
    [Crossref]
  30. Y. H. Ja, “A spectacles-shaped optical fiber ring resonator with two couplers,” Opt. Quantum Electron. 23, 379–389 (1991).
    [Crossref]
  31. Y. H. Ja, “Simultaneous resonance of an S-shaped two-coupler optical fiber ring resonator,” Opt. Commun. 102, 133–140 (1993).
    [Crossref]
  32. Y. H. Ja, “Densely spaced two-channel wavelength division demultiplexer with an S shaped two-coupler optical fiber ring resonator,” Appl. Opt. 32, 6679–6683 (1993).
    [Crossref]
  33. Y. H. Ja, “Butterworth-like filters using a S-shaped two-coupler optical fiber ring resonator,” Microw. Opt. Technol. Lett. 6, 376–378 (1993).
    [Crossref]
  34. S. Kharitonov and C. S. Brès, “Isolator-free unidirectional thulium-doped fiber laser,” Light: Sci. Appl. 4, e340 (2015).
    [Crossref]
  35. M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fiber laser using carbo nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
    [Crossref]
  36. L. Zhou, T. Ye, and J. Chen, “Coherent interference induced transparency in self-coupled optical waveguide-based resonators,” Opt. Lett. 36, 13–15 (2011).
    [Crossref]
  37. Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, “Tunable two-stage self-coupled optical waveguide resonators,” Opt. Lett. 38, 1215–1217 (2013).
    [Crossref]
  38. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [Crossref]
  39. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. O. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107–161 (2009).
    [Crossref]
  40. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
    [Crossref]
  41. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893 (2007).
    [Crossref]
  42. Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17, 18142–18147 (2009).
    [Crossref]
  43. X. S. Jiang, Y. Chen, G. Vienne, and L. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710–1712 (2007).
    [Crossref]
  44. Y. Wu, X. Zeng, C. Hou, J. Bai, and G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92, 191112 (2008).
    [Crossref]
  45. T. Wang, X. Li, F. Liu, W. Long, Z. Zhang, L. Tong, and Y. Su, “Enhanced fast light in microfiber ring resonator with a Sagnac loop reflector,” Opt. Express 18, 16156–16161 (2010).
    [Crossref]
  46. Y. Xu, L. Ren, J. Liang, C. Ma, Y. Wang, X. Kong, and X. Lin, “Wideband slow light in microfiber double-knot resonator with a parallel structure,” J. Appl. Phys. 118, 073105 (2015).
    [Crossref]
  47. D. Miller, D. B. Mortimore, P. Urquhart, B. J. Ainslie, S. P. Craig, C. A. Millar, and D. B. Payne, “A Nd3+-doped cw fiber laser using all-fiber reflector,” Appl. Opt. 26, 2197–2201 (1987).
    [Crossref]

2016 (2)

Y. Zheng, J. Yang, Z. Shen, J. Cao, X. Chen, X. Liang, and W. Wan, “Optically induced transparency in a micro-cavity,” Light: Sci. Appl. 5, 72 (2016).
[Crossref]

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fiber laser using carbo nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref]

2015 (4)

S. Kharitonov and C. S. Brès, “Isolator-free unidirectional thulium-doped fiber laser,” Light: Sci. Appl. 4, e340 (2015).
[Crossref]

C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms,” Optica 2, 353–356 (2015).
[Crossref]

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

Y. Xu, L. Ren, J. Liang, C. Ma, Y. Wang, X. Kong, and X. Lin, “Wideband slow light in microfiber double-knot resonator with a parallel structure,” J. Appl. Phys. 118, 073105 (2015).
[Crossref]

2014 (1)

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 6082, 1–9 (2014).

2013 (2)

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, “Tunable two-stage self-coupled optical waveguide resonators,” Opt. Lett. 38, 1215–1217 (2013).
[Crossref]

2011 (3)

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

L. Zhou, T. Ye, and J. Chen, “Coherent interference induced transparency in self-coupled optical waveguide-based resonators,” Opt. Lett. 36, 13–15 (2011).
[Crossref]

X. Wei, Y. Wang, J. Zhang, and Y. Zhu, “Broadband cavity electromagnetically induced transparency,” Phys. Rev. A 84, 045806 (2011).
[Crossref]

2010 (2)

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

T. Wang, X. Li, F. Liu, W. Long, Z. Zhang, L. Tong, and Y. Su, “Enhanced fast light in microfiber ring resonator with a Sagnac loop reflector,” Opt. Express 18, 16156–16161 (2010).
[Crossref]

2009 (3)

2008 (3)

2007 (6)

X. S. Jiang, Y. Chen, G. Vienne, and L. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710–1712 (2007).
[Crossref]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893 (2007).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

K. Totsuka, K. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref]

H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H. J. Chang, R. W. Boyd, Q. H. Park, and D. J. Gauthier, “Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier,” Opt. Lett. 32, 906–908 (2007).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
[Crossref]

2006 (2)

K. Totsuka and M. Tomita, “Slow and fast light in a microsphere-optical fiber system,” J. Opt. Soc. Am. B 23, 2194–2199 (2006).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

2005 (2)

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

2004 (4)

M. F. Yanik, W. Suh, and Z. Wang, “Stopping light in a waveguide with an all-optical analogue of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

F. Zimmer and M. Fleischhauer, “Sagnac interferometry based on ultraslow polaritons in cold atomic vapors,” Phys. Rev. Lett. 92, 253201 (2004).
[Crossref]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[Crossref]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

2003 (3)

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref]

D. D. Smith, H. Chang, and K. A. Fuller, “Whispering-gallery mode splitting in coupled microresonators,” J. Opt. Soc. Am. A 20, 1967–1974 (2003).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

2002 (1)

R. Y. Chiao and P. W. Milonni, “Fast light, slow light,” Opt. Photon. News 13(6), 26–30 (2002).
[Crossref]

2001 (2)

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulse,” Nature 409, 490–493 (2001).
[Crossref]

2000 (1)

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055081 (2000).

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

1993 (3)

Y. H. Ja, “Simultaneous resonance of an S-shaped two-coupler optical fiber ring resonator,” Opt. Commun. 102, 133–140 (1993).
[Crossref]

Y. H. Ja, “Densely spaced two-channel wavelength division demultiplexer with an S shaped two-coupler optical fiber ring resonator,” Appl. Opt. 32, 6679–6683 (1993).
[Crossref]

Y. H. Ja, “Butterworth-like filters using a S-shaped two-coupler optical fiber ring resonator,” Microw. Opt. Technol. Lett. 6, 376–378 (1993).
[Crossref]

1991 (1)

Y. H. Ja, “A spectacles-shaped optical fiber ring resonator with two couplers,” Opt. Quantum Electron. 23, 379–389 (1991).
[Crossref]

1987 (1)

Ainslie, B. J.

AlAraimi, M.

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fiber laser using carbo nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref]

Albrecht, B.

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Arif, R.

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fiber laser using carbo nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Bai, J.

Y. Wu, X. Zeng, C. Hou, J. Bai, and G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92, 191112 (2008).
[Crossref]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulse,” Nature 409, 490–493 (2001).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Binder, R.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref]

Boyd, R. W.

Brambilla, G.

Brès, C. S.

S. Kharitonov and C. S. Brès, “Isolator-free unidirectional thulium-doped fiber laser,” Light: Sci. Appl. 4, e340 (2015).
[Crossref]

Cao, J.

Y. Zheng, J. Yang, Z. Shen, J. Cao, X. Chen, X. Liang, and W. Wan, “Optically induced transparency in a micro-cavity,” Light: Sci. Appl. 5, 72 (2016).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Chang, D. E.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Chang, H.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

D. D. Smith, H. Chang, and K. A. Fuller, “Whispering-gallery mode splitting in coupled microresonators,” J. Opt. Soc. Am. A 20, 1967–1974 (2003).
[Crossref]

Chang, H. J.

Chen, J.

Chen, W.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 6082, 1–9 (2014).

Chen, X.

Y. Zheng, J. Yang, Z. Shen, J. Cao, X. Chen, X. Liang, and W. Wan, “Optically induced transparency in a micro-cavity,” Light: Sci. Appl. 5, 72 (2016).
[Crossref]

Chen, Y.

Chen, Y. H.

Chernysheva, M.

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fiber laser using carbo nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref]

Chiao, R. Y.

R. Y. Chiao and P. W. Milonni, “Fast light, slow light,” Opt. Photon. News 13(6), 26–30 (2002).
[Crossref]

Clausen, C.

Craig, S. P.

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulse,” Nature 409, 490–493 (2001).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[Crossref]

Farca, G.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[Crossref]

Feng, X.

Finazzi, V.

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

F. Zimmer and M. Fleischhauer, “Sagnac interferometry based on ultraslow polaritons in cold atomic vapors,” Phys. Rev. Lett. 92, 253201 (2004).
[Crossref]

Fuller, K. A.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

D. D. Smith, H. Chang, and K. A. Fuller, “Whispering-gallery mode splitting in coupled microresonators,” J. Opt. Soc. Am. A 20, 1967–1974 (2003).
[Crossref]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Gauthier, D. J.

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Gehring, G.

Gong, Y.

Gopal, V.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

Gouraud, B.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

Halfmann, T.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulse,” Nature 409, 490–493 (2001).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

Hill, J. T.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Horak, P.

Hou, C.

Y. Wu, X. Zeng, C. Hou, J. Bai, and G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92, 191112 (2008).
[Crossref]

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

Hwang, S. I.

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Ja, Y. H.

Y. H. Ja, “Simultaneous resonance of an S-shaped two-coupler optical fiber ring resonator,” Opt. Commun. 102, 133–140 (1993).
[Crossref]

Y. H. Ja, “Butterworth-like filters using a S-shaped two-coupler optical fiber ring resonator,” Microw. Opt. Technol. Lett. 6, 376–378 (1993).
[Crossref]

Y. H. Ja, “Densely spaced two-channel wavelength division demultiplexer with an S shaped two-coupler optical fiber ring resonator,” Appl. Opt. 32, 6679–6683 (1993).
[Crossref]

Y. H. Ja, “A spectacles-shaped optical fiber ring resonator with two couplers,” Opt. Quantum Electron. 23, 379–389 (1991).
[Crossref]

Jiang, X. S.

Jung, Y.

Kang, H.

Kharitonov, S.

S. Kharitonov and C. S. Brès, “Isolator-free unidirectional thulium-doped fiber laser,” Light: Sci. Appl. 4, e340 (2015).
[Crossref]

Kim, J. S.

Kippenberg, T. J.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Ko, D.

Kobayashi, K.

K. Totsuka, K. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref]

Koizumi, F. O.

Kong, X.

Y. Xu, L. Ren, J. Liang, C. Ma, Y. Wang, X. Kong, and X. Lin, “Wideband slow light in microfiber double-knot resonator with a parallel structure,” J. Appl. Phys. 118, 073105 (2015).
[Crossref]

Koukharenko, E.

Kwong, D. L.

X. D. Yang, M. B. Yu, D. L. Kwong, and C. W. Wong, “All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref]

Kwong, N. H.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref]

Laurat, J.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

Lee, J.

Leonhardt, U.

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055081 (2000).

Li, X.

Liang, J.

Y. Xu, L. Ren, J. Liang, C. Ma, Y. Wang, X. Kong, and X. Lin, “Wideband slow light in microfiber double-knot resonator with a parallel structure,” J. Appl. Phys. 118, 073105 (2015).
[Crossref]

Liang, X.

Y. Zheng, J. Yang, Z. Shen, J. Cao, X. Chen, X. Liang, and W. Wan, “Optically induced transparency in a micro-cavity,” Light: Sci. Appl. 5, 72 (2016).
[Crossref]

Lin, Q.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Lin, X.

Y. Xu, L. Ren, J. Liang, C. Ma, Y. Wang, X. Kong, and X. Lin, “Wideband slow light in microfiber double-knot resonator with a parallel structure,” J. Appl. Phys. 118, 073105 (2015).
[Crossref]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulse,” Nature 409, 490–493 (2001).
[Crossref]

Liu, F.

Long, W.

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Lu, L.

Lukin, M. D.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Ma, C.

Y. Xu, L. Ren, J. Liang, C. Ma, Y. Wang, X. Kong, and X. Lin, “Wideband slow light in microfiber double-knot resonator with a parallel structure,” J. Appl. Phys. 118, 073105 (2015).
[Crossref]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Marangos, J.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Maxein, D.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Mayer Alegre, T. P.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Messall, M.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

Millar, C. A.

Miller, D.

Milonni, P. W.

R. Y. Chiao and P. W. Milonni, “Fast light, slow light,” Opt. Photon. News 13(6), 26–30 (2002).
[Crossref]

Morin, O.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

Mortimore, D. B.

Mou, C.

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fiber laser using carbo nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref]

Murugan, G. S.

Naweed, A.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[Crossref]

Nicolas, A.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

Nori, F.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 6082, 1–9 (2014).

Ozdemir, S. K.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 6082, 1–9 (2014).

Painter, O.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Park, Q. H.

Park, Y. H.

Pati, G. S.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
[Crossref]

Payne, D. B.

Peng, B.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 6082, 1–9 (2014).

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Phillips, M. C.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref]

Piwnicki, P.

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055081 (2000).

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Pruneri, V.

Rao, Y. J.

Rauschenbeutel, A.

Ren, L.

Y. Xu, L. Ren, J. Liang, C. Ma, Y. Wang, X. Kong, and X. Lin, “Wideband slow light in microfiber double-knot resonator with a parallel structure,” J. Appl. Phys. 118, 073105 (2015).
[Crossref]

Richardson, D. J.

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Rosenberger, A. T.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[Crossref]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

Rozhin, A.

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fiber laser using carbo nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref]

Rümmeli, M.

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fiber laser using carbo nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref]

Rumyantsev, I.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Salit, K.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
[Crossref]

Salit, M.

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
[Crossref]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Sayrin, C.

Schliesser, A.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Schneeweiss, P.

Schweinsberg, A.

Schwertz, K.

Sessions, N. P.

Shahriar, M. S.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
[Crossref]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Shen, Z.

Y. Zheng, J. Yang, Z. Shen, J. Cao, X. Chen, X. Liang, and W. Wan, “Optically induced transparency in a micro-cavity,” Light: Sci. Appl. 5, 72 (2016).
[Crossref]

Shin, H.

Shopova, S. I.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[Crossref]

Smith, D. D.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

D. D. Smith, H. Chang, and K. A. Fuller, “Whispering-gallery mode splitting in coupled microresonators,” J. Opt. Soc. Am. A 20, 1967–1974 (2003).
[Crossref]

Su, Y.

Suh, W.

M. F. Yanik, W. Suh, and Z. Wang, “Stopping light in a waveguide with an all-optical analogue of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Sun, X.

Takayama, R.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref]

Tomita, M.

K. Totsuka, K. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref]

K. Totsuka and M. Tomita, “Slow and fast light in a microsphere-optical fiber system,” J. Opt. Soc. Am. B 23, 2194–2199 (2006).
[Crossref]

Tong, L.

Totsuka, K.

K. Totsuka, K. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref]

K. Totsuka and M. Tomita, “Slow and fast light in a microsphere-optical fiber system,” J. Opt. Soc. Am. B 23, 2194–2199 (2006).
[Crossref]

Tripathi, R.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

Turitsyn, S.

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fiber laser using carbo nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref]

Urquhart, P.

Vienne, G.

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Wan, W.

Y. Zheng, J. Yang, Z. Shen, J. Cao, X. Chen, X. Liang, and W. Wan, “Optically induced transparency in a micro-cavity,” Light: Sci. Appl. 5, 72 (2016).
[Crossref]

Wang, H.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref]

Wang, T.

Wang, Y.

Y. Xu, L. Ren, J. Liang, C. Ma, Y. Wang, X. Kong, and X. Lin, “Wideband slow light in microfiber double-knot resonator with a parallel structure,” J. Appl. Phys. 118, 073105 (2015).
[Crossref]

X. Wei, Y. Wang, J. Zhang, and Y. Zhu, “Broadband cavity electromagnetically induced transparency,” Phys. Rev. A 84, 045806 (2011).
[Crossref]

Wang, Z.

M. F. Yanik, W. Suh, and Z. Wang, “Stopping light in a waveguide with an all-optical analogue of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Wei, X.

X. Wei, Y. Wang, J. Zhang, and Y. Zhu, “Broadband cavity electromagnetically induced transparency,” Phys. Rev. A 84, 045806 (2011).
[Crossref]

Weis, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Wilkinson, J. S.

Winger, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Wong, C. W.

X. D. Yang, M. B. Yu, D. L. Kwong, and C. W. Wong, “All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref]

Wu, Y.

Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17, 18142–18147 (2009).
[Crossref]

Y. Wu, X. Zeng, C. Hou, J. Bai, and G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92, 191112 (2008).
[Crossref]

Xie, J.

Xu, F.

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Xu, Y.

Y. Xu, L. Ren, J. Liang, C. Ma, Y. Wang, X. Kong, and X. Lin, “Wideband slow light in microfiber double-knot resonator with a parallel structure,” J. Appl. Phys. 118, 073105 (2015).
[Crossref]

Yang, G.

Y. Wu, X. Zeng, C. Hou, J. Bai, and G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92, 191112 (2008).
[Crossref]

Yang, J.

Y. Zheng, J. Yang, Z. Shen, J. Cao, X. Chen, X. Liang, and W. Wan, “Optically induced transparency in a micro-cavity,” Light: Sci. Appl. 5, 72 (2016).
[Crossref]

Yang, L.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 6082, 1–9 (2014).

Yang, X. D.

X. D. Yang, M. B. Yu, D. L. Kwong, and C. W. Wong, “All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref]

Yanik, M. F.

M. F. Yanik, W. Suh, and Z. Wang, “Stopping light in a waveguide with an all-optical analogue of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[Crossref]

Ye, T.

Yu, M. B.

X. D. Yang, M. B. Yu, D. L. Kwong, and C. W. Wong, “All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref]

Zeng, X.

Y. Wu, X. Zeng, C. Hou, J. Bai, and G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92, 191112 (2008).
[Crossref]

Zhang, J.

X. Wei, Y. Wang, J. Zhang, and Y. Zhu, “Broadband cavity electromagnetically induced transparency,” Phys. Rev. A 84, 045806 (2011).
[Crossref]

Zhang, Z.

Zheng, Y.

Y. Zheng, J. Yang, Z. Shen, J. Cao, X. Chen, X. Liang, and W. Wan, “Optically induced transparency in a micro-cavity,” Light: Sci. Appl. 5, 72 (2016).
[Crossref]

Zhou, L.

Zhu, H.

Zhu, Y.

X. Wei, Y. Wang, J. Zhang, and Y. Zhu, “Broadband cavity electromagnetically induced transparency,” Phys. Rev. A 84, 045806 (2011).
[Crossref]

Zimmer, F.

F. Zimmer and M. Fleischhauer, “Sagnac interferometry based on ultraslow polaritons in cold atomic vapors,” Phys. Rev. Lett. 92, 253201 (2004).
[Crossref]

Zou, Z.

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Wu, X. Zeng, C. Hou, J. Bai, and G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92, 191112 (2008).
[Crossref]

J. Appl. Phys. (1)

Y. Xu, L. Ren, J. Liang, C. Ma, Y. Wang, X. Kong, and X. Lin, “Wideband slow light in microfiber double-knot resonator with a parallel structure,” J. Appl. Phys. 118, 073105 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

D. D. Smith, H. Chang, and K. A. Fuller, “Whispering-gallery mode splitting in coupled microresonators,” J. Opt. Soc. Am. A 20, 1967–1974 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (2)

S. Kharitonov and C. S. Brès, “Isolator-free unidirectional thulium-doped fiber laser,” Light: Sci. Appl. 4, e340 (2015).
[Crossref]

Y. Zheng, J. Yang, Z. Shen, J. Cao, X. Chen, X. Liang, and W. Wan, “Optically induced transparency in a micro-cavity,” Light: Sci. Appl. 5, 72 (2016).
[Crossref]

Microw. Opt. Technol. Lett. (1)

Y. H. Ja, “Butterworth-like filters using a S-shaped two-coupler optical fiber ring resonator,” Microw. Opt. Technol. Lett. 6, 376–378 (1993).
[Crossref]

Nat. Commun. (1)

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 6082, 1–9 (2014).

Nature (4)

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulse,” Nature 409, 490–493 (2001).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Opt. Commun. (1)

Y. H. Ja, “Simultaneous resonance of an S-shaped two-coupler optical fiber ring resonator,” Opt. Commun. 102, 133–140 (1993).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opt. Photon. News (1)

R. Y. Chiao and P. W. Milonni, “Fast light, slow light,” Opt. Photon. News 13(6), 26–30 (2002).
[Crossref]

Opt. Quantum Electron. (1)

Y. H. Ja, “A spectacles-shaped optical fiber ring resonator with two couplers,” Opt. Quantum Electron. 23, 379–389 (1991).
[Crossref]

Optica (1)

Phys. Rev. A (5)

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055081 (2000).

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

X. Wei, Y. Wang, J. Zhang, and Y. Zhu, “Broadband cavity electromagnetically induced transparency,” Phys. Rev. A 84, 045806 (2011).
[Crossref]

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[Crossref]

Phys. Rev. Lett. (11)

M. F. Yanik, W. Suh, and Z. Wang, “Stopping light in a waveguide with an all-optical analogue of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

K. Totsuka, K. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref]

X. D. Yang, M. B. Yu, D. L. Kwong, and C. W. Wong, “All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
[Crossref]

F. Zimmer and M. Fleischhauer, “Sagnac interferometry based on ultraslow polaritons in cold atomic vapors,” Phys. Rev. Lett. 92, 253201 (2004).
[Crossref]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[Crossref]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[Crossref]

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Sci. Rep. (1)

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fiber laser using carbo nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref]

Science (1)

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the proposed MBRR. (b) MBRR sandwiched between two Teflon-coated silica substrates with the help of glue (right), and its exploded view (left). (c) Photo of an experimentally fabricated MBRR transmitting red light (upper), and microscopic image of the adopted microfiber (lower).

Fig. 2.
Fig. 2.

Coupling parameters dependency of MRIT effect in the MBRR. (a) Theoretical transmission spectra with different coupling efficiencies κ, where the coupling loss is set as γ=0.01. (b) Theoretical transmission spectra with different coupling losses γ, where the coupling efficiency is set as κ=0.99. (c) Experimental transmission spectra (red solid lines) and theoretical fitting curves (blue dashed lines) with different coupling parameters, which verifies the MRIT effect of the MBRR.

Fig. 3.
Fig. 3.

Theoretical and experimental group delay performance of the MBRR. (a) Group delay as a function of coupling efficiency under different coupling losses. (b) κγ plane showing the critical coupling efficiency and coupling loss for fast/slow light, where the lower triangular is the fast light region and the upper triangular is the slow light region. In the simulation, the following parameters are adopted: microfiber diameter 2 μm, surrounding medium Teflon, and cavity length L=10  mm. (c) Simulated group delay spectra of points A, B, C, D, E, and F. Points A–F are labeled in (b). (d) Experimentally measured pulse temporal profiles with the group delay values being 60, 10, 80, and 160 ps, respectively, which verifies the tunability of the group delay. Coupling parameters of the reflection spectra corresponding to the pulse profiles from top to bottom are κ=0.1, γ=0.518, κ=0.4, γ=0.7, κ=0.89, γ=0.28, and κ=0.9, γ=0.15, respectively.

Fig. 4.
Fig. 4.

(a) Experimental setup for group delay characterization of the MBRR. TLS, tunable laser source; PC, polarization controller; EOM, electro-optic modulator; BERT, bit error rate tester; EDFA, erbium-doped fiber amplifier; VOA, variable optical attenuation; OC, optical coupler; PD, photoelectric detector; DSO, digital storage oscilloscope; OSA, optical spectrum analyzer. (b) Experimentally measured group delay spectrum and optical spectrum of the MBRR. The green solid line and green dashed line respectively mark the positions of on-resonant wavelength 1560.01 nm and off-resonant wavelength 1559.905 nm for the reflection spectrum of the MBRR.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r=2jexp(jβl0)·exp(jβl1)·[x1y21+x1x2exp(jβL)+y13x2y2exp(jβL)(1+x1x2exp(jβL))2],
t=exp(jβl0)·{x1x21+x1x2exp(jβL)+(x12+y12)(x22+y2)exp(jβL)1+x1x2exp(jβL)2y12y2exp(jβL)(1+x1x2exp(jβL))2},