Abstract

An important quest in optical imaging has been, and still is, extending the resolution of imaging systems beyond the diffraction limit. We propose a superresolution technique in which the image is first blurred by a scattering mask, and then recovered from the blurry data with improved resolution. We introduced a scattering mask into the space between the observed objects and the objective lens of a Fresnel incoherent correlation holography (FINCH) system to demonstrate the method. Optical waves, containing high spatial frequencies of the object, which are usually filtered out by the limited system aperture, were introduced into the system due to the scattering nature of the scattering mask. As a consequence, both the effective numerical aperture and the spatial bandwidth of the system were enlarged. The image resolution could therefore be improved far beyond the resolution limit dictated by the limited numerical aperture of the system. We demonstrated the technique using a modified FINCH system and the results were compared with other systems, all having the same aperture dimensions. We showed a resolution enhancement in comparison to conventional FINCH and regular imaging systems, with the same numerical apertures. The theoretical and experimental data presented here establishes the proposed method as an attractive platform for an advanced superresolution system that can resolve better than conventional imaging systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coded aperture correlation holography–a new type of incoherent digital holograms

A. Vijayakumar, Yuval Kashter, Roy Kelner, and Joseph Rosen
Opt. Express 24(11) 12430-12441 (2016)

Coded aperture correlation holography system with improved performance [Invited]

A. Vijayakumar, Yuval Kashter, Roy Kelner, and Joseph Rosen
Appl. Opt. 56(13) F67-F77 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Gu, ed., Advanced Optical Imaging Theory (Springer-Verlag, 1999), Vol. 75.
  2. P. Nisenson and C. Papaliolios, “Detection of Earth-like planets using apodized telescopes,” Astrophys. J. 548, L201–L205 (2001).
    [Crossref]
  3. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
    [Crossref]
  4. A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
    [Crossref]
  5. E. Hecht, Optics (Pearson Education, 2002).
  6. B. O. Leung and K. C. Chou, “Review of super-resolution fluorescence microscopy for biology,” Appl. Spectrosc. 65, 967–980 (2011).
    [Crossref]
  7. E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
    [Crossref]
  8. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [Crossref]
  9. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [Crossref]
  10. J. R. Hassig, “Digital off-axis holography with synthetic aperture,” Opt. Lett. 27, 2179–2181 (2002).
    [Crossref]
  11. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
    [Crossref]
  12. G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46, 993–1000 (2007).
    [Crossref]
  13. Y. Kashter and J. Rosen, “Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture,” Opt. Express 22, 20551–20565 (2014).
    [Crossref]
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  15. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007).
    [Crossref]
  16. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
    [Crossref]
  17. J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19, 26249–26268 (2011).
    [Crossref]
  18. J. Rosen and R. Kelner, “Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems,” Opt. Express 22, 29048–29066 (2014).
    [Crossref]
  19. Y. Kashter, A. Vijayakumar, Y. Miyamoto, and J. Rosen, “Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination,” Opt. Lett. 41, 1558–1561 (2016).
    [Crossref]
  20. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography–a new type of incoherent digital holograms,” Opt. Express 24, 12430–12441 (2016).
    [Crossref]
  21. M. K. Kim, “Adaptive optics by incoherent digital holography,” Opt. Lett. 37, 2694–2696 (2012).
    [Crossref]
  22. M. K. Kim, “Incoherent digital holographic adaptive optics,” Appl. Opt. 52, A117–A130 (2013).
    [Crossref]
  23. Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
    [Crossref]
  24. Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 61–73 (2014).
    [Crossref]
  25. D. J. Goldstein, Understanding the Light Microscope: A Computer Aided Introduction (Academic, 1999) Chap. 1.
  26. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227–246 (1972).
  27. B. Katz, J. Rosen, R. Kelner, and G. Brooker, “Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM),” Opt. Express 20, 9109–9121 (2012).
    [Crossref]
  28. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography (COACH) system with improved performance,” Appl. Opt. 56, F67–F77 (2017).
    [Crossref]

2017 (1)

2016 (2)

2014 (3)

2013 (1)

2012 (2)

2011 (3)

2009 (1)

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[Crossref]

2008 (2)

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
[Crossref]

2007 (2)

2006 (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

2004 (1)

2002 (1)

2001 (1)

P. Nisenson and C. Papaliolios, “Detection of Earth-like planets using apodized telescopes,” Astrophys. J. 548, L201–L205 (2001).
[Crossref]

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

1992 (1)

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227–246 (1972).

Barzda, V.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Betzig, E.

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref]

Brooker, G.

Carriles, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[Crossref]

Choi, W.

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 61–73 (2014).
[Crossref]

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 61–73 (2014).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 61–73 (2014).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Chou, K. C.

Cisek, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[Crossref]

Dasari, R. R.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Duan, Q.

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Fang-Yen, C.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Feld, M. S.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Field, J. J.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[Crossref]

Garcia, J.

Garcia-Martinez, P.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227–246 (1972).

Gohagan, J. K.

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Goldstein, D. J.

D. J. Goldstein, Understanding the Light Microscope: A Computer Aided Introduction (Academic, 1999) Chap. 1.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Hassig, J. R.

Hecht, E.

E. Hecht, Optics (Pearson Education, 2002).

Indebetouw, G.

Kang, P.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Kashter, Y.

Katz, B.

Kelner, R.

Kherlopian, A. R.

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Kim, M.

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 61–73 (2014).
[Crossref]

Kim, M. K.

Laine, A. F.

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Lee, K. J.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Leung, B. O.

Mico, V.

Miyamoto, Y.

Neimark, M. A.

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Nisenson, P.

P. Nisenson and C. Papaliolios, “Detection of Earth-like planets using apodized telescopes,” Astrophys. J. 548, L201–L205 (2001).
[Crossref]

Papaliolios, C.

P. Nisenson and C. Papaliolios, “Detection of Earth-like planets using apodized telescopes,” Astrophys. J. 548, L201–L205 (2001).
[Crossref]

Po, M. J.

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Rosen, J.

A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography (COACH) system with improved performance,” Appl. Opt. 56, F67–F77 (2017).
[Crossref]

Y. Kashter, A. Vijayakumar, Y. Miyamoto, and J. Rosen, “Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination,” Opt. Lett. 41, 1558–1561 (2016).
[Crossref]

A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography–a new type of incoherent digital holograms,” Opt. Express 24, 12430–12441 (2016).
[Crossref]

Y. Kashter and J. Rosen, “Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture,” Opt. Express 22, 20551–20565 (2014).
[Crossref]

J. Rosen and R. Kelner, “Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems,” Opt. Express 22, 29048–29066 (2014).
[Crossref]

B. Katz, J. Rosen, R. Kelner, and G. Brooker, “Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM),” Opt. Express 20, 9109–9121 (2012).
[Crossref]

J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19, 26249–26268 (2011).
[Crossref]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
[Crossref]

G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46, 993–1000 (2007).
[Crossref]

J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227–246 (1972).

Schafer, D. N.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[Crossref]

Sheetz, K. E.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[Crossref]

Siegel, N.

Song, T.

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

Squier, J. A.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[Crossref]

Sylvester, A. W.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[Crossref]

Tada, Y.

Trautman, J. K.

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref]

Vijayakumar, A.

Yang, T. D.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 61–73 (2014).
[Crossref]

Zalevsky, Z.

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Appl. Opt. (3)

Appl. Spectrosc. (1)

Astrophys. J. (1)

P. Nisenson and C. Papaliolios, “Detection of Earth-like planets using apodized telescopes,” Astrophys. J. 548, L201–L205 (2001).
[Crossref]

BMC Syst. Biol. (1)

A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Syst. Biol. 2, 74 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20, 61–73 (2014).
[Crossref]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Nat. Photonics (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227–246 (1972).

Phys. Rev. Lett. (1)

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[Crossref]

Science (1)

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref]

Other (4)

M. Gu, ed., Advanced Optical Imaging Theory (Springer-Verlag, 1999), Vol. 75.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

E. Hecht, Optics (Pearson Education, 2002).

D. J. Goldstein, Understanding the Light Microscope: A Computer Aided Introduction (Academic, 1999) Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Optical schemes of (a) C-FINCH system and (b) dual lens FINCH system. P1 and P2, polarizers; Lo, objective lens; L1 and L2, converging lenses; CPM, coded phase mask, SLM, spatial light modulator.

Fig. 2.
Fig. 2.

Block diagram illustrates the GSA. I and I1 represent forward and backward Fourier transforms, respectively. A, ϕ, and C represent magnitude, phase, and complex matrices, respectively.

Fig. 3.
Fig. 3.

Experimental setup of C-FINCH: LS1 and LS2, laser sources, SF1 and SF2, spatial filters; BS1 and BS2, beam splitters; P1 and P2, polarizers; L01 and L02, objective lenses; L1, converging lens; SLM1 and SLM2, spatial light modulators; CCD, charge-coupled device; RD, rotating diffuser.

Fig. 4.
Fig. 4.

Comparison results of C-FINCH with FINCH and regular imaging. (a1)–(a9) The reconstructed images of 25.4  lp/mm. (b1)–(b9) Intensity cross-sections. (c1) CPM with σ=0.074. (d1) CPM with σ=0.92. (c2)–(c9) The smallest resolvable element. (d2)–(d9) The magnitude of PSH.

Fig. 5.
Fig. 5.

Resolution improvement graphs. (a) Visibility versus the scattering degree, corresponding to Figs. 4(b2)4(b9). (b) Cutoff frequency versus the scattering degree corresponding to Figs. 4(c2)4(c9).

Fig. 6.
Fig. 6.

SNR results of C-FINCH and FINCH. (a) Single reconstructed image of FINCH. (b) Average of five complex reconstructions of FINCH. (c) Single reconstructed image of C-FINCH. (d) Average of five complex reconstructions of C-FINCH.

Fig. 7.
Fig. 7.

Results of C-FINCH with two object planes. (a) Reconstruction of the hologram given at plane 1 with PSH recorded at plane 1. (b) Reconstruction of the hologram given at plane 1 with PSH recorded at plane 2. (c) Reconstruction of the hologram given at plane 2 with PSH recorded at plane 1. (d) Reconstruction of the hologram given at plane 2 with PSH recorded at plane 2.

Fig. 8.
Fig. 8.

Optical schematic of the marginal rays entering the system in the presence of a CPM (the solid red line) and without the CPM (the dashed line).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I(u,v;θi)=|IjG1(uU,vVDI)+IjG2(uU,vVDI)|2,
Hp,j(u,v)=I(u,v;θ1)[exp(iθ3)exp(iθ2)]+I(u,v;θ2)[exp(iθ1)exp(iθ3)]+I(u,v;θ3)[exp(iθ2)exp(iθ1)],
HP,j(uU,vV)=Ij·G1(uU,vVDI)G2*(uU,vVDI).
Is(x,y)=jIjδ(xxs,j,yys,j).
HOBJ(u,v)=jHP,j(uUj,vVj).
HPSH(u,v)=G1(u,vDI)G2*(u,vDI).
T(x,y)=HOBJ(u,v)H˜PSH*(ux,vy)dudv=jHP,j(uUj,uVj)H˜PSH*(ux,vy)dudvjIjΛ(xUj,yVj)=Is(fozh(x,y)),
sinθm={λσ2f0Δ(f0d1)+w2f0DγD2d1D<γ,
Vc=V0λd1σzhfoΔMT=V0λd1σΔ.
sinθm=λσΔ(f0d1)+w2f0.
η=λσ(f0d1)wΔ+1.
γ=[λσΔ(f0d1)+w]d1f0.

Metrics