Abstract

High-resolution imaging of the human retina has always been a challenge due to imperfect optical properties of the human cornea and lens, which limit the achievable resolution. We present a noniterative digital aberration correction (DAC) to achieve aberration-free cellular-level resolution in optical coherence tomography (OCT) images of the human retina in vivo. The system used is a line-field spectral-domain OCT system with a high tomogram rate, reaching 2.5 kHz. Such a high speed enables us to successfully apply digital aberration correction for not only imaging of human cone photoreceptors but also to obtain an aberration- and defocus-corrected 3D volume. Additionally, we apply DAC on functional OCT angiography data to improve lateral resolution and compensate for defocus. The speed necessities for the use of DAC in patient imaging are quantified by measuring the axial motion of 36 subjects. The first demonstration of DAC on OCT angiography as well as the motion analysis is important for future work dealing with DAC.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography

Yan Zhang, Barry Cense, Jungtae Rha, Ravi S. Jonnal, Weihua Gao, Robert J. Zawadzki, John S. Werner, Steve Jones, Scot Olivier, and Donald T. Miller
Opt. Express 14(10) 4380-4394 (2006)

Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina

Yan Zhang, Jungtae Rha, Ravi S. Jonnal, and Donald T. Miller
Opt. Express 13(12) 4792-4811 (2005)

Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited]

Michael Pircher and Robert J Zawadzki
Biomed. Opt. Express 8(5) 2536-2562 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [Crossref]
  2. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
    [Crossref]
  3. M. Pircher and R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol. 2, 1019–1035 (2007).
    [Crossref]
  4. O. P. Kocaoglu, Z. Liu, F. Zhang, K. Kurokawa, R. S. Jonnal, and D. T. Miller, “Photoreceptor disc shedding in the living human eye,” Biomed. Opt. Express 7, 4554–4568 (2016).
    [Crossref]
  5. A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630–1632 (2000).
    [Crossref]
  6. Y. Yasuno, M. Wojtkowski, K. Taira, N. Yoshifumi, M. Shuichi, I. Masahide, and Y. Toyohiko, “Non-iterative numerical method for laterally super resolving Fourier domain optical coherence tomography,” Opt. Express 14, 1006–1020 (2006).
    [Crossref]
  7. P. S. Carney, B. J. Davis, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CTuC2.
  8. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20, 609–620 (2003).
    [Crossref]
  9. L. P. Murray, J. C. Dainty, and E. Daly, “Wavefront correction through image sharpness maximization,” in OPTO-Ireland (International Society for Optics and Photonics, 2005), pp. 40–47.
  10. N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, C. P. Scott, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
    [Crossref]
  11. F. Felberer, J.-S. Kroisamer, B. Baumann, S. Zotter, U. Schmidt-Erfurth, C. K. Hitzenberger, and M. Pircher, “Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo,” Biomed. Opt. Express 5, 439–456 (2014).
    [Crossref]
  12. D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
    [Crossref]
  13. D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6, 716–735 (2015).
    [Crossref]
  14. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21, 10850–10866 (2013).
    [Crossref]
  15. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137 (2005).
    [Crossref]
  16. “International Electrotechnical Commission Safety of laser products—Part 1: Equipment classification and requirements,” .
  17. H. Gross, F. Blechinger, B. Achtner, and H. Gross, Survey of Optical Instruments (Wiley-VCH, 2008).
  18. M. Shuichi, H. Youngjoo, Y. Masahiro, Y. Toyohiko, and Y. Yoshiaki, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
    [Crossref]
  19. A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22, 16061–16078 (2014).
    [Crossref]
  20. A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6, 1124–1134 (2015).
    [Crossref]
  21. J. Ito, A. R. Nikolaev, M. Luman, M. F. Aukes, C. Nakatani, and C. van Leeuwen, “Perceptual switching, eye movements, and the bus paradox,” Perception 32, 681–698 (2003).
    [Crossref]
  22. R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. B. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52, 3908–3913 (2011).
    [Crossref]
  23. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).
    [Crossref]
  24. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
    [Crossref]
  25. S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101, 221117 (2012).
    [Crossref]
  26. L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. A. Leitgeb, “Wide-field OCT angiography at 400  KHz utilizing spectral splitting,” Photonics 1, 369–379 (2014).
    [Crossref]
  27. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
    [Crossref]
  28. M. Salas, M. Augustin, L. Ginner, A. Kumar, B. Baumann, R. Leitgeb, W. Drexler, S. Prager, J. Hafner, U. Schmidt-Erfurth, and M. Pircher, “Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics,” Biomed. Opt. Express 8, 207–222 (2017).
    [Crossref]
  29. C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3, 2636–2646 (2012).
    [Crossref]

2017 (1)

2016 (2)

O. P. Kocaoglu, Z. Liu, F. Zhang, K. Kurokawa, R. S. Jonnal, and D. T. Miller, “Photoreceptor disc shedding in the living human eye,” Biomed. Opt. Express 7, 4554–4568 (2016).
[Crossref]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

2015 (3)

2014 (3)

2013 (1)

2012 (2)

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101, 221117 (2012).
[Crossref]

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3, 2636–2646 (2012).
[Crossref]

2011 (1)

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. B. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52, 3908–3913 (2011).
[Crossref]

2007 (1)

M. Pircher and R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol. 2, 1019–1035 (2007).
[Crossref]

2006 (2)

2005 (1)

2003 (3)

2002 (1)

2000 (2)

1997 (1)

1990 (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref]

Achtner, B.

H. Gross, F. Blechinger, B. Achtner, and H. Gross, Survey of Optical Instruments (Wiley-VCH, 2008).

Adie, S. G.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, C. P. Scott, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101, 221117 (2012).
[Crossref]

Ahmad, A.

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101, 221117 (2012).
[Crossref]

Alex, A.

Augustin, M.

Aukes, M. F.

J. Ito, A. R. Nikolaev, M. Luman, M. F. Aukes, C. Nakatani, and C. van Leeuwen, “Perceptual switching, eye movements, and the bus paradox,” Perception 32, 681–698 (2003).
[Crossref]

Bajraszewski, T.

Baumann, B.

Blatter, C.

Blechinger, F.

H. Gross, F. Blechinger, B. Achtner, and H. Gross, Survey of Optical Instruments (Wiley-VCH, 2008).

Boppart, S. A.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, C. P. Scott, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101, 221117 (2012).
[Crossref]

P. S. Carney, B. J. Davis, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CTuC2.

Campbell, M.

Carney, P. S.

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101, 221117 (2012).
[Crossref]

P. S. Carney, B. J. Davis, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CTuC2.

Chen, Z.

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref]

Dainty, J. C.

L. P. Murray, J. C. Dainty, and E. Daly, “Wavefront correction through image sharpness maximization,” in OPTO-Ireland (International Society for Optics and Photonics, 2005), pp. 40–47.

Daly, E.

L. P. Murray, J. C. Dainty, and E. Daly, “Wavefront correction through image sharpness maximization,” in OPTO-Ireland (International Society for Optics and Photonics, 2005), pp. 40–47.

Davis, B. J.

P. S. Carney, B. J. Davis, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CTuC2.

de Boer, J. F.

de Kinkelder, R.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. B. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52, 3908–3913 (2011).
[Crossref]

Donnelly, W.

Drexler, W.

M. Salas, M. Augustin, L. Ginner, A. Kumar, B. Baumann, R. Leitgeb, W. Drexler, S. Prager, J. Hafner, U. Schmidt-Erfurth, and M. Pircher, “Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics,” Biomed. Opt. Express 8, 207–222 (2017).
[Crossref]

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6, 1124–1134 (2015).
[Crossref]

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6, 716–735 (2015).
[Crossref]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22, 16061–16078 (2014).
[Crossref]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21, 10850–10866 (2013).
[Crossref]

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3, 2636–2646 (2012).
[Crossref]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).
[Crossref]

Faber, D. J.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. B. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52, 3908–3913 (2011).
[Crossref]

Fechtig, D.

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. A. Leitgeb, “Wide-field OCT angiography at 400  KHz utilizing spectral splitting,” Photonics 1, 369–379 (2014).
[Crossref]

Fechtig, D. J.

Felberer, F.

Fercher, A.

Fercher, A. F.

Fienup, J. R.

Franke, G.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Ginner, L.

Graf, B. W.

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101, 221117 (2012).
[Crossref]

Grajciar, B.

Gröschl, M.

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. A. Leitgeb, “Wide-field OCT angiography at 400  KHz utilizing spectral splitting,” Photonics 1, 369–379 (2014).
[Crossref]

Gross, H.

H. Gross, F. Blechinger, B. Achtner, and H. Gross, Survey of Optical Instruments (Wiley-VCH, 2008).

H. Gross, F. Blechinger, B. Achtner, and H. Gross, Survey of Optical Instruments (Wiley-VCH, 2008).

Hafner, J.

Hain, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Hebert, T.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref]

Hillmann, D.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Hitzenberger, C. K.

Huber, R.

Hüttmann, G.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Ito, J.

J. Ito, A. R. Nikolaev, M. Luman, M. F. Aukes, C. Nakatani, and C. van Leeuwen, “Perceptual switching, eye movements, and the bus paradox,” Perception 32, 681–698 (2003).
[Crossref]

Jonnal, R. S.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref]

Kalkman, J.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. B. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52, 3908–3913 (2011).
[Crossref]

Kamali, T.

Kocaoglu, O. P.

Kok, P. H. B.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. B. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52, 3908–3913 (2011).
[Crossref]

Kroisamer, J.-S.

Kumar, A.

Kurokawa, K.

Leitgeb, R.

Leitgeb, R. A.

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6, 1124–1134 (2015).
[Crossref]

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6, 716–735 (2015).
[Crossref]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22, 16061–16078 (2014).
[Crossref]

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. A. Leitgeb, “Wide-field OCT angiography at 400  KHz utilizing spectral splitting,” Photonics 1, 369–379 (2014).
[Crossref]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21, 10850–10866 (2013).
[Crossref]

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3, 2636–2646 (2012).
[Crossref]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).
[Crossref]

Liang, J.

Liu, Y.-Z.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, C. P. Scott, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

Liu, Z.

Luman, M.

J. Ito, A. R. Nikolaev, M. Luman, M. F. Aukes, C. Nakatani, and C. van Leeuwen, “Perceptual switching, eye movements, and the bus paradox,” Perception 32, 681–698 (2003).
[Crossref]

Marks, D. L.

P. S. Carney, B. J. Davis, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CTuC2.

Masahide, I.

Masahiro, Y.

Massig, J. H.

Miller, D. T.

Miller, J. J.

Murray, L. P.

L. P. Murray, J. C. Dainty, and E. Daly, “Wavefront correction through image sharpness maximization,” in OPTO-Ireland (International Society for Optics and Photonics, 2005), pp. 40–47.

Nakatani, C.

J. Ito, A. R. Nikolaev, M. Luman, M. F. Aukes, C. Nakatani, and C. van Leeuwen, “Perceptual switching, eye movements, and the bus paradox,” Perception 32, 681–698 (2003).
[Crossref]

Nelson, J. S.

Nikolaev, A. R.

J. Ito, A. R. Nikolaev, M. Luman, M. F. Aukes, C. Nakatani, and C. van Leeuwen, “Perceptual switching, eye movements, and the bus paradox,” Perception 32, 681–698 (2003).
[Crossref]

Pfäffle, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Pircher, M.

Platzer, R.

Prager, S.

Queener, H.

Ralston, T. S.

P. S. Carney, B. J. Davis, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CTuC2.

Romero-Borja, F.

Roorda, A.

Salas, M.

Saxer, C.

Schmetterer, L.

Schmidt-Erfurth, U.

Schmoll, T.

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6, 716–735 (2015).
[Crossref]

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. A. Leitgeb, “Wide-field OCT angiography at 400  KHz utilizing spectral splitting,” Photonics 1, 369–379 (2014).
[Crossref]

Schraa, O.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. B. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52, 3908–3913 (2011).
[Crossref]

Scott, C. P.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, C. P. Scott, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

Shemonski, N. D.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, C. P. Scott, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101, 221117 (2012).
[Crossref]

Shuichi, M.

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref]

South, F. A.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, C. P. Scott, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

Spahr, H.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Stadelmaier, A.

Sudkamp, H.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Taira, K.

Toyohiko, Y.

Unterhuber, A.

van Leeuwen, C.

J. Ito, A. R. Nikolaev, M. Luman, M. F. Aukes, C. Nakatani, and C. van Leeuwen, “Perceptual switching, eye movements, and the bus paradox,” Perception 32, 681–698 (2003).
[Crossref]

van Leeuwen, T. G.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. B. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52, 3908–3913 (2011).
[Crossref]

Verbraak, F. D.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. B. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52, 3908–3913 (2011).
[Crossref]

Weingast, J.

Werkmeister, R. M.

Wieser, W.

Williams, D. R.

Winter, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Wojtkowski, M.

Xiang, S.

Yasuno, Y.

Yoshiaki, Y.

Yoshifumi, N.

Youngjoo, H.

Zawadzki, R. J.

M. Pircher and R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol. 2, 1019–1035 (2007).
[Crossref]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).
[Crossref]

Zhang, F.

Zhao, Y.

Zotter, S.

Appl. Phys. Lett. (1)

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101, 221117 (2012).
[Crossref]

Biomed. Opt. Express (6)

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6, 1124–1134 (2015).
[Crossref]

M. Salas, M. Augustin, L. Ginner, A. Kumar, B. Baumann, R. Leitgeb, W. Drexler, S. Prager, J. Hafner, U. Schmidt-Erfurth, and M. Pircher, “Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics,” Biomed. Opt. Express 8, 207–222 (2017).
[Crossref]

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3, 2636–2646 (2012).
[Crossref]

O. P. Kocaoglu, Z. Liu, F. Zhang, K. Kurokawa, R. S. Jonnal, and D. T. Miller, “Photoreceptor disc shedding in the living human eye,” Biomed. Opt. Express 7, 4554–4568 (2016).
[Crossref]

F. Felberer, J.-S. Kroisamer, B. Baumann, S. Zotter, U. Schmidt-Erfurth, C. K. Hitzenberger, and M. Pircher, “Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo,” Biomed. Opt. Express 5, 439–456 (2014).
[Crossref]

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6, 716–735 (2015).
[Crossref]

Expert Rev. Ophthalmol. (1)

M. Pircher and R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol. 2, 1019–1035 (2007).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. B. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52, 3908–3913 (2011).
[Crossref]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref]

J. Opt. Soc. Am. A (2)

Nat. Photonics (1)

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, C. P. Scott, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Perception (1)

J. Ito, A. R. Nikolaev, M. Luman, M. F. Aukes, C. Nakatani, and C. van Leeuwen, “Perceptual switching, eye movements, and the bus paradox,” Perception 32, 681–698 (2003).
[Crossref]

Photonics (1)

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. A. Leitgeb, “Wide-field OCT angiography at 400  KHz utilizing spectral splitting,” Photonics 1, 369–379 (2014).
[Crossref]

Sci. Rep. (1)

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Other (4)

“International Electrotechnical Commission Safety of laser products—Part 1: Equipment classification and requirements,” .

H. Gross, F. Blechinger, B. Achtner, and H. Gross, Survey of Optical Instruments (Wiley-VCH, 2008).

P. S. Carney, B. J. Davis, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper CTuC2.

L. P. Murray, J. C. Dainty, and E. Daly, “Wavefront correction through image sharpness maximization,” in OPTO-Ireland (International Society for Optics and Photonics, 2005), pp. 40–47.

Supplementary Material (2)

NameDescription
» Supplement 1       2nd subject
» Visualization 1       RGB angio video

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic setup of the line-field spectral-domain OCT setup. NDF, neutral density filter; BS, 50/50 beam splitter; S1, circular pupil; PP, polarization paddles; CL1 and CL2, cylindrical lenses; L, achromatic lenses; DP, dispersion compensation. In black, the horizontal illumination path can be seen; the blue dotted line shows the orthogonal plane.

Fig. 2.
Fig. 2.

(a) Critical axial speed is plotted as a function of the B-scan rate following Eq. (4). The box plot shows the result of the average maximum. Axial bulk motion over 36 subjects (measured at a 200 Hz B-scan rate). The median value of 0.958  mm/s corresponds to a 3.2 kHz B-scan rate. (b) The phase difference image along the slow scanning direction. (c) The average difference phase Δφavg in the scanning direction with a B-scan rate of 500 Hz (yellow), 1.5 kHz (blue), and 2.5 kHz (red).

Fig. 3.
Fig. 3.

Cone photoreceptors at 5.5° nasal from the fovea, where (a) is the original image and (b) is the defocus-corrected image. The respective phase map for the correction of defocus is displayed on the left-hand side of the corrected image. The image SNR increases by 0.58 dB. The red box indicates the location of the chosen guide star. In (c), the aberration-corrected image is shown together with the phase map for the aberration correction on the left-hand side. The SNR of the higher order aberration-corrected image increases by 4.5 dB in comparison to (a). The white scale bar indicates 100 μm. Below are the corresponding Zernike coefficient plots corresponding to the phase maps.

Fig. 4.
Fig. 4.

(a) OCTA to locate the corresponding images acquired with the LF SDOCT; (b), (d), (f), and (h) show the original images framed in red; (c), (e), (g), and (I) show the corrected images framed in green. Photoreceptors are resolvable down to 3.5°–4° eccentricity from the fovea. The white scale bar indicates 100 μm. In (j), (k), (l), and (m), the Yellot’s rings show the spatial frequency of the cone photoreceptors; the radius is inversely proportional to the cone photoreceptor spacing.

Fig. 5.
Fig. 5.

Images (a), (d), and (g) show the original images acquired with different defocus amounts; (b), (e), and (h) show the defocus-corrected images; (c), (f), and (i) are after higher order aberration correction. The amount of defocus ranges from 3.5 to 0 diopters. (j) The calculated SNR for each image is plotted. The white scale bar indicates 100 μm.

Fig. 6.
Fig. 6.

(a) Acquisition with a high defocus of 5.7 diopters, still from the original image. Structural information can be retrieved using (b) an iterative defocus correction and (c) the correction for higher order aberration by choosing a guide star. The white scale bar indicates 100 μm.

Fig. 7.
Fig. 7.

(a) 3D volume of the retina corrected for defocus and higher order of phase error. (b) In red shows the photoreceptor layer, (c) in blue shows the outer plexiform layer, and (d) in violet shows the nerve fiber layer. The white scale bar denotes 100 μm.

Fig. 8.
Fig. 8.

Parts (a) and (f) show the intensity B-scan of the original and the defocus-corrected OCT image, (b) and (g) give the OCTA at the same B-scan region, (c) and (h) display the ganglion cell layer, (d) and (i) show the inner nuclear layer, and (e) and (j) display the outer nuclear layer. (k) A volume-rendered image of vascular beds and their interconnecting capillaries encoded in (h) blue, (i) red, and (j) green (see Visualization 1). The white scale bar in the lower parts of the image is 100 μm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ibacksub(x,y,λ)=I(x,y,λ)i=1NI(x,yi,λ)N,
I(x,y,z)=FT{I(x,y,k)}=A(x,y,z)eiφ(x,y,z),
Δφ(x,yn,z)=arg{[A(x,yn,z)×eiφ(x,yn,z)]×[A*(x,yn+1,z)eiφ(x,yn+1,z)]}n=1N1,
Δφavg(yn)=argj=1Nxi=1Nz{[eiΔφ(xj,yn,zi)]}n=1N1.
Icorr(x,yn,z)=I(x,yn,z)i=1n1eiΔφavg(yi)n=2N1,
vcrit=λ02τn.
ϕdef=dzM2λ04πn(kx2+ky2),

Metrics