Abstract

Frequency translation of single photons while preserving their quantum characteristics is an important technology for flexible networking of photonic quantum communication systems. Here we demonstrate a flexible scheme to interface different-color photons using an optical single sideband (OSSB) modulator. By changing the radio-frequency signal that drives the modulators, we can easily shift and precisely tune the frequencies of single photons. Using the OSSB modulator, we successfully erased the frequency distinguishability of nondegenerated photon pairs to obtain the Hong–Ou–Mandel interference with a visibility exceeding 90%. We also demonstrated that the level of distinguishability can be precisely controlled by the OSSB modulator. We expect that the OSSB modulator will provide a simple and flexible photonic interface for realizing advanced quantum information systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chip-based array of near-identical, pure, heralded single-photon sources

Justin B. Spring, Paolo L. Mennea, Benjamin J. Metcalf, Peter C. Humphreys, James C. Gates, Helen L. Rogers, Christoph Söller, Brian J. Smith, W. Steven Kolthammer, Peter G. R. Smith, and Ian A. Walmsley
Optica 4(1) 90-96 (2017)

Low-noise quantum frequency down-conversion of indistinguishable photons

Benjamin Kambs, Jan Kettler, Matthias Bock, Jonas Nils Becker, Carsten Arend, Andreas Lenhard, Simone Luca Portalupi, Michael Jetter, Peter Michler, and Christoph Becher
Opt. Express 24(19) 22250-22260 (2016)

Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation

Alayn Loayssa, Rubén Hernández, David Benito, and Sonia Galech
Opt. Lett. 29(6) 638-640 (2004)

References

  • View by:
  • |
  • |
  • |

  1. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
    [Crossref]
  2. J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
    [Crossref]
  3. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
    [Crossref]
  4. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010).
    [Crossref]
  5. C. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express 13, 9131–9142 (2005).
    [Crossref]
  6. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
    [Crossref]
  7. N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2, e1501223 (2016).
    [Crossref]
  8. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
    [Crossref]
  9. H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett. 101, 173901 (2008).
    [Crossref]
  10. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
    [Crossref]
  11. E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420, 762 (2002).
    [Crossref]
  12. P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
    [Crossref]
  13. L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
    [Crossref]
  14. M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. QE-17, 2225–2227 (1981).
    [Crossref]
  15. S. Shimotsu, S. Okikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “LiNbO3 optical single-sideband modulator,” in Optical Fiber Communication Conference (OFC) (2000), paper PD16.
  16. H. Takesue, T. Horiguchi, and T. Kobayashi, “Numerical simulation of a lightwave synthesized frequency sweeper incorporating an optical SSB modulator composed of four optical phase modulators,” J. Lightwave Technol. 20, 1908–1917 (2002).
    [Crossref]
  17. V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2013.
  18. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref]
  19. H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon pairs entangled by a 2×2 fiber,” Phys. Rev. A 84, 022301 (2011).
    [Crossref]
  20. H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon-pairs generation for two-photon interference and polarization entanglement,” Phys. Rev. A 83, 022313 (2011).
    [Crossref]
  21. R. B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsy, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805(R) (2011).
    [Crossref]
  22. P. J. Mosley, “Generation of heralded single photons in pure quantum states,” Ph.D. thesis (University of Oxford, 2007) (unpublished).
  23. H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
    [Crossref]
  24. H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
    [Crossref]
  25. The HOM visibility with accidental coincidence is obtained as function of CAR as V≃CAR−1CAR+1.
  26. V. Ramaswamy, R. C. Alferness, and M. Divino, “High efficiency single-mode fibre to Ti:LiNbO3 waveguide coupling,” Electron. Lett. 18, 30–31 (1982).
    [Crossref]
  27. A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673 (2009).
    [Crossref]
  28. D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
    [Crossref]
  29. S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89, 012301 (2014).
    [Crossref]
  30. C. Panayi, M. Razavi, X. Ma, and N. Lütkenhaus, “Memory-assisted measurement-device-independent quantum key distribution,” New J. Phys. 16, 043005 (2014).
    [Crossref]
  31. W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and K. Nemoto, “From quantum multiplexing to high-performance quantum networking,” Nat. Photonics 4, 792–796 (2010).
    [Crossref]
  32. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
    [Crossref]
  33. V. Leong, S. Kosen, B. Srivathsan, G. K. Gulati, A. Ceré, and C. Kurtsiefer, “Hong–Ou–Mandel interference between triggered and heralded single photons from separate atomic systems,” Phys. Rev. A 91, 063829 (2015).
    [Crossref]
  34. E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
    [Crossref]

2017 (1)

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref]

2016 (1)

N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2, e1501223 (2016).
[Crossref]

2015 (2)

V. Leong, S. Kosen, B. Srivathsan, G. K. Gulati, A. Ceré, and C. Kurtsiefer, “Hong–Ou–Mandel interference between triggered and heralded single photons from separate atomic systems,” Phys. Rev. A 91, 063829 (2015).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

2014 (2)

S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89, 012301 (2014).
[Crossref]

C. Panayi, M. Razavi, X. Ma, and N. Lütkenhaus, “Memory-assisted measurement-device-independent quantum key distribution,” New J. Phys. 16, 043005 (2014).
[Crossref]

2012 (1)

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref]

2011 (5)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon pairs entangled by a 2×2 fiber,” Phys. Rev. A 84, 022301 (2011).
[Crossref]

H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon-pairs generation for two-photon interference and polarization entanglement,” Phys. Rev. A 83, 022313 (2011).
[Crossref]

R. B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsy, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805(R) (2011).
[Crossref]

2010 (4)

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010).
[Crossref]

W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and K. Nemoto, “From quantum multiplexing to high-performance quantum networking,” Nat. Photonics 4, 792–796 (2010).
[Crossref]

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
[Crossref]

2009 (1)

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673 (2009).
[Crossref]

2008 (2)

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref]

H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett. 101, 173901 (2008).
[Crossref]

2007 (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

2005 (3)

2002 (2)

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420, 762 (2002).
[Crossref]

H. Takesue, T. Horiguchi, and T. Kobayashi, “Numerical simulation of a lightwave synthesized frequency sweeper incorporating an optical SSB modulator composed of four optical phase modulators,” J. Lightwave Technol. 20, 1908–1917 (2002).
[Crossref]

1992 (1)

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
[Crossref]

1990 (1)

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

1982 (1)

V. Ramaswamy, R. C. Alferness, and M. Divino, “High efficiency single-mode fibre to Ti:LiNbO3 waveguide coupling,” Electron. Lett. 18, 30–31 (1982).
[Crossref]

1981 (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. QE-17, 2225–2227 (1981).
[Crossref]

Abruzzo, S.

S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89, 012301 (2014).
[Crossref]

Alferness, R. C.

V. Ramaswamy, R. C. Alferness, and M. Divino, “High efficiency single-mode fibre to Ti:LiNbO3 waveguide coupling,” Electron. Lett. 18, 30–31 (1982).
[Crossref]

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Belthangady, C.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref]

Bonneau, D.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref]

Bruß, D.

S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89, 012301 (2014).
[Crossref]

Busch, J.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2013.

Ceré, A.

V. Leong, S. Kosen, B. Srivathsan, G. K. Gulati, A. Ceré, and C. Kurtsiefer, “Hong–Ou–Mandel interference between triggered and heralded single photons from separate atomic systems,” Phys. Rev. A 91, 063829 (2015).
[Crossref]

Chen, P.

H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon pairs entangled by a 2×2 fiber,” Phys. Rev. A 84, 022301 (2011).
[Crossref]

H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon-pairs generation for two-photon interference and polarization entanglement,” Phys. Rev. A 83, 022313 (2011).
[Crossref]

de Riedmatten, H.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Devitt, S. J.

W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and K. Nemoto, “From quantum multiplexing to high-performance quantum networking,” Nat. Photonics 4, 792–796 (2010).
[Crossref]

Divino, M.

V. Ramaswamy, R. C. Alferness, and M. Divino, “High efficiency single-mode fibre to Ti:LiNbO3 waveguide coupling,” Electron. Lett. 18, 30–31 (1982).
[Crossref]

Dorenbos, S. N.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref]

Du, S.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref]

Edamatsy, K.

R. B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsy, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805(R) (2011).
[Crossref]

Fattal, D.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420, 762 (2002).
[Crossref]

Gisin, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Gulati, G. K.

V. Leong, S. Kosen, B. Srivathsan, G. K. Gulati, A. Ceré, and C. Kurtsiefer, “Hong–Ou–Mandel interference between triggered and heralded single photons from separate atomic systems,” Phys. Rev. A 91, 063829 (2015).
[Crossref]

Hadfield, R. H.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Harris, S. E.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref]

Harrison, K. A.

W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and K. Nemoto, “From quantum multiplexing to high-performance quantum networking,” Nat. Photonics 4, 792–796 (2010).
[Crossref]

Harvey, J. D.

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Honjo, T.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Horiguchi, T.

Huang, J.

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
[Crossref]

Ikuta, R.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Imoto, N.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Inoue, K.

H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
[Crossref]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420, 762 (2002).
[Crossref]

Izutsu, M.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. QE-17, 2225–2227 (1981).
[Crossref]

S. Shimotsu, S. Okikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “LiNbO3 optical single-sideband modulator,” in Optical Fiber Communication Conference (OFC) (2000), paper PD16.

Jiang, P.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref]

Jin, J.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Jin, R. B.

R. B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsy, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805(R) (2011).
[Crossref]

Kampermann, H.

S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89, 012301 (2014).
[Crossref]

Karpinski, M.

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref]

Kato, H.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Kawanishi, T.

S. Shimotsu, S. Okikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “LiNbO3 optical single-sideband modulator,” in Optical Fiber Communication Conference (OFC) (2000), paper PD16.

Kitano, T.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Koashi, M.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Kobayashi, T.

H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon-pairs generation for two-photon interference and polarization entanglement,” Phys. Rev. A 83, 022313 (2011).
[Crossref]

H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon pairs entangled by a 2×2 fiber,” Phys. Rev. A 84, 022301 (2011).
[Crossref]

H. Takesue, T. Horiguchi, and T. Kobayashi, “Numerical simulation of a lightwave synthesized frequency sweeper incorporating an optical SSB modulator composed of four optical phase modulators,” J. Lightwave Technol. 20, 1908–1917 (2002).
[Crossref]

Kolchin, P.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref]

Kosaka, H.

R. B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsy, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805(R) (2011).
[Crossref]

Kosen, S.

V. Leong, S. Kosen, B. Srivathsan, G. K. Gulati, A. Ceré, and C. Kurtsiefer, “Hong–Ou–Mandel interference between triggered and heralded single photons from separate atomic systems,” Phys. Rev. A 91, 063829 (2015).
[Crossref]

Kubodera, K.

S. Shimotsu, S. Okikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “LiNbO3 optical single-sideband modulator,” in Optical Fiber Communication Conference (OFC) (2000), paper PD16.

Kumar, P.

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
[Crossref]

P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
[Crossref]

Kurtsiefer, C.

V. Leong, S. Kosen, B. Srivathsan, G. K. Gulati, A. Ceré, and C. Kurtsiefer, “Hong–Ou–Mandel interference between triggered and heralded single photons from separate atomic systems,” Phys. Rev. A 91, 063829 (2015).
[Crossref]

Kusaka, Y.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Leong, V.

V. Leong, S. Kosen, B. Srivathsan, G. K. Gulati, A. Ceré, and C. Kurtsiefer, “Hong–Ou–Mandel interference between triggered and heralded single photons from separate atomic systems,” Phys. Rev. A 91, 063829 (2015).
[Crossref]

Lo, H. P.

H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon-pairs generation for two-photon interference and polarization entanglement,” Phys. Rev. A 83, 022313 (2011).
[Crossref]

H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon pairs entangled by a 2×2 fiber,” Phys. Rev. A 84, 022301 (2011).
[Crossref]

Lobino, M.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref]

Luo, C. W.

H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon pairs entangled by a 2×2 fiber,” Phys. Rev. A 84, 022301 (2011).
[Crossref]

H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon-pairs generation for two-photon interference and polarization entanglement,” Phys. Rev. A 83, 022313 (2011).
[Crossref]

Lütkenhaus, N.

C. Panayi, M. Razavi, X. Ma, and N. Lütkenhaus, “Memory-assisted measurement-device-independent quantum key distribution,” New J. Phys. 16, 043005 (2014).
[Crossref]

Ma, X.

C. Panayi, M. Razavi, X. Ma, and N. Lütkenhaus, “Memory-assisted measurement-device-independent quantum key distribution,” New J. Phys. 16, 043005 (2014).
[Crossref]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Marsili, F.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Matsuda, N.

N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2, e1501223 (2016).
[Crossref]

R. B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsy, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805(R) (2011).
[Crossref]

Matthews, J. C. F.

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673 (2009).
[Crossref]

McGuinness, H. J.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref]

McKinstrie, C.

McKinstrie, C. J.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref]

Mitsugi, N.

S. Shimotsu, S. Okikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “LiNbO3 optical single-sideband modulator,” in Optical Fiber Communication Conference (OFC) (2000), paper PD16.

Mitsumori, Y.

R. B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsy, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805(R) (2011).
[Crossref]

Mosley, P. J.

P. J. Mosley, “Generation of heralded single photons in pure quantum states,” Ph.D. thesis (University of Oxford, 2007) (unpublished).

Munro, W. J.

W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and K. Nemoto, “From quantum multiplexing to high-performance quantum networking,” Nat. Photonics 4, 792–796 (2010).
[Crossref]

Nam, S. W.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Natarajan, C. M.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref]

Nemoto, K.

W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and K. Nemoto, “From quantum multiplexing to high-performance quantum networking,” Nat. Photonics 4, 792–796 (2010).
[Crossref]

O’Brien, J. L.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref]

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673 (2009).
[Crossref]

Oblak, D.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Okikawa, S.

S. Shimotsu, S. Okikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “LiNbO3 optical single-sideband modulator,” in Optical Fiber Communication Conference (OFC) (2000), paper PD16.

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Panayi, C.

C. Panayi, M. Razavi, X. Ma, and N. Lütkenhaus, “Memory-assisted measurement-device-independent quantum key distribution,” New J. Phys. 16, 043005 (2014).
[Crossref]

Politi, A.

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673 (2009).
[Crossref]

Pollick, A.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2013.

Pontius, P.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2013.

Radic, S.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref]

C. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express 13, 9131–9142 (2005).
[Crossref]

Ramaswamy, V.

V. Ramaswamy, R. C. Alferness, and M. Divino, “High efficiency single-mode fibre to Ti:LiNbO3 waveguide coupling,” Electron. Lett. 18, 30–31 (1982).
[Crossref]

Raymer, M. G.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref]

C. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express 13, 9131–9142 (2005).
[Crossref]

Razavi, M.

C. Panayi, M. Razavi, X. Ma, and N. Lütkenhaus, “Memory-assisted measurement-device-independent quantum key distribution,” New J. Phys. 16, 043005 (2014).
[Crossref]

Saglamyurek, E.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Saitou, T.

S. Shimotsu, S. Okikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “LiNbO3 optical single-sideband modulator,” in Optical Fiber Communication Conference (OFC) (2000), paper PD16.

Sangouard, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Santori, C.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420, 762 (2002).
[Crossref]

Scholl, J.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2013.

Shaw, M. D.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Shikama, S.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. QE-17, 2225–2227 (1981).
[Crossref]

Shimizu, K.

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
[Crossref]

Shimizu, R.

R. B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsy, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805(R) (2011).
[Crossref]

Shimotsu, S.

S. Shimotsu, S. Okikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “LiNbO3 optical single-sideband modulator,” in Optical Fiber Communication Conference (OFC) (2000), paper PD16.

Simon, C.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Smith, B. J.

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref]

Söller, C.

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref]

Solomon, G. S.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420, 762 (2002).
[Crossref]

Sriram, S.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2013.

Srivathsan, B.

V. Leong, S. Kosen, B. Srivathsan, G. K. Gulati, A. Ceré, and C. Kurtsiefer, “Hong–Ou–Mandel interference between triggered and heralded single photons from separate atomic systems,” Phys. Rev. A 91, 063829 (2015).
[Crossref]

Stenger, V.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2013.

Stephens, A. M.

W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and K. Nemoto, “From quantum multiplexing to high-performance quantum networking,” Nat. Photonics 4, 792–796 (2010).
[Crossref]

Sueta, T.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. QE-17, 2225–2227 (1981).
[Crossref]

Takesue, H.

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
[Crossref]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010).
[Crossref]

H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett. 101, 173901 (2008).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
[Crossref]

H. Takesue, T. Horiguchi, and T. Kobayashi, “Numerical simulation of a lightwave synthesized frequency sweeper incorporating an optical SSB modulator composed of four optical phase modulators,” J. Lightwave Technol. 20, 1908–1917 (2002).
[Crossref]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Tanner, M. G.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref]

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Thompson, M. G.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref]

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673 (2009).
[Crossref]

Tittel, W.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Toney, J.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2013.

Verma, V. B.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Vuckovic, J.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420, 762 (2002).
[Crossref]

Waks, E.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420, 762 (2002).
[Crossref]

Wright, L. J.

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref]

Yabushita, A.

H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon pairs entangled by a 2×2 fiber,” Phys. Rev. A 84, 022301 (2011).
[Crossref]

H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon-pairs generation for two-photon interference and polarization entanglement,” Phys. Rev. A 83, 022313 (2011).
[Crossref]

Yamamoto, T.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420, 762 (2002).
[Crossref]

Yin, G. Y.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref]

Zbinden, H.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Zhang, J.

R. B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsy, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805(R) (2011).
[Crossref]

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Zwiller, V.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref]

Electron. Lett. (1)

V. Ramaswamy, R. C. Alferness, and M. Divino, “High efficiency single-mode fibre to Ti:LiNbO3 waveguide coupling,” Electron. Lett. 18, 30–31 (1982).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. QE-17, 2225–2227 (1981).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673 (2009).
[Crossref]

J. Lightwave Technol. (1)

Nat. Commun. (1)

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref]

Nat. Photonics (3)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and K. Nemoto, “From quantum multiplexing to high-performance quantum networking,” Nat. Photonics 4, 792–796 (2010).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Nature (2)

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420, 762 (2002).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

New J. Phys. (1)

C. Panayi, M. Razavi, X. Ma, and N. Lütkenhaus, “Memory-assisted measurement-device-independent quantum key distribution,” New J. Phys. 16, 043005 (2014).
[Crossref]

Opt. Commun. (1)

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (6)

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010).
[Crossref]

H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon pairs entangled by a 2×2 fiber,” Phys. Rev. A 84, 022301 (2011).
[Crossref]

H. P. Lo, A. Yabushita, C. W. Luo, P. Chen, and T. Kobayashi, “Beamlike photon-pairs generation for two-photon interference and polarization entanglement,” Phys. Rev. A 83, 022313 (2011).
[Crossref]

R. B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsy, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805(R) (2011).
[Crossref]

S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89, 012301 (2014).
[Crossref]

V. Leong, S. Kosen, B. Srivathsan, G. K. Gulati, A. Ceré, and C. Kurtsiefer, “Hong–Ou–Mandel interference between triggered and heralded single photons from separate atomic systems,” Phys. Rev. A 91, 063829 (2015).
[Crossref]

Phys. Rev. Lett. (7)

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref]

H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett. 101, 173901 (2008).
[Crossref]

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref]

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref]

Rev. Mod. Phys. (1)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Sci. Adv. (1)

N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2, e1501223 (2016).
[Crossref]

Other (4)

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2013.

S. Shimotsu, S. Okikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “LiNbO3 optical single-sideband modulator,” in Optical Fiber Communication Conference (OFC) (2000), paper PD16.

The HOM visibility with accidental coincidence is obtained as function of CAR as V≃CAR−1CAR+1.

P. J. Mosley, “Generation of heralded single photons in pure quantum states,” Ph.D. thesis (University of Oxford, 2007) (unpublished).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental Material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) The structure of the OSSB modulator with four PMs. The PMs were driven by an RF signal from a synthesizer, and their phase biases were controlled by the DC bias voltages. The inset shows how the input light with angular frequency ω is downconverted to the ωωm sideband with the OSSB modulator, where ωm denotes the angular frequency of the RF signal. (b) Evaluation of the OSSB modulator with classical light. The blue dashed–dotted line shows the spectrum of a 1560.9 nm cw light used as the input light for the OSSB modulator. The black dashed and red solid lines are the output spectra when the OSSB modulator was turned on with a 25 GHz signal and off, respectively. The first sideband (1561.1 nm) is larger than other sidebands by at least 22 dB, which means that most of the input light energy shifts to the first sideband (192.17 THz) when the OSSB modulator is operated.

Fig. 2.
Fig. 2.

Theoretical plot of Eq. (3) with the experimental bandwidth of signal and idler photons. Circles, reversed triangles, x symbols, triangles, and squares show the cases when the frequency difference δ was set at 0, 5, 7, 9, and 25 GHz, respectively, with the HOM visibilities of 1, 0.677, 0.465, 0.282, and 0.

Fig. 3.
Fig. 3.

Experimental setup. All the components are connected by fibers. PPKTP, periodically poled potassium titanyl phosphate waveguide; FPBS, fiber polarized beam splitter; NBPF, narrow band-pass filter; DL, delay line; OSSB, optical single sideband modulator; PC, polarization controller; FBS, fiber beam splitter; SSPD, superconductor single-photon detector; TIA, time interval analyzer.

Fig. 4.
Fig. 4.

HOM interference experiment results. The vertical and horizontal axes show the normalized coincidence count and the relative optical delay between the signal and idler photons at the FBS, respectively. Circles, reversed triangles, x symbols, and triangles show the experimental results when the RF was set at 25, 20, 18, and 16 GHz, respectively. The squares shows the case when the OSSB modulator was turned off. The solid lines are the best-fit curves, whose visibilities are 0.920±0.059, 0.602±0.042, 0.337±0.028, and 0.231±0.038 for the RF of 25, 20, 18, and 16 GHz, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

EPM(δ,θ,α)=Ein2ei[ωt+δsin(ωmt+α)+θ]=Ein2ei(ωt+θ)n=Jn(δ)ein(ωmt+α),
Eout=12[EPM(δ,0,0)+EPM(δ,π,π)+EPM(δ,π/2,π/2)+EPM(δ,3π/2,3π/2)]=Eineiωt[+J1(δ)eiωmt+J3(δ)ei3ωmt+J5(δ)ei5ωmt+].
Rc(d)=12σsσiσs2+σi2Exp[σs2σi2d2+4δ22(σs2+σi2)],
VRc()Rc(0)Rc()=2(σsσiσs2+σi2)Exp[4δ22(σs2+σi2)].