Abstract

Recent work on four-dimensional (4D) tomographic imaging of reacting and non-reacting flows has utilized fluorescence, incandescence, or scattering from flow tracers, particulates, or aerosols, typically at the harmonics of an Nd:YAG laser. This paper presents high-speed 4D, volumetric laser-induced fluorescence measurements using an ultraviolet-tunable narrowband laser source to reach electronic transitions of chemical species of interest, such as the hydroxyl radical (OH), which may exist at parts-per-million (ppm) levels. A custom injection-seeded optical parametric oscillator pumped by a high-speed burst-mode laser was used for volumetric excitation of OH fluorescence, which was then captured by a pair of quadscopes to record eight unique views simultaneously at 10 kHz using only two high-speed intensified cameras. Successful tomographic imaging using high-energy, tunable narrowband radiation from a high-speed laser source lays the foundation for spatiotemporal, multidimensional analyses of a wide range of reacting and non-reacting flows of practical interest.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet

Benjamin R. Halls, Daniel J. Thul, Dirk Michaelis, Sukesh Roy, Terrence R. Meyer, and James R. Gord
Opt. Express 24(9) 10040-10049 (2016)

Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator

Joseph D. Miller, Mikhail Slipchenko, Terrence R. Meyer, Naibo Jiang, Walter R. Lempert, and James R. Gord
Opt. Lett. 34(9) 1309-1311 (2009)

Ultra-high-speed PLIF imaging for simultaneous visualization of multiple species in turbulent flames

Zhenkan Wang, Panagiota Stamatoglou, Zheming Li, Marcus Aldén, and Mattias Richter
Opt. Express 25(24) 30214-30228 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. B. Oh, “Diode-laser-based sum-frequency generation of tunable wavelength-modulated UV light for OH radical detection,” Opt. Lett. 20, 100–102 (1995).
    [Crossref]
  2. T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20  kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740 (2005).
    [Crossref]
  3. J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
    [Crossref]
  4. P. J. Wrzesinski, H. U. Stauffer, J. B. Schmidt, S. Roy, and J. R. Gord, “Single-shot thermometry and OH detection via femtosecond fully resonant electronically enhanced CARS (FREE-CARS),” Opt. Lett. 41, 2021–2024 (2016).
    [Crossref]
  5. M. J. Dyer and D. R. Crosley, “Rapidly sequenced pair of two-dimensional images of OH laser-induced fluorescence in a flame,” Opt. Lett. 9, 217–219 (1984).
    [Crossref]
  6. R. Cattolica and S. Vosen, “Combustion-torch ignition: fluorescence imaging of OH concentration,” Combust. Flame 68, 267–281 (1987).
    [Crossref]
  7. M. Winter and M. B. Long, “Two-dimensional measurements of the time development of a turbulent premixed flame,” Combust. Sci. Technol. 66, 181–188 (1989).
    [Crossref]
  8. H. Becker, A. Arnold, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, and W. Pfister, “Investigation of flame structure and burning behaviour in an IC engine simulator by 2D-LIF of OH radicals,” Appl. Phys. B 50, 473–478 (1990).
    [Crossref]
  9. M. W. Renfro, G. B. King, and N. M. Laurendeau, “Quantitative hydroxyl concentration time-series measurements in turbulent nonpremixed flames,” Appl. Opt. 38, 4596–4608 (1999).
    [Crossref]
  10. C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
    [Crossref]
  11. W. Paa, D. Muller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1  kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1–5 (2007).
    [Crossref]
  12. J. D. Miller, M. N. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309–1311 (2009).
    [Crossref]
  13. M. Gamba, N. T. Clemens, and O. A. Ezekoye, “Volumetric PIV and 2D OH PLIF imaging in the far-field of a low Reynolds number nonpremixed jet flame,” Meas. Sci. Technol. 24, 024003 (2013).
    [Crossref]
  14. B. Coriton, A. M. Steinberg, and J. H. Frank, “High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows,” Exp. Fluids 55, 1 (2014).
    [Crossref]
  15. K. Y. Cho, A. Satija, T. L. Pourpoint, S. F. Son, and R. P. Lucht, “High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion,” Appl. Opt. 53, 316–326 (2014).
    [Crossref]
  16. R. Wellander, M. Richter, and M. Aldén, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55, 1 (2014).
    [Crossref]
  17. M. Tanahashi, S. Inoue, M. Shimura, S. Taka, G.-M. Choi, and T. Miyauchi, “Reconstructed 3D flame structures in noise-controlled swirl-stabilized combustor,” Exp. Fluids 45, 447–460 (2008).
    [Crossref]
  18. A. M. Steinberg, I. Boxx, C. M. Arndt, J. H. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
    [Crossref]
  19. P. J. Trunk, I. Boxx, C. Heeger, W. Meier, B. Böhm, and A. Dreizler, “Premixed flame propagation in turbulent flow by means of stereoscopic PIV and dual-plane OH-PLIF at sustained kHz repetition rates,” Proc. Combust. Inst. 34, 3565–3572 (2013).
    [Crossref]
  20. E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst.36 (2016) (in press).
  21. N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B 100, 675–694 (2010).
    [Crossref]
  22. J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): Instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).
    [Crossref]
  23. W. Cai, X. Li, and L. Ma, “Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging,” Appl. Opt. 52, 8106–8116 (2013).
    [Crossref]
  24. T. L. Medford, P. M. Danehy, S. B. Jones, B. F. Bathel, J. A. Inman, N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, and T. R. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January4–7, 2011.
  25. Y. Wu, W. Xu, Q. Lei, and L. Ma, “Single-shot volumetric laser induced fluorescence (VLIF) measurements in turbulent flows seeded with iodine,” Opt. Express 23, 33408–33418 (2015).
    [Crossref]
  26. B. R. Halls, D. J. Thul, D. Michaelis, S. Roy, T. R. Meyer, and J. R. Gord, “Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet,” Opt. Express 24, 10040–10049 (2016).
    [Crossref]
  27. L. Ma, Q. Lei, T. Capil, S. D. Hammack, and C. D. Carter, “Direct comparison of two-dimensional and three-dimensional laser-induced fluorescence measurements on highly turbulent flames,” Opt. Lett. 42, 267–270 (2017).
    [Crossref]
  28. F. Fuest, M. Schütte, T. Li, J. Pareja, A. Dreizler, and B. Böhm, “Tomographic laser-induced fluorescence of OH in laminar and turbulent jet flames,” WiPP at the 36th International Symposium on Combustion, Seoul, Korea, July31–August 5, 2016.
  29. B. R. Halls, J. R. Gord, T. R. Meyer, D. J. Thul, M. N. Slipchenko, and S. Roy, “20-kHz-rate three-dimensional tomographic imaging of the concentration field in a turbulent jet,” Proc. Combust. Inst. 36, 4611–4618 (2017).
  30. T. R. Meyer, B. R. Halls, N. Jiang, M. N. Slipchenko, S. Roy, and J. R. Gord, “High-speed, three-dimensional tomographic laser-induced incandescence imaging of soot volume fraction in turbulent flames,” Opt. Express 24, 29547–29555 (2016).
  31. B. R. Halls, N. Jiang, T. R. Meyer, S. Roy, M. N. Slipchenko, and J. R. Gord, “4D spatio-temporal evolution of combustion intermediates in turbulent flames using burst-mode volumetric laser-induced fluorescence,” Opt. Lett. (2017), (to be published).
  32. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Dandczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37, 1346–1348 (2012).
    [Crossref]
  33. N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47, 64–71 (2008).
    [Crossref]
  34. I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
    [Crossref]

2017 (2)

L. Ma, Q. Lei, T. Capil, S. D. Hammack, and C. D. Carter, “Direct comparison of two-dimensional and three-dimensional laser-induced fluorescence measurements on highly turbulent flames,” Opt. Lett. 42, 267–270 (2017).
[Crossref]

B. R. Halls, J. R. Gord, T. R. Meyer, D. J. Thul, M. N. Slipchenko, and S. Roy, “20-kHz-rate three-dimensional tomographic imaging of the concentration field in a turbulent jet,” Proc. Combust. Inst. 36, 4611–4618 (2017).

2016 (3)

2015 (1)

2014 (3)

B. Coriton, A. M. Steinberg, and J. H. Frank, “High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows,” Exp. Fluids 55, 1 (2014).
[Crossref]

K. Y. Cho, A. Satija, T. L. Pourpoint, S. F. Son, and R. P. Lucht, “High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion,” Appl. Opt. 53, 316–326 (2014).
[Crossref]

R. Wellander, M. Richter, and M. Aldén, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55, 1 (2014).
[Crossref]

2013 (3)

W. Cai, X. Li, and L. Ma, “Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging,” Appl. Opt. 52, 8106–8116 (2013).
[Crossref]

M. Gamba, N. T. Clemens, and O. A. Ezekoye, “Volumetric PIV and 2D OH PLIF imaging in the far-field of a low Reynolds number nonpremixed jet flame,” Meas. Sci. Technol. 24, 024003 (2013).
[Crossref]

P. J. Trunk, I. Boxx, C. Heeger, W. Meier, B. Böhm, and A. Dreizler, “Premixed flame propagation in turbulent flow by means of stereoscopic PIV and dual-plane OH-PLIF at sustained kHz repetition rates,” Proc. Combust. Inst. 34, 3565–3572 (2013).
[Crossref]

2012 (1)

2011 (3)

A. M. Steinberg, I. Boxx, C. M. Arndt, J. H. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
[Crossref]

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): Instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).
[Crossref]

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
[Crossref]

2010 (1)

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B 100, 675–694 (2010).
[Crossref]

2009 (2)

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[Crossref]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309–1311 (2009).
[Crossref]

2008 (2)

M. Tanahashi, S. Inoue, M. Shimura, S. Taka, G.-M. Choi, and T. Miyauchi, “Reconstructed 3D flame structures in noise-controlled swirl-stabilized combustor,” Exp. Fluids 45, 447–460 (2008).
[Crossref]

N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47, 64–71 (2008).
[Crossref]

2007 (1)

W. Paa, D. Muller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1  kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1–5 (2007).
[Crossref]

2005 (1)

1999 (2)

M. W. Renfro, G. B. King, and N. M. Laurendeau, “Quantitative hydroxyl concentration time-series measurements in turbulent nonpremixed flames,” Appl. Opt. 38, 4596–4608 (1999).
[Crossref]

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[Crossref]

1995 (1)

1990 (1)

H. Becker, A. Arnold, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, and W. Pfister, “Investigation of flame structure and burning behaviour in an IC engine simulator by 2D-LIF of OH radicals,” Appl. Phys. B 50, 473–478 (1990).
[Crossref]

1989 (1)

M. Winter and M. B. Long, “Two-dimensional measurements of the time development of a turbulent premixed flame,” Combust. Sci. Technol. 66, 181–188 (1989).
[Crossref]

1987 (1)

R. Cattolica and S. Vosen, “Combustion-torch ignition: fluorescence imaging of OH concentration,” Combust. Flame 68, 267–281 (1987).
[Crossref]

1984 (1)

Aldén, M.

R. Wellander, M. Richter, and M. Aldén, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55, 1 (2014).
[Crossref]

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[Crossref]

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst.36 (2016) (in press).

Anderson, T. N.

Anikin, N.

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B 100, 675–694 (2010).
[Crossref]

Arndt, C. M.

A. M. Steinberg, I. Boxx, C. M. Arndt, J. H. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
[Crossref]

Arnold, A.

H. Becker, A. Arnold, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, and W. Pfister, “Investigation of flame structure and burning behaviour in an IC engine simulator by 2D-LIF of OH radicals,” Appl. Phys. B 50, 473–478 (1990).
[Crossref]

Bathel, B. F.

T. L. Medford, P. M. Danehy, S. B. Jones, B. F. Bathel, J. A. Inman, N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, and T. R. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January4–7, 2011.

Becker, H.

H. Becker, A. Arnold, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, and W. Pfister, “Investigation of flame structure and burning behaviour in an IC engine simulator by 2D-LIF of OH radicals,” Appl. Phys. B 50, 473–478 (1990).
[Crossref]

Berrocal, E.

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst.36 (2016) (in press).

Bockhorn, H.

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B 100, 675–694 (2010).
[Crossref]

Böhm, B.

P. J. Trunk, I. Boxx, C. Heeger, W. Meier, B. Böhm, and A. Dreizler, “Premixed flame propagation in turbulent flow by means of stereoscopic PIV and dual-plane OH-PLIF at sustained kHz repetition rates,” Proc. Combust. Inst. 34, 3565–3572 (2013).
[Crossref]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[Crossref]

F. Fuest, M. Schütte, T. Li, J. Pareja, A. Dreizler, and B. Böhm, “Tomographic laser-induced fluorescence of OH in laminar and turbulent jet flames,” WiPP at the 36th International Symposium on Combustion, Seoul, Korea, July31–August 5, 2016.

Boxx, I.

P. J. Trunk, I. Boxx, C. Heeger, W. Meier, B. Böhm, and A. Dreizler, “Premixed flame propagation in turbulent flow by means of stereoscopic PIV and dual-plane OH-PLIF at sustained kHz repetition rates,” Proc. Combust. Inst. 34, 3565–3572 (2013).
[Crossref]

A. M. Steinberg, I. Boxx, C. M. Arndt, J. H. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
[Crossref]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[Crossref]

Cai, W.

Capil, T.

Carter, C. D.

Cattolica, R.

R. Cattolica and S. Vosen, “Combustion-torch ignition: fluorescence imaging of OH concentration,” Combust. Flame 68, 267–281 (1987).
[Crossref]

Cho, K. Y.

Choi, G.-M.

M. Tanahashi, S. Inoue, M. Shimura, S. Taka, G.-M. Choi, and T. Miyauchi, “Reconstructed 3D flame structures in noise-controlled swirl-stabilized combustor,” Exp. Fluids 45, 447–460 (2008).
[Crossref]

Clemens, N. T.

M. Gamba, N. T. Clemens, and O. A. Ezekoye, “Volumetric PIV and 2D OH PLIF imaging in the far-field of a low Reynolds number nonpremixed jet flame,” Meas. Sci. Technol. 24, 024003 (2013).
[Crossref]

Coriton, B.

B. Coriton, A. M. Steinberg, and J. H. Frank, “High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows,” Exp. Fluids 55, 1 (2014).
[Crossref]

Crosley, D. R.

Dandczyk, S. A.

Danehy, P. M.

T. L. Medford, P. M. Danehy, S. B. Jones, B. F. Bathel, J. A. Inman, N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, and T. R. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January4–7, 2011.

Dreizler, A.

P. J. Trunk, I. Boxx, C. Heeger, W. Meier, B. Böhm, and A. Dreizler, “Premixed flame propagation in turbulent flow by means of stereoscopic PIV and dual-plane OH-PLIF at sustained kHz repetition rates,” Proc. Combust. Inst. 34, 3565–3572 (2013).
[Crossref]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[Crossref]

F. Fuest, M. Schütte, T. Li, J. Pareja, A. Dreizler, and B. Böhm, “Tomographic laser-induced fluorescence of OH in laminar and turbulent jet flames,” WiPP at the 36th International Symposium on Combustion, Seoul, Korea, July31–August 5, 2016.

Dyer, M. J.

Ewart, P.

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
[Crossref]

Ezekoye, O. A.

M. Gamba, N. T. Clemens, and O. A. Ezekoye, “Volumetric PIV and 2D OH PLIF imaging in the far-field of a low Reynolds number nonpremixed jet flame,” Meas. Sci. Technol. 24, 024003 (2013).
[Crossref]

Floyd, J.

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): Instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).
[Crossref]

Frank, J. H.

B. Coriton, A. M. Steinberg, and J. H. Frank, “High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows,” Exp. Fluids 55, 1 (2014).
[Crossref]

A. M. Steinberg, I. Boxx, C. M. Arndt, J. H. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
[Crossref]

Fuest, F.

F. Fuest, M. Schütte, T. Li, J. Pareja, A. Dreizler, and B. Böhm, “Tomographic laser-induced fluorescence of OH in laminar and turbulent jet flames,” WiPP at the 36th International Symposium on Combustion, Seoul, Korea, July31–August 5, 2016.

Gamba, M.

M. Gamba, N. T. Clemens, and O. A. Ezekoye, “Volumetric PIV and 2D OH PLIF imaging in the far-field of a low Reynolds number nonpremixed jet flame,” Meas. Sci. Technol. 24, 024003 (2013).
[Crossref]

Geipel, P.

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): Instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).
[Crossref]

Gord, J. R.

B. R. Halls, J. R. Gord, T. R. Meyer, D. J. Thul, M. N. Slipchenko, and S. Roy, “20-kHz-rate three-dimensional tomographic imaging of the concentration field in a turbulent jet,” Proc. Combust. Inst. 36, 4611–4618 (2017).

P. J. Wrzesinski, H. U. Stauffer, J. B. Schmidt, S. Roy, and J. R. Gord, “Single-shot thermometry and OH detection via femtosecond fully resonant electronically enhanced CARS (FREE-CARS),” Opt. Lett. 41, 2021–2024 (2016).
[Crossref]

B. R. Halls, D. J. Thul, D. Michaelis, S. Roy, T. R. Meyer, and J. R. Gord, “Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet,” Opt. Express 24, 10040–10049 (2016).
[Crossref]

T. R. Meyer, B. R. Halls, N. Jiang, M. N. Slipchenko, S. Roy, and J. R. Gord, “High-speed, three-dimensional tomographic laser-induced incandescence imaging of soot volume fraction in turbulent flames,” Opt. Express 24, 29547–29555 (2016).

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Dandczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37, 1346–1348 (2012).
[Crossref]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309–1311 (2009).
[Crossref]

N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47, 64–71 (2008).
[Crossref]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20  kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740 (2005).
[Crossref]

B. R. Halls, N. Jiang, T. R. Meyer, S. Roy, M. N. Slipchenko, and J. R. Gord, “4D spatio-temporal evolution of combustion intermediates in turbulent flames using burst-mode volumetric laser-induced fluorescence,” Opt. Lett. (2017), (to be published).

Gordon, R.

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[Crossref]

Halls, B. R.

B. R. Halls, J. R. Gord, T. R. Meyer, D. J. Thul, M. N. Slipchenko, and S. Roy, “20-kHz-rate three-dimensional tomographic imaging of the concentration field in a turbulent jet,” Proc. Combust. Inst. 36, 4611–4618 (2017).

B. R. Halls, D. J. Thul, D. Michaelis, S. Roy, T. R. Meyer, and J. R. Gord, “Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet,” Opt. Express 24, 10040–10049 (2016).
[Crossref]

T. R. Meyer, B. R. Halls, N. Jiang, M. N. Slipchenko, S. Roy, and J. R. Gord, “High-speed, three-dimensional tomographic laser-induced incandescence imaging of soot volume fraction in turbulent flames,” Opt. Express 24, 29547–29555 (2016).

B. R. Halls, N. Jiang, T. R. Meyer, S. Roy, M. N. Slipchenko, and J. R. Gord, “4D spatio-temporal evolution of combustion intermediates in turbulent flames using burst-mode volumetric laser-induced fluorescence,” Opt. Lett. (2017), (to be published).

Hammack, S. D.

Heeger, C.

P. J. Trunk, I. Boxx, C. Heeger, W. Meier, B. Böhm, and A. Dreizler, “Premixed flame propagation in turbulent flow by means of stereoscopic PIV and dual-plane OH-PLIF at sustained kHz repetition rates,” Proc. Combust. Inst. 34, 3565–3572 (2013).
[Crossref]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[Crossref]

Hult, J.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[Crossref]

Inman, J. A.

T. L. Medford, P. M. Danehy, S. B. Jones, B. F. Bathel, J. A. Inman, N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, and T. R. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January4–7, 2011.

Inoue, S.

M. Tanahashi, S. Inoue, M. Shimura, S. Taka, G.-M. Choi, and T. Miyauchi, “Reconstructed 3D flame structures in noise-controlled swirl-stabilized combustor,” Exp. Fluids 45, 447–460 (2008).
[Crossref]

Jiang, N.

T. R. Meyer, B. R. Halls, N. Jiang, M. N. Slipchenko, S. Roy, and J. R. Gord, “High-speed, three-dimensional tomographic laser-induced incandescence imaging of soot volume fraction in turbulent flames,” Opt. Express 24, 29547–29555 (2016).

J. D. Miller, M. N. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309–1311 (2009).
[Crossref]

N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47, 64–71 (2008).
[Crossref]

B. R. Halls, N. Jiang, T. R. Meyer, S. Roy, M. N. Slipchenko, and J. R. Gord, “4D spatio-temporal evolution of combustion intermediates in turbulent flames using burst-mode volumetric laser-induced fluorescence,” Opt. Lett. (2017), (to be published).

T. L. Medford, P. M. Danehy, S. B. Jones, B. F. Bathel, J. A. Inman, N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, and T. R. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January4–7, 2011.

Jones, S. B.

T. L. Medford, P. M. Danehy, S. B. Jones, B. F. Bathel, J. A. Inman, N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, and T. R. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January4–7, 2011.

Kaminski, C. F.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[Crossref]

Katta, V. R.

Kempf, A. M.

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): Instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).
[Crossref]

Kiefer, J.

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
[Crossref]

King, G. B.

Kristensson, E.

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst.36 (2016) (in press).

Laurendeau, N. M.

Lei, Q.

Lempert, W. R.

Li, T.

F. Fuest, M. Schütte, T. Li, J. Pareja, A. Dreizler, and B. Böhm, “Tomographic laser-induced fluorescence of OH in laminar and turbulent jet flames,” WiPP at the 36th International Symposium on Combustion, Seoul, Korea, July31–August 5, 2016.

Li, X.

Li, Z.

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst.36 (2016) (in press).

Long, M. B.

M. Winter and M. B. Long, “Two-dimensional measurements of the time development of a turbulent premixed flame,” Combust. Sci. Technol. 66, 181–188 (1989).
[Crossref]

Lucht, R. P.

Ma, L.

Maly, R.

H. Becker, A. Arnold, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, and W. Pfister, “Investigation of flame structure and burning behaviour in an IC engine simulator by 2D-LIF of OH radicals,” Appl. Phys. B 50, 473–478 (1990).
[Crossref]

Medford, T. L.

T. L. Medford, P. M. Danehy, S. B. Jones, B. F. Bathel, J. A. Inman, N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, and T. R. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January4–7, 2011.

Meier, W.

P. J. Trunk, I. Boxx, C. Heeger, W. Meier, B. Böhm, and A. Dreizler, “Premixed flame propagation in turbulent flow by means of stereoscopic PIV and dual-plane OH-PLIF at sustained kHz repetition rates,” Proc. Combust. Inst. 34, 3565–3572 (2013).
[Crossref]

A. M. Steinberg, I. Boxx, C. M. Arndt, J. H. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
[Crossref]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[Crossref]

Meyer, T. R.

B. R. Halls, J. R. Gord, T. R. Meyer, D. J. Thul, M. N. Slipchenko, and S. Roy, “20-kHz-rate three-dimensional tomographic imaging of the concentration field in a turbulent jet,” Proc. Combust. Inst. 36, 4611–4618 (2017).

T. R. Meyer, B. R. Halls, N. Jiang, M. N. Slipchenko, S. Roy, and J. R. Gord, “High-speed, three-dimensional tomographic laser-induced incandescence imaging of soot volume fraction in turbulent flames,” Opt. Express 24, 29547–29555 (2016).

B. R. Halls, D. J. Thul, D. Michaelis, S. Roy, T. R. Meyer, and J. R. Gord, “Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet,” Opt. Express 24, 10040–10049 (2016).
[Crossref]

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Dandczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37, 1346–1348 (2012).
[Crossref]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309–1311 (2009).
[Crossref]

N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47, 64–71 (2008).
[Crossref]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20  kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740 (2005).
[Crossref]

B. R. Halls, N. Jiang, T. R. Meyer, S. Roy, M. N. Slipchenko, and J. R. Gord, “4D spatio-temporal evolution of combustion intermediates in turbulent flames using burst-mode volumetric laser-induced fluorescence,” Opt. Lett. (2017), (to be published).

T. L. Medford, P. M. Danehy, S. B. Jones, B. F. Bathel, J. A. Inman, N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, and T. R. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January4–7, 2011.

Michaelis, D.

Miller, J. D.

Miyauchi, T.

M. Tanahashi, S. Inoue, M. Shimura, S. Taka, G.-M. Choi, and T. Miyauchi, “Reconstructed 3D flame structures in noise-controlled swirl-stabilized combustor,” Exp. Fluids 45, 447–460 (2008).
[Crossref]

Monkhouse, P.

H. Becker, A. Arnold, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, and W. Pfister, “Investigation of flame structure and burning behaviour in an IC engine simulator by 2D-LIF of OH radicals,” Appl. Phys. B 50, 473–478 (1990).
[Crossref]

Muller, D.

W. Paa, D. Muller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1  kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1–5 (2007).
[Crossref]

Oh, D. B.

Paa, W.

W. Paa, D. Muller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1  kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1–5 (2007).
[Crossref]

Pareja, J.

F. Fuest, M. Schütte, T. Li, J. Pareja, A. Dreizler, and B. Böhm, “Tomographic laser-induced fluorescence of OH in laminar and turbulent jet flames,” WiPP at the 36th International Symposium on Combustion, Seoul, Korea, July31–August 5, 2016.

Pfister, W.

H. Becker, A. Arnold, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, and W. Pfister, “Investigation of flame structure and burning behaviour in an IC engine simulator by 2D-LIF of OH radicals,” Appl. Phys. B 50, 473–478 (1990).
[Crossref]

Pourpoint, T. L.

Renfro, M. W.

Richter, M.

R. Wellander, M. Richter, and M. Aldén, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55, 1 (2014).
[Crossref]

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst.36 (2016) (in press).

Roy, S.

B. R. Halls, J. R. Gord, T. R. Meyer, D. J. Thul, M. N. Slipchenko, and S. Roy, “20-kHz-rate three-dimensional tomographic imaging of the concentration field in a turbulent jet,” Proc. Combust. Inst. 36, 4611–4618 (2017).

B. R. Halls, D. J. Thul, D. Michaelis, S. Roy, T. R. Meyer, and J. R. Gord, “Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet,” Opt. Express 24, 10040–10049 (2016).
[Crossref]

P. J. Wrzesinski, H. U. Stauffer, J. B. Schmidt, S. Roy, and J. R. Gord, “Single-shot thermometry and OH detection via femtosecond fully resonant electronically enhanced CARS (FREE-CARS),” Opt. Lett. 41, 2021–2024 (2016).
[Crossref]

T. R. Meyer, B. R. Halls, N. Jiang, M. N. Slipchenko, S. Roy, and J. R. Gord, “High-speed, three-dimensional tomographic laser-induced incandescence imaging of soot volume fraction in turbulent flames,” Opt. Express 24, 29547–29555 (2016).

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Dandczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37, 1346–1348 (2012).
[Crossref]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20  kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740 (2005).
[Crossref]

B. R. Halls, N. Jiang, T. R. Meyer, S. Roy, M. N. Slipchenko, and J. R. Gord, “4D spatio-temporal evolution of combustion intermediates in turbulent flames using burst-mode volumetric laser-induced fluorescence,” Opt. Lett. (2017), (to be published).

Satija, A.

Schmidt, J. B.

Schütte, M.

F. Fuest, M. Schütte, T. Li, J. Pareja, A. Dreizler, and B. Böhm, “Tomographic laser-induced fluorescence of OH in laminar and turbulent jet flames,” WiPP at the 36th International Symposium on Combustion, Seoul, Korea, July31–August 5, 2016.

Shimura, M.

M. Tanahashi, S. Inoue, M. Shimura, S. Taka, G.-M. Choi, and T. Miyauchi, “Reconstructed 3D flame structures in noise-controlled swirl-stabilized combustor,” Exp. Fluids 45, 447–460 (2008).
[Crossref]

Slipchenko, M. N.

B. R. Halls, J. R. Gord, T. R. Meyer, D. J. Thul, M. N. Slipchenko, and S. Roy, “20-kHz-rate three-dimensional tomographic imaging of the concentration field in a turbulent jet,” Proc. Combust. Inst. 36, 4611–4618 (2017).

T. R. Meyer, B. R. Halls, N. Jiang, M. N. Slipchenko, S. Roy, and J. R. Gord, “High-speed, three-dimensional tomographic laser-induced incandescence imaging of soot volume fraction in turbulent flames,” Opt. Express 24, 29547–29555 (2016).

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Dandczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37, 1346–1348 (2012).
[Crossref]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309–1311 (2009).
[Crossref]

B. R. Halls, N. Jiang, T. R. Meyer, S. Roy, M. N. Slipchenko, and J. R. Gord, “4D spatio-temporal evolution of combustion intermediates in turbulent flames using burst-mode volumetric laser-induced fluorescence,” Opt. Lett. (2017), (to be published).

Son, S. F.

Stafast, H.

W. Paa, D. Muller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1  kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1–5 (2007).
[Crossref]

Stauffer, H. U.

Steinberg, A. M.

B. Coriton, A. M. Steinberg, and J. H. Frank, “High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows,” Exp. Fluids 55, 1 (2014).
[Crossref]

A. M. Steinberg, I. Boxx, C. M. Arndt, J. H. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
[Crossref]

Suntz, R.

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B 100, 675–694 (2010).
[Crossref]

H. Becker, A. Arnold, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, and W. Pfister, “Investigation of flame structure and burning behaviour in an IC engine simulator by 2D-LIF of OH radicals,” Appl. Phys. B 50, 473–478 (1990).
[Crossref]

Switzer, G. L.

Taka, S.

M. Tanahashi, S. Inoue, M. Shimura, S. Taka, G.-M. Choi, and T. Miyauchi, “Reconstructed 3D flame structures in noise-controlled swirl-stabilized combustor,” Exp. Fluids 45, 447–460 (2008).
[Crossref]

Tanahashi, M.

M. Tanahashi, S. Inoue, M. Shimura, S. Taka, G.-M. Choi, and T. Miyauchi, “Reconstructed 3D flame structures in noise-controlled swirl-stabilized combustor,” Exp. Fluids 45, 447–460 (2008).
[Crossref]

Thul, D. J.

B. R. Halls, J. R. Gord, T. R. Meyer, D. J. Thul, M. N. Slipchenko, and S. Roy, “20-kHz-rate three-dimensional tomographic imaging of the concentration field in a turbulent jet,” Proc. Combust. Inst. 36, 4611–4618 (2017).

B. R. Halls, D. J. Thul, D. Michaelis, S. Roy, T. R. Meyer, and J. R. Gord, “Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet,” Opt. Express 24, 10040–10049 (2016).
[Crossref]

Triebel, W.

W. Paa, D. Muller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1  kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1–5 (2007).
[Crossref]

Trunk, P. J.

P. J. Trunk, I. Boxx, C. Heeger, W. Meier, B. Böhm, and A. Dreizler, “Premixed flame propagation in turbulent flow by means of stereoscopic PIV and dual-plane OH-PLIF at sustained kHz repetition rates,” Proc. Combust. Inst. 34, 3565–3572 (2013).
[Crossref]

Vosen, S.

R. Cattolica and S. Vosen, “Combustion-torch ignition: fluorescence imaging of OH concentration,” Combust. Flame 68, 267–281 (1987).
[Crossref]

Webster, M.

T. L. Medford, P. M. Danehy, S. B. Jones, B. F. Bathel, J. A. Inman, N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, and T. R. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January4–7, 2011.

Wellander, R.

R. Wellander, M. Richter, and M. Aldén, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55, 1 (2014).
[Crossref]

Winter, M.

M. Winter and M. B. Long, “Two-dimensional measurements of the time development of a turbulent premixed flame,” Combust. Sci. Technol. 66, 181–188 (1989).
[Crossref]

Wolfrum, J.

H. Becker, A. Arnold, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, and W. Pfister, “Investigation of flame structure and burning behaviour in an IC engine simulator by 2D-LIF of OH radicals,” Appl. Phys. B 50, 473–478 (1990).
[Crossref]

Wrzesinski, P. J.

Wu, Y.

Xu, W.

Appl. Opt. (5)

Appl. Phys. B (4)

H. Becker, A. Arnold, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, and W. Pfister, “Investigation of flame structure and burning behaviour in an IC engine simulator by 2D-LIF of OH radicals,” Appl. Phys. B 50, 473–478 (1990).
[Crossref]

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B 100, 675–694 (2010).
[Crossref]

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[Crossref]

W. Paa, D. Muller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1  kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1–5 (2007).
[Crossref]

Combust. Flame (3)

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[Crossref]

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): Instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).
[Crossref]

R. Cattolica and S. Vosen, “Combustion-torch ignition: fluorescence imaging of OH concentration,” Combust. Flame 68, 267–281 (1987).
[Crossref]

Combust. Sci. Technol. (1)

M. Winter and M. B. Long, “Two-dimensional measurements of the time development of a turbulent premixed flame,” Combust. Sci. Technol. 66, 181–188 (1989).
[Crossref]

Exp. Fluids (3)

R. Wellander, M. Richter, and M. Aldén, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55, 1 (2014).
[Crossref]

M. Tanahashi, S. Inoue, M. Shimura, S. Taka, G.-M. Choi, and T. Miyauchi, “Reconstructed 3D flame structures in noise-controlled swirl-stabilized combustor,” Exp. Fluids 45, 447–460 (2008).
[Crossref]

B. Coriton, A. M. Steinberg, and J. H. Frank, “High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows,” Exp. Fluids 55, 1 (2014).
[Crossref]

Meas. Sci. Technol. (1)

M. Gamba, N. T. Clemens, and O. A. Ezekoye, “Volumetric PIV and 2D OH PLIF imaging in the far-field of a low Reynolds number nonpremixed jet flame,” Meas. Sci. Technol. 24, 024003 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Proc. Combust. Inst. (3)

B. R. Halls, J. R. Gord, T. R. Meyer, D. J. Thul, M. N. Slipchenko, and S. Roy, “20-kHz-rate three-dimensional tomographic imaging of the concentration field in a turbulent jet,” Proc. Combust. Inst. 36, 4611–4618 (2017).

A. M. Steinberg, I. Boxx, C. M. Arndt, J. H. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
[Crossref]

P. J. Trunk, I. Boxx, C. Heeger, W. Meier, B. Böhm, and A. Dreizler, “Premixed flame propagation in turbulent flow by means of stereoscopic PIV and dual-plane OH-PLIF at sustained kHz repetition rates,” Proc. Combust. Inst. 34, 3565–3572 (2013).
[Crossref]

Prog. Energy Combust. Sci. (1)

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
[Crossref]

Other (4)

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst.36 (2016) (in press).

B. R. Halls, N. Jiang, T. R. Meyer, S. Roy, M. N. Slipchenko, and J. R. Gord, “4D spatio-temporal evolution of combustion intermediates in turbulent flames using burst-mode volumetric laser-induced fluorescence,” Opt. Lett. (2017), (to be published).

T. L. Medford, P. M. Danehy, S. B. Jones, B. F. Bathel, J. A. Inman, N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, and T. R. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January4–7, 2011.

F. Fuest, M. Schütte, T. Li, J. Pareja, A. Dreizler, and B. Böhm, “Tomographic laser-induced fluorescence of OH in laminar and turbulent jet flames,” WiPP at the 36th International Symposium on Combustion, Seoul, Korea, July31–August 5, 2016.

Supplementary Material (1)

NameDescription
» Visualization 1       4D OH Movie

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Layout of high-speed tomographic measurement system, including burst-mode laser, OPO, imaging system, and lifted jet flame.
Fig. 2.
Fig. 2. Schematic of injection-seeded, burst-mode OPO cavity and doubling crystal. M1: Ts 355; Rp 600–640, 820–860; M2: Ts 355; Rp 20% T 80% 600–640, 820–860; M3: Rs 355; Tp 600–640, 820–860; M4: Tp 600–640; Rs 820–860; M5: Tp 532; Rp 600–620; M6: R 532; OI, optical isolator; T, transmit; R, reflect; s, s-polarized light; p, p-polarized light.
Fig. 3.
Fig. 3. OPO signal energy as a function of the pump energy. The error bars represent one standard deviation on the mean value from five samples.
Fig. 4.
Fig. 4. Quadscope used to collect four perspective views onto each intensifier. Two quadscopes enabled the collection of eight views.
Fig. 5.
Fig. 5. Eight 2D projections of the illuminated volume. Contrast adjusted to highlight regions of low intensity.
Fig. 6.
Fig. 6. Time evolution of 3D distribution of OH LIF at the base of the turbulent, ReD=10,000 lifted jet flame.
Fig. 7.
Fig. 7. Image slices through the central axis of the volume shown at 0.0 ms from Fig. 6.
Fig. 8.
Fig. 8. Horizontal line plots perpendicular and parallel to the beam-propagation direction through the central axis and at the vertical location marked by the dotted lines in Fig. 7.

Metrics