Abstract

As information technologies move from electron- to photon-based systems, the need to rapidly modulate light is of paramount importance. Here, we study the evolution of the electric-field-induced alignment of gold nanorods suspended in organic solvents. The experiments were performed using an all-fiber optofluidic device, which enables convenient interaction of light, electric fields, and the nanorod suspension. We demonstrate microsecond nanorod switching times, three orders of magnitude faster than a traditional Freederickcz-based liquid crystal alignment mechanism. We find that the dynamics of the alignment agrees well with the Einstein–Smoluchowski relationship, allowing for the determination of the rotational diffusion coefficient and polarizability anisotropy of the nanorods as well as the effective length of the ligands capping the nanorods. The ability to dynamically control the optical properties of these plasmonic suspensions coupled with the point-to-point delivery of light from the fiber component, as demonstrated in this work, may enable novel ultrafast optical switches, filters, displays, and spatial light modulators.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic resonant nonlinearity and synthetic optical properties in gold nanorod suspensions

Huizhong Xu, Pepito Alvaro, Yinxiao Xiang, Trevor S. Kelly, Yu-Xuan Ren, Chensong Zhang, and Zhigang Chen
Photon. Res. 7(1) 28-35 (2019)

Nonlinear refractive index of electric field aligned gold nanorods suspended in index matching oil measured with a Hartmann-Shack wavefront aberrometer

Melissa Maldonado, Leonardo de S. Menezes, Leonardo F. Araujo, Greice K. B. da Costa, Isabel C. S. Carvalho, Jake Fontana, Cid B. de Araújo, and Anderson S. L. Gomes
Opt. Express 26(16) 20298-20305 (2018)

Electric switching of visible and infrared transmission using liquid crystals co-doped with plasmonic gold nanorods and dichroic dyes

Ghadah H. Sheetah, Qingkun Liu, Bohdan Senyuk, Blaise Fleury, and Ivan. I. Smalyukh
Opt. Express 26(17) 22264-22272 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. G. D. Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1995).
  2. Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9, 3097–3108 (2015).
    [Crossref]
  3. J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
    [Crossref]
  4. G. S. Lobov, A. Marinins, S. Etcheverry, Y. Zhao, E. Vasileva, A. Sugunan, F. Laurell, L. Thylén, L. Wosinski, M. Östling, M. S. Toprak, and S. Popov, “Direct birefringence and transmission modulation via dynamic alignment of P3HT nanofibers in an advanced opto-fluidic component,” Opt. Mater. Express 7, 52–61 (2017).
    [Crossref]
  5. D. Lopez-Cortes, O. Tarasenko, and W. Margulis, “All-fiber Kerr cell,” Opt. Lett. 37, 3288–3290 (2012).
    [Crossref]
  6. M. Mohammadimasoudi, Z. Hens, and K. Neyts, “Full alignment of dispersed colloidal nanorods by alternating electric fields,” RSC Adv. 6, 55736–55744 (2016).
    [Crossref]
  7. H. E. Ruda and A. Shik, “Nanorod dynamics in AC electric fields,” Nanotechnology 21, 235502 (2010).
    [Crossref]
  8. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1983).
  9. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
    [Crossref]
  10. B. U. Felderhof and R. B. Jones, “Nonlinear response of a dipolar system with rotational diffusion to an oscillating field,” J. Phys. Condens. Mater 15, S1363–S1378 (2003).
    [Crossref]
  11. S. A. Klemeshev, M. P. Petrov, A. A. Trusov, and A. V. Voitylov, “Electrooptical effects in colloid systems subjected to short pulses of strong electric field,” J. Phys. Condens. Mater 22, 494106 (2010).
    [Crossref]
  12. D. B. Reeves and J. B. Weaver, “Simulations of magnetic nanoparticle Brownian motion,” J. Appl. Phys. 112, 124311 (2012).
    [Crossref]
  13. P. Zijlstra, M. van Stee, N. Verhart, Z. Y. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
    [Crossref]
  14. K. Park, M.-S. Hsiao, H. Koerner, A. Jawaid, J. Che, and R. A. Vaia, “Optimizing seed aging for single crystal gold nanorod growth: the critical role of gold nanocluster crystal structure,” J. Phys. Chem. C 120, 28235–28245 (2016).
    [Crossref]
  15. J. P. Fontana, Self-Assembly and Characterization of Anisotropic Metamaterials (Kent State University, 2011), p. 162.
  16. A. Sudirman and W. Margulis, “All-fiber optofluidic component to combine light and fluid,” IEEE Photon. Technol. Lett. 26, 1031–1033 (2014).
    [Crossref]
  17. A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics 11, 941–951 (2016).
    [Crossref]
  18. M. M. Tirado, C. L. Martinez, and J. G. Delatorre, “Comparison of theories for the translational and rotational diffusion-coefficients of rod-like macromolecules. Application to short DNA fragments,” J. Chem. Phys. 81, 2047–2052 (1984).
    [Crossref]
  19. A. de la Cotte, P. Merzeau, J. W. Kim, K. Lahlil, J. P. Boilot, T. Gacoin, and E. Grelet, “Electric field induced birefringence in nonaqueous dispersions of mineral nanorods,” Soft Matter 11, 6595–6603 (2015).
    [Crossref]
  20. F. J. V. Santos, C. A. N. de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
    [Crossref]

2017 (1)

2016 (4)

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

M. Mohammadimasoudi, Z. Hens, and K. Neyts, “Full alignment of dispersed colloidal nanorods by alternating electric fields,” RSC Adv. 6, 55736–55744 (2016).
[Crossref]

K. Park, M.-S. Hsiao, H. Koerner, A. Jawaid, J. Che, and R. A. Vaia, “Optimizing seed aging for single crystal gold nanorod growth: the critical role of gold nanocluster crystal structure,” J. Phys. Chem. C 120, 28235–28245 (2016).
[Crossref]

A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics 11, 941–951 (2016).
[Crossref]

2015 (2)

A. de la Cotte, P. Merzeau, J. W. Kim, K. Lahlil, J. P. Boilot, T. Gacoin, and E. Grelet, “Electric field induced birefringence in nonaqueous dispersions of mineral nanorods,” Soft Matter 11, 6595–6603 (2015).
[Crossref]

Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9, 3097–3108 (2015).
[Crossref]

2014 (1)

A. Sudirman and W. Margulis, “All-fiber optofluidic component to combine light and fluid,” IEEE Photon. Technol. Lett. 26, 1031–1033 (2014).
[Crossref]

2012 (3)

D. B. Reeves and J. B. Weaver, “Simulations of magnetic nanoparticle Brownian motion,” J. Appl. Phys. 112, 124311 (2012).
[Crossref]

P. Zijlstra, M. van Stee, N. Verhart, Z. Y. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
[Crossref]

D. Lopez-Cortes, O. Tarasenko, and W. Margulis, “All-fiber Kerr cell,” Opt. Lett. 37, 3288–3290 (2012).
[Crossref]

2010 (2)

H. E. Ruda and A. Shik, “Nanorod dynamics in AC electric fields,” Nanotechnology 21, 235502 (2010).
[Crossref]

S. A. Klemeshev, M. P. Petrov, A. A. Trusov, and A. V. Voitylov, “Electrooptical effects in colloid systems subjected to short pulses of strong electric field,” J. Phys. Condens. Mater 22, 494106 (2010).
[Crossref]

2007 (1)

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
[Crossref]

2006 (1)

F. J. V. Santos, C. A. N. de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

2003 (1)

B. U. Felderhof and R. B. Jones, “Nonlinear response of a dipolar system with rotational diffusion to an oscillating field,” J. Phys. Condens. Mater 15, S1363–S1378 (2003).
[Crossref]

1984 (1)

M. M. Tirado, C. L. Martinez, and J. G. Delatorre, “Comparison of theories for the translational and rotational diffusion-coefficients of rod-like macromolecules. Application to short DNA fragments,” J. Chem. Phys. 81, 2047–2052 (1984).
[Crossref]

Assael, M. J.

F. J. V. Santos, C. A. N. de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1983).

Boilot, J. P.

A. de la Cotte, P. Merzeau, J. W. Kim, K. Lahlil, J. P. Boilot, T. Gacoin, and E. Grelet, “Electric field induced birefringence in nonaqueous dispersions of mineral nanorods,” Soft Matter 11, 6595–6603 (2015).
[Crossref]

Carvalho, I. C. S.

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

Che, J.

K. Park, M.-S. Hsiao, H. Koerner, A. Jawaid, J. Che, and R. A. Vaia, “Optimizing seed aging for single crystal gold nanorod growth: the critical role of gold nanocluster crystal structure,” J. Phys. Chem. C 120, 28235–28245 (2016).
[Crossref]

da Costa, G. K. B.

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

Dalaouti, N. K.

F. J. V. Santos, C. A. N. de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

de Castro, C. A. N.

F. J. V. Santos, C. A. N. de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

de la Cotte, A.

A. de la Cotte, P. Merzeau, J. W. Kim, K. Lahlil, J. P. Boilot, T. Gacoin, and E. Grelet, “Electric field induced birefringence in nonaqueous dispersions of mineral nanorods,” Soft Matter 11, 6595–6603 (2015).
[Crossref]

Delatorre, J. G.

M. M. Tirado, C. L. Martinez, and J. G. Delatorre, “Comparison of theories for the translational and rotational diffusion-coefficients of rod-like macromolecules. Application to short DNA fragments,” J. Chem. Phys. 81, 2047–2052 (1984).
[Crossref]

Demchenko, I.

A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics 11, 941–951 (2016).
[Crossref]

Derkachova, A.

A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics 11, 941–951 (2016).
[Crossref]

Dymond, J. H.

F. J. V. Santos, C. A. N. de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

Etcheverry, S.

Felderhof, B. U.

B. U. Felderhof and R. B. Jones, “Nonlinear response of a dipolar system with rotational diffusion to an oscillating field,” J. Phys. Condens. Mater 15, S1363–S1378 (2003).
[Crossref]

Fontana, J.

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

Fontana, J. P.

J. P. Fontana, Self-Assembly and Characterization of Anisotropic Metamaterials (Kent State University, 2011), p. 162.

Gacoin, T.

A. de la Cotte, P. Merzeau, J. W. Kim, K. Lahlil, J. P. Boilot, T. Gacoin, and E. Grelet, “Electric field induced birefringence in nonaqueous dispersions of mineral nanorods,” Soft Matter 11, 6595–6603 (2015).
[Crossref]

Gennes, P. G. D.

P. G. D. Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1995).

Grelet, E.

A. de la Cotte, P. Merzeau, J. W. Kim, K. Lahlil, J. P. Boilot, T. Gacoin, and E. Grelet, “Electric field induced birefringence in nonaqueous dispersions of mineral nanorods,” Soft Matter 11, 6595–6603 (2015).
[Crossref]

Gu, Z. Y.

P. Zijlstra, M. van Stee, N. Verhart, Z. Y. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
[Crossref]

Hens, Z.

M. Mohammadimasoudi, Z. Hens, and K. Neyts, “Full alignment of dispersed colloidal nanorods by alternating electric fields,” RSC Adv. 6, 55736–55744 (2016).
[Crossref]

Hsiao, M.-S.

K. Park, M.-S. Hsiao, H. Koerner, A. Jawaid, J. Che, and R. A. Vaia, “Optimizing seed aging for single crystal gold nanorod growth: the critical role of gold nanocluster crystal structure,” J. Phys. Chem. C 120, 28235–28245 (2016).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1983).

Jawaid, A.

K. Park, M.-S. Hsiao, H. Koerner, A. Jawaid, J. Che, and R. A. Vaia, “Optimizing seed aging for single crystal gold nanorod growth: the critical role of gold nanocluster crystal structure,” J. Phys. Chem. C 120, 28235–28245 (2016).
[Crossref]

Jones, R. B.

B. U. Felderhof and R. B. Jones, “Nonlinear response of a dipolar system with rotational diffusion to an oscillating field,” J. Phys. Condens. Mater 15, S1363–S1378 (2003).
[Crossref]

Kim, J. W.

A. de la Cotte, P. Merzeau, J. W. Kim, K. Lahlil, J. P. Boilot, T. Gacoin, and E. Grelet, “Electric field induced birefringence in nonaqueous dispersions of mineral nanorods,” Soft Matter 11, 6595–6603 (2015).
[Crossref]

Klemeshev, S. A.

S. A. Klemeshev, M. P. Petrov, A. A. Trusov, and A. V. Voitylov, “Electrooptical effects in colloid systems subjected to short pulses of strong electric field,” J. Phys. Condens. Mater 22, 494106 (2010).
[Crossref]

Koerner, H.

K. Park, M.-S. Hsiao, H. Koerner, A. Jawaid, J. Che, and R. A. Vaia, “Optimizing seed aging for single crystal gold nanorod growth: the critical role of gold nanocluster crystal structure,” J. Phys. Chem. C 120, 28235–28245 (2016).
[Crossref]

Kolwas, K.

A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics 11, 941–951 (2016).
[Crossref]

Lahlil, K.

A. de la Cotte, P. Merzeau, J. W. Kim, K. Lahlil, J. P. Boilot, T. Gacoin, and E. Grelet, “Electric field induced birefringence in nonaqueous dispersions of mineral nanorods,” Soft Matter 11, 6595–6603 (2015).
[Crossref]

Laurell, F.

Liu, Q.

Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9, 3097–3108 (2015).
[Crossref]

Lobov, G. S.

Lopez-Cortes, D.

Margulis, W.

A. Sudirman and W. Margulis, “All-fiber optofluidic component to combine light and fluid,” IEEE Photon. Technol. Lett. 26, 1031–1033 (2014).
[Crossref]

D. Lopez-Cortes, O. Tarasenko, and W. Margulis, “All-fiber Kerr cell,” Opt. Lett. 37, 3288–3290 (2012).
[Crossref]

Marinins, A.

Martinez, C. L.

M. M. Tirado, C. L. Martinez, and J. G. Delatorre, “Comparison of theories for the translational and rotational diffusion-coefficients of rod-like macromolecules. Application to short DNA fragments,” J. Chem. Phys. 81, 2047–2052 (1984).
[Crossref]

Merzeau, P.

A. de la Cotte, P. Merzeau, J. W. Kim, K. Lahlil, J. P. Boilot, T. Gacoin, and E. Grelet, “Electric field induced birefringence in nonaqueous dispersions of mineral nanorods,” Soft Matter 11, 6595–6603 (2015).
[Crossref]

Mohammadimasoudi, M.

M. Mohammadimasoudi, Z. Hens, and K. Neyts, “Full alignment of dispersed colloidal nanorods by alternating electric fields,” RSC Adv. 6, 55736–55744 (2016).
[Crossref]

Mundoor, H.

Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9, 3097–3108 (2015).
[Crossref]

Naciri, J.

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

Nagashima, A.

F. J. V. Santos, C. A. N. de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

Neyts, K.

M. Mohammadimasoudi, Z. Hens, and K. Neyts, “Full alignment of dispersed colloidal nanorods by alternating electric fields,” RSC Adv. 6, 55736–55744 (2016).
[Crossref]

Noguez, C.

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
[Crossref]

Orrit, M.

P. Zijlstra, M. van Stee, N. Verhart, Z. Y. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
[Crossref]

Östling, M.

Palffy-Muhoray, P.

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

Park, K.

K. Park, M.-S. Hsiao, H. Koerner, A. Jawaid, J. Che, and R. A. Vaia, “Optimizing seed aging for single crystal gold nanorod growth: the critical role of gold nanocluster crystal structure,” J. Phys. Chem. C 120, 28235–28245 (2016).
[Crossref]

Pereira, J. M.

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

Petrov, M. P.

S. A. Klemeshev, M. P. Petrov, A. A. Trusov, and A. V. Voitylov, “Electrooptical effects in colloid systems subjected to short pulses of strong electric field,” J. Phys. Condens. Mater 22, 494106 (2010).
[Crossref]

Popov, S.

Prost, J.

P. G. D. Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1995).

Ratna, B. R.

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

Reeves, D. B.

D. B. Reeves and J. B. Weaver, “Simulations of magnetic nanoparticle Brownian motion,” J. Appl. Phys. 112, 124311 (2012).
[Crossref]

Ruda, H. E.

H. E. Ruda and A. Shik, “Nanorod dynamics in AC electric fields,” Nanotechnology 21, 235502 (2010).
[Crossref]

Santos, F. J. V.

F. J. V. Santos, C. A. N. de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

Shik, A.

H. E. Ruda and A. Shik, “Nanorod dynamics in AC electric fields,” Nanotechnology 21, 235502 (2010).
[Crossref]

Smalyukh, I. I.

Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9, 3097–3108 (2015).
[Crossref]

Sudirman, A.

A. Sudirman and W. Margulis, “All-fiber optofluidic component to combine light and fluid,” IEEE Photon. Technol. Lett. 26, 1031–1033 (2014).
[Crossref]

Sugunan, A.

Tarasenko, O.

Thylén, L.

Tirado, M. M.

M. M. Tirado, C. L. Martinez, and J. G. Delatorre, “Comparison of theories for the translational and rotational diffusion-coefficients of rod-like macromolecules. Application to short DNA fragments,” J. Chem. Phys. 81, 2047–2052 (1984).
[Crossref]

Toprak, M. S.

Trusov, A. A.

S. A. Klemeshev, M. P. Petrov, A. A. Trusov, and A. V. Voitylov, “Electrooptical effects in colloid systems subjected to short pulses of strong electric field,” J. Phys. Condens. Mater 22, 494106 (2010).
[Crossref]

Vaia, R. A.

K. Park, M.-S. Hsiao, H. Koerner, A. Jawaid, J. Che, and R. A. Vaia, “Optimizing seed aging for single crystal gold nanorod growth: the critical role of gold nanocluster crystal structure,” J. Phys. Chem. C 120, 28235–28245 (2016).
[Crossref]

van Stee, M.

P. Zijlstra, M. van Stee, N. Verhart, Z. Y. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
[Crossref]

Vasileva, E.

Verhart, N.

P. Zijlstra, M. van Stee, N. Verhart, Z. Y. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
[Crossref]

Voitylov, A. V.

S. A. Klemeshev, M. P. Petrov, A. A. Trusov, and A. V. Voitylov, “Electrooptical effects in colloid systems subjected to short pulses of strong electric field,” J. Phys. Condens. Mater 22, 494106 (2010).
[Crossref]

Weaver, J. B.

D. B. Reeves and J. B. Weaver, “Simulations of magnetic nanoparticle Brownian motion,” J. Appl. Phys. 112, 124311 (2012).
[Crossref]

Wosinski, L.

Yuan, Y.

Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9, 3097–3108 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9, 3097–3108 (2015).
[Crossref]

Zhao, Y.

Zijlstra, P.

P. Zijlstra, M. van Stee, N. Verhart, Z. Y. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
[Crossref]

ACS Nano (1)

Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers,” ACS Nano 9, 3097–3108 (2015).
[Crossref]

Appl. Phys. Lett. (1)

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Sudirman and W. Margulis, “All-fiber optofluidic component to combine light and fluid,” IEEE Photon. Technol. Lett. 26, 1031–1033 (2014).
[Crossref]

J. Appl. Phys. (1)

D. B. Reeves and J. B. Weaver, “Simulations of magnetic nanoparticle Brownian motion,” J. Appl. Phys. 112, 124311 (2012).
[Crossref]

J. Chem. Phys. (1)

M. M. Tirado, C. L. Martinez, and J. G. Delatorre, “Comparison of theories for the translational and rotational diffusion-coefficients of rod-like macromolecules. Application to short DNA fragments,” J. Chem. Phys. 81, 2047–2052 (1984).
[Crossref]

J. Phys. Chem. C (2)

K. Park, M.-S. Hsiao, H. Koerner, A. Jawaid, J. Che, and R. A. Vaia, “Optimizing seed aging for single crystal gold nanorod growth: the critical role of gold nanocluster crystal structure,” J. Phys. Chem. C 120, 28235–28245 (2016).
[Crossref]

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
[Crossref]

J. Phys. Chem. Ref. Data (1)

F. J. V. Santos, C. A. N. de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

J. Phys. Condens. Mater (2)

B. U. Felderhof and R. B. Jones, “Nonlinear response of a dipolar system with rotational diffusion to an oscillating field,” J. Phys. Condens. Mater 15, S1363–S1378 (2003).
[Crossref]

S. A. Klemeshev, M. P. Petrov, A. A. Trusov, and A. V. Voitylov, “Electrooptical effects in colloid systems subjected to short pulses of strong electric field,” J. Phys. Condens. Mater 22, 494106 (2010).
[Crossref]

Nanotechnology (1)

H. E. Ruda and A. Shik, “Nanorod dynamics in AC electric fields,” Nanotechnology 21, 235502 (2010).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

P. Zijlstra, M. van Stee, N. Verhart, Z. Y. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
[Crossref]

Plasmonics (1)

A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics 11, 941–951 (2016).
[Crossref]

RSC Adv. (1)

M. Mohammadimasoudi, Z. Hens, and K. Neyts, “Full alignment of dispersed colloidal nanorods by alternating electric fields,” RSC Adv. 6, 55736–55744 (2016).
[Crossref]

Soft Matter (1)

A. de la Cotte, P. Merzeau, J. W. Kim, K. Lahlil, J. P. Boilot, T. Gacoin, and E. Grelet, “Electric field induced birefringence in nonaqueous dispersions of mineral nanorods,” Soft Matter 11, 6595–6603 (2015).
[Crossref]

Other (3)

J. P. Fontana, Self-Assembly and Characterization of Anisotropic Metamaterials (Kent State University, 2011), p. 162.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1983).

P. G. D. Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Optofluidic component schematic, efficiently coupling light and electric fields to plasmonic nanorods.
Fig. 2.
Fig. 2. (a) Schematic of a gold nanorod under an electric field along the z direction. (b) Simulation of the probability distribution P ( θ , t ) for E = 0 and E = 2    V / μm . (c) Simulation of the temporal variations of the probability distribution P ( 0 , t ) at frequencies ω = 20 , 000 π (top) and ω = 6000 π    rad / s (bottom) for E = 4    V / μm . The simulation parameters are D = 4000    s 1 and Δ α = 1.2 × 10 22    m 3 .
Fig. 3.
Fig. 3. (a) Experimental setup. (b) Optofluidic component. The THMM fiber uses side holes for fluid delivery and the central core for light transport. Below the schematic, optical photographs taken with the processing station illustrate the cross section at points 1–4. The core region becomes white by coupling light into the remote end of the core. Picture 2 shows the overlap of the THMM and the spliced MM fiber, illustrating that the holes are still open for liquid insertion. (c) Cross section and dimensions of the THMM fiber.
Fig. 4.
Fig. 4. Electric field distribution calculated from solving Poisson’s equation (a) with 1 kV applied. The structure was modeled as: Region (1) nanorod suspension in toluene (dielectric constant ϵ r = 2.38 , inner fiber diameter = 250    μm ), Region (2) electrodes, perfect conductor (inner fiber diameter = 250    μm ), Region (3) silica glass ( ϵ r = 3.8 , outer fiber diameter = 330    μm ), Region (4) acrylate coating ( ϵ r = 3.50 , thickness = 20    μm ), and Region (5) epoxy glue ( ϵ r = 3.60 ). (b) Electric field magnitude along a horizontal line crossing the center of the core.
Fig. 5.
Fig. 5. (a) Experimental absorbance spectra as a function of wavelength for various applied electric fields (blue–red) and compared to the simulated spectrum at E 0 = 0 (black). (b) LSP absorbance and the order parameter as a function of the electric field (8 kHz). (c) LSP absorbance versus order parameter.
Fig. 6.
Fig. 6. (a) Relative absorbance (left vertical axis) and order parameter (right vertical axis) from the nanorod suspension (blue/green at the top) aligned under a three-period sinusoidal voltage burst (red at the bottom). (a) Frequency 8 kHz and field amplitude 6.5 V/μm (blue) and 3.1 V/μm (green). (b) Frequency 2 kHz and field amplitude 6.5 V/μm (blue). The simulation traces (black solid lines) were obtained with the theoretical model.
Fig. 7.
Fig. 7. Relative absorbance of nanorods aligned under a quasi-rectangular pulse signal (red). (a) Pulse of 25 μs width with an electric field 9.3 V/μm (blue) and 4.1 V/μm (green). The simulation (black line) is obtained from numerically solving the ES theory described above. (b) Rise time as a function of the electric field. Equation (8) has been fitted to the model (black line).
Fig. 8.
Fig. 8. Relative absorbance for the suspension of nanorods with a 5000 units polystyrene-thiol coating length (blue dots), 25,000 units (green dots) and 50,000 units (orange dots) probed with a 8 kHz three-cycle aligning field of peak amplitude 6.5 V/μm. (b) Relative absorbance to a quasi-rectangular pulse of 33 μs duration with peak amplitude 9.3 V/μm. The black lines are the best fits using the ES theory described above.

Tables (3)

Tables Icon

Table 1. Drude Model Fitting Parameters

Tables Icon

Table 2. Einstein–Smoluchowski Fitting Parameters

Tables Icon

Table 3. Fitting Parameters for Different Polymer Coatings

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A ( t ) = μ ( t ) f l / ln 10 ,
μ ( t ) = 0 2 π 0 π ( μ cos 2 θ + μ sin 2 θ ) P ( θ , t ) sin θ d θ d ϕ ,
μ ( ) = 2 π Im ( ϵ ) λ n h | ϵ h ϵ h + L ( ) ( ϵ ϵ h ) | 2 .
ϵ = ϵ inter + 1 ω p 2 ω 2 + i β ω ,
P ( θ , t ) t = D [ 1 sin θ θ ( sin θ P ( θ , t ) θ + Δ α ϵ 0 E 2 ( t ) k b T P ( θ , t ) sin 2 θ cos θ ) ] .
0 2 π 0 π P ( θ , t ) sin θ d θ d ϕ = 1 .
S ( t ) = 0 2 π 0 π 1 2 ( 3 cos 2 θ 1 ) P ( θ , t ) sin θ d θ d ϕ .
τ on = π k b T 4 D Δ α ϵ 0 E 2 ,
D = 3 k b T π η L 3 ( 0.05 A R 2 + 0.917 A R + ln ( A R ) 0.662 ) ,

Metrics