Abstract

A range of unique capabilities in optical and microwave signal processing and generation have been demonstrated using stimulated Brillouin scattering (SBS). The need to harness SBS in mass-manufacturable integrated circuits has led to a focus on silicon-based material platforms. Remarkable progress in silicon-based Brillouin waveguides has been made, but results have been hindered by nonlinear losses present at telecommunications wavelengths. Here, we report on a new approach to surpass this issue through the integration of a high Brillouin gain material, As2S3, onto a silicon-based chip. We fabricated a compact spiral device within a silicon circuit, achieving an order-of-magnitude improvement in Brillouin amplification. To establish the flexibility of this approach, we fabricated a ring resonator with free spectral range precisely matched to the Brillouin shift, enabling the first demonstration, to our knowledge, of Brillouin lasing in a planar integrated circuit. Combining active photonic components with the SBS devices shown here will enable the creation of compact, mass-manufacturable optical circuits with enhanced functionalities.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits

Benjamin J. Eggleton, Christopher G. Poulton, and Ravi Pant
Adv. Opt. Photon. 5(4) 536-587 (2013)

Silicon/III-V laser with super-compact diffraction grating for WDM applications in electronic-photonic integrated circuits

Yadong Wang, Yongqiang Wei, Yingyan Huang, Yongming Tu, Doris Ng, Cheewei Lee, Yunan Zheng, Boyang Liu, and Seng-Tiong Ho
Opt. Express 19(3) 2006-2013 (2011)

Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits

Michael Wood, Peng Sun, and Ronald M. Reano
Opt. Express 20(1) 164-172 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev. 8, 653–666 (2014).
    [Crossref]
  2. G. Agrawal, “Stimulated Raman scattering,” in Nonlinear Fiber Optics (Elsevier, 2013), pp. 295–352.
  3. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008).
    [Crossref]
  4. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
    [Crossref]
  5. B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett. 32, 23–25 (2007).
    [Crossref]
  6. D. Marpaung, B. Morrison, R. Pant, and B. J. Eggleton, “Frequency agile microwave photonic notch filter with anomalously high stopband rejection,” Opt. Lett. 38, 4300–4303 (2013).
    [Crossref]
  7. W. Zhang and R. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1182–1184 (2012).
    [Crossref]
  8. K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33, 926–928 (2008).
    [Crossref]
  9. M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
    [Crossref]
  10. J. Domingo, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
    [Crossref]
  11. K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
    [Crossref]
  12. S. M. F. Raupach, A. Koczwara, and G. Grosche, “Brillouin amplification supports 1×10−20 uncertainty in optical frequency transfer over 1400  km of underground fiber,” Phys. Rev. A 92, 021801 (2015).
    [Crossref]
  13. X. S. Yao, “High-quality microwave signal generation by use of Brillouin scattering in optical fibers,” Opt. Lett. 22, 1329–1331 (1997).
    [Crossref]
  14. A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: theoretical analysis,” Phys. Rev. A 62, 1–4 (2000).
    [Crossref]
  15. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16, 393–395 (1991).
    [Crossref]
  16. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18, 1813–1815 (2006).
    [Crossref]
  17. M. C. Gross, P. T. Callahan, T. R. Clark, D. Novak, R. B. Waterhouse, and M. L. Dennis, “Tunable millimeter-wave frequency synthesis up to 100  GHz by dual-wavelength Brillouin fiber laser,” Opt. Express 18, 13321–13330 (2010).
    [Crossref]
  18. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012).
    [Crossref]
  19. J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
    [Crossref]
  20. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37, 969–971 (2012).
    [Crossref]
  21. A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett. 40, 4154–4157 (2015).
    [Crossref]
  22. A. Choudhary, B. Morrison, I. Aryanfar, S. Shahnia, M. Pagani, Y. Liu, K. Vu, S. Madden, D. Marpaung, and B. J. Eggleton, “Advanced integrated microwave signal processing with giant on-chip Brillouin gain,” J. Lightwave Technol. 35, 846–854 (2017).
    [Crossref]
  23. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
    [Crossref]
  24. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
    [Crossref]
  25. R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
    [Crossref]
  26. R. V. Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
    [Crossref]
  27. E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
    [Crossref]
  28. P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
    [Crossref]
  29. C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Impact of nonlinear loss on stimulated Brillouin scattering,” J. Opt. Soc. Am. B 32, 1968–1978 (2015).
    [Crossref]
  30. C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Power limits and a figure of merit for stimulated Brillouin scattering in the presence of third and fifth order loss,” Opt. Express 23, 26628–26638 (2015).
    [Crossref]
  31. C. Wolff, R. V. Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 025006 (2016).
    [Crossref]
  32. M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41, 4633–4636 (2016).
    [Crossref]
  33. Y. Liu, D. Marpaung, A. Choudhary, and B. J. Eggleton, “Lossless and high-resolution RF photonic notch filter,” Opt. Lett. 41, 5306–5309 (2016).
    [Crossref]
  34. J. Li, M.-G. Suh, and K. Vahala, “Microresonator Brillouin gyroscope,” Optica 4, 346–348 (2017).
    [Crossref]
  35. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
    [Crossref]
  36. D. Y. Choi, A. Wade, S. Madden, R. Wang, D. Bulla, and B. Luther-Davies, “Photo-induced and thermal annealing of chalcogenide films for waveguide fabrication,” Phys. Procedia 48, 196–205 (2013).
    [Crossref]
  37. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
    [Crossref]
  38. M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, “Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform,” Opt. Express 21, 17814–17823 (2013).
    [Crossref]
  39. A. Melloni, P. Monguzzi, R. Costa, and M. Martinelli, “Design of curved waveguides: the matched bend,” J. Opt. Soc. Am. A 20, 130–137 (2003).
    [Crossref]
  40. A. Loayssa, R. Hernández, D. Benito, and S. Galech, “Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation,” Opt. Lett. 29, 638–640 (2004).
    [Crossref]
  41. E. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “Inter-modal Brillouin scattering in an integrated waveguide,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper STu3N.3.
  42. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  43. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express 12, 2774–2780 (2004).
    [Crossref]
  44. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
    [Crossref]
  45. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) Rates,” Phys. Rev. Lett. 102, 113601 (2009).
    [Crossref]
  46. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
    [Crossref]
  47. T. Kippenberg, S. Spillane, B. Min, and K. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
    [Crossref]
  48. Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. 2, A41–A44 (2014).
    [Crossref]
  49. Y. Zhou, X. Xia, W. T. Snider, J. Kim, Q. Chen, W. C. Tan, and C. K. Madsen, “Two-stage taper enhanced ultra-high Q As2S3 ring resonator on LiNbO3,” IEEE Photon. Technol. Lett. 23, 1195–1197 (2011).
    [Crossref]
  50. S. Levy, M. Klebanov, and A. Zadok, “High-Q ring resonators directly written in As2S3 chalcogenide glass films,” Photon. Res. 3, 63–67 (2015).
    [Crossref]
  51. C. G. Poulton, R. Pant, and B. J. Eggleton, “Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides,” J. Opt. Soc. Am. B 30, 2657–2659 (2013).
    [Crossref]
  52. J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39, 482–485 (2014).
    [Crossref]

2017 (2)

2016 (4)

C. Wolff, R. V. Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 025006 (2016).
[Crossref]

M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41, 4633–4636 (2016).
[Crossref]

Y. Liu, D. Marpaung, A. Choudhary, and B. J. Eggleton, “Lossless and high-resolution RF photonic notch filter,” Opt. Lett. 41, 5306–5309 (2016).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

2015 (7)

2014 (3)

2013 (8)

D. Marpaung, B. Morrison, R. Pant, and B. J. Eggleton, “Frequency agile microwave photonic notch filter with anomalously high stopband rejection,” Opt. Lett. 38, 4300–4303 (2013).
[Crossref]

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref]

D. Y. Choi, A. Wade, S. Madden, R. Wang, D. Bulla, and B. Luther-Davies, “Photo-induced and thermal annealing of chalcogenide films for waveguide fabrication,” Phys. Procedia 48, 196–205 (2013).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref]

C. G. Poulton, R. Pant, and B. J. Eggleton, “Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides,” J. Opt. Soc. Am. B 30, 2657–2659 (2013).
[Crossref]

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, “Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform,” Opt. Express 21, 17814–17823 (2013).
[Crossref]

2012 (6)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37, 969–971 (2012).
[Crossref]

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

W. Zhang and R. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1182–1184 (2012).
[Crossref]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012).
[Crossref]

2011 (1)

Y. Zhou, X. Xia, W. T. Snider, J. Kim, Q. Chen, W. C. Tan, and C. K. Madsen, “Two-stage taper enhanced ultra-high Q As2S3 ring resonator on LiNbO3,” IEEE Photon. Technol. Lett. 23, 1195–1197 (2011).
[Crossref]

2010 (2)

2009 (2)

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) Rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

2008 (2)

2007 (2)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett. 32, 23–25 (2007).
[Crossref]

2006 (3)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18, 1813–1815 (2006).
[Crossref]

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

2005 (1)

J. Domingo, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[Crossref]

2004 (3)

2003 (1)

2000 (1)

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: theoretical analysis,” Phys. Rev. A 62, 1–4 (2000).
[Crossref]

1997 (1)

1991 (1)

Aalto, T.

Agrawal, G.

G. Agrawal, “Stimulated Raman scattering,” in Nonlinear Fiber Optics (Elsevier, 2013), pp. 295–352.

Ahmad, R.

Alnis, J.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref]

Aryanfar, I.

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Baets, R.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

R. V. Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Bazin, A.

R. V. Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

Benito, D.

Beugnot, J.-C.

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Blake, M.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18, 1813–1815 (2006).
[Crossref]

Bogaerts, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

Bulla, D.

D. Y. Choi, A. Wade, S. Madden, R. Wang, D. Bulla, and B. Luther-Davies, “Photo-induced and thermal annealing of chalcogenide films for waveguide fabrication,” Phys. Procedia 48, 196–205 (2013).
[Crossref]

Byrnes, A.

Callahan, P. T.

Camacho, R.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Carmon, T.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) Rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Casas-Bedoya, A.

Chen, Q.

Y. Zhou, X. Xia, W. T. Snider, J. Kim, Q. Chen, W. C. Tan, and C. K. Madsen, “Two-stage taper enhanced ultra-high Q As2S3 ring resonator on LiNbO3,” IEEE Photon. Technol. Lett. 23, 1195–1197 (2011).
[Crossref]

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012).
[Crossref]

Cherchi, M.

Chin, S.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref]

Choi, D. Y.

D. Y. Choi, A. Wade, S. Madden, R. Wang, D. Bulla, and B. Luther-Davies, “Photo-induced and thermal annealing of chalcogenide films for waveguide fabrication,” Phys. Procedia 48, 196–205 (2013).
[Crossref]

Choi, D.-Y.

Choudhary, A.

Chu, T.

Claps, R.

Clark, T. R.

Costa, R.

Cox, J. A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Davids, P.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

Debut, A.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: theoretical analysis,” Phys. Rev. A 62, 1–4 (2000).
[Crossref]

Dennis, M. L.

Dimitropoulos, D.

Domingo, J.

J. Domingo, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[Crossref]

Droste, S.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref]

Eggleton, B. J.

A. Choudhary, B. Morrison, I. Aryanfar, S. Shahnia, M. Pagani, Y. Liu, K. Vu, S. Madden, D. Marpaung, and B. J. Eggleton, “Advanced integrated microwave signal processing with giant on-chip Brillouin gain,” J. Lightwave Technol. 35, 846–854 (2017).
[Crossref]

Y. Liu, D. Marpaung, A. Choudhary, and B. J. Eggleton, “Lossless and high-resolution RF photonic notch filter,” Opt. Lett. 41, 5306–5309 (2016).
[Crossref]

M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41, 4633–4636 (2016).
[Crossref]

C. Wolff, R. V. Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 025006 (2016).
[Crossref]

C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Power limits and a figure of merit for stimulated Brillouin scattering in the presence of third and fifth order loss,” Opt. Express 23, 26628–26638 (2015).
[Crossref]

C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Impact of nonlinear loss on stimulated Brillouin scattering,” J. Opt. Soc. Am. B 32, 1968–1978 (2015).
[Crossref]

A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett. 40, 4154–4157 (2015).
[Crossref]

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev. 8, 653–666 (2014).
[Crossref]

D. Marpaung, B. Morrison, R. Pant, and B. J. Eggleton, “Frequency agile microwave photonic notch filter with anomalously high stopband rejection,” Opt. Lett. 38, 4300–4303 (2013).
[Crossref]

C. G. Poulton, R. Pant, and B. J. Eggleton, “Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides,” J. Opt. Soc. Am. B 30, 2657–2659 (2013).
[Crossref]

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37, 969–971 (2012).
[Crossref]

Ezekiel, S.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Fu, Y.

Fujii, M.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Galech, S.

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

Geng, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18, 1813–1815 (2006).
[Crossref]

Grosche, G.

S. M. F. Raupach, A. Koczwara, and G. Grosche, “Brillouin amplification supports 1×10−20 uncertainty in optical frequency transfer over 1400  km of underground fiber,” Phys. Rev. A 92, 021801 (2015).
[Crossref]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref]

Gross, M. C.

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Gutsche, P.

Hansch, T. W.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref]

Harjanne, M.

He, Z.

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Heras, C.

J. Domingo, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[Crossref]

Hernández, R.

Holzwarth, R.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref]

Hotate, K.

Jalali, B.

Jarecki, R.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Jiang, S.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18, 1813–1815 (2006).
[Crossref]

Kabakova, I. V.

M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41, 4633–4636 (2016).
[Crossref]

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev. 8, 653–666 (2014).
[Crossref]

Kapulainen, M.

Kim, J.

Y. Zhou, X. Xia, W. T. Snider, J. Kim, Q. Chen, W. C. Tan, and C. K. Madsen, “Two-stage taper enhanced ultra-high Q As2S3 ring resonator on LiNbO3,” IEEE Photon. Technol. Lett. 23, 1195–1197 (2011).
[Crossref]

Kippenberg, T.

T. Kippenberg, S. Spillane, B. Min, and K. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

Kittlaus, E.

E. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “Inter-modal Brillouin scattering in an integrated waveguide,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper STu3N.3.

Kittlaus, E. A.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

Klebanov, M.

Koczwara, A.

S. M. F. Raupach, A. Koczwara, and G. Grosche, “Brillouin amplification supports 1×10−20 uncertainty in optical frequency transfer over 1400  km of underground fiber,” Phys. Rev. A 92, 021801 (2015).
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Kuyken, B.

R. V. Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Laer, R. V.

C. Wolff, R. V. Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 025006 (2016).
[Crossref]

R. V. Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

Laude, V.

Lee, H.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012).
[Crossref]

Legero, T.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref]

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Levy, S.

Li, E.

Li, J.

J. Li, M.-G. Suh, and K. Vahala, “Microresonator Brillouin gyroscope,” Optica 4, 346–348 (2017).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012).
[Crossref]

Liu, Y.

Loayssa, A.

Luther-Davies, B.

D. Y. Choi, A. Wade, S. Madden, R. Wang, D. Bulla, and B. Luther-Davies, “Photo-induced and thermal annealing of chalcogenide films for waveguide fabrication,” Phys. Procedia 48, 196–205 (2013).
[Crossref]

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37, 969–971 (2012).
[Crossref]

Madden, S.

Madden, S. J.

Madsen, C. K.

Y. Zhou, X. Xia, W. T. Snider, J. Kim, Q. Chen, W. C. Tan, and C. K. Madsen, “Two-stage taper enhanced ultra-high Q As2S3 ring resonator on LiNbO3,” IEEE Photon. Technol. Lett. 23, 1195–1197 (2011).
[Crossref]

Maillotte, H.

Maleki, L.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Marpaung, D.

Martí, J.

Martinelli, M.

Matsko, A. B.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Melloni, A.

Merklein, M.

Min, B.

T. Kippenberg, S. Spillane, B. Min, and K. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

Minasian, R.

W. Zhang and R. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1182–1184 (2012).
[Crossref]

Monguzzi, P.

Morrison, B.

Mutugala, U. S.

Novak, D.

Olsson, R. H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Otterstrom, N. T.

E. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “Inter-modal Brillouin scattering in an integrated waveguide,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper STu3N.3.

Pagani, M.

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Pant, R.

Pelayo, J.

J. Domingo, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[Crossref]

Pellejer, E.

J. Domingo, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[Crossref]

Pfrang, A.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Piqueras, M. A.

Poulton, C. G.

C. Wolff, R. V. Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 025006 (2016).
[Crossref]

C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Impact of nonlinear loss on stimulated Brillouin scattering,” J. Opt. Soc. Am. B 32, 1968–1978 (2015).
[Crossref]

C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Power limits and a figure of merit for stimulated Brillouin scattering in the presence of third and fifth order loss,” Opt. Express 23, 26628–26638 (2015).
[Crossref]

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev. 8, 653–666 (2014).
[Crossref]

C. G. Poulton, R. Pant, and B. J. Eggleton, “Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides,” J. Opt. Soc. Am. B 30, 2657–2659 (2013).
[Crossref]

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37, 969–971 (2012).
[Crossref]

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Predehl, K.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref]

Primerov, N.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref]

Qiu, W.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Raghunathan, V.

Rakich, P. T.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

E. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “Inter-modal Brillouin scattering in an integrated waveguide,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper STu3N.3.

Randoux, S.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: theoretical analysis,” Phys. Rev. A 62, 1–4 (2000).
[Crossref]

Raupach, S. M. F.

S. M. F. Raupach, A. Koczwara, and G. Grosche, “Brillouin amplification supports 1×10−20 uncertainty in optical frequency transfer over 1400  km of underground fiber,” Phys. Rev. A 92, 021801 (2015).
[Crossref]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref]

Reinke, C.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

Rochette, M.

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Santagiustina, M.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref]

Schimmel, T.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Schnatz, H.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref]

Shahnia, S.

Shin, H.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Slavík, R.

Smith, S. P.

Snider, W. T.

Y. Zhou, X. Xia, W. T. Snider, J. Kim, Q. Chen, W. C. Tan, and C. K. Madsen, “Two-stage taper enhanced ultra-high Q As2S3 ring resonator on LiNbO3,” IEEE Photon. Technol. Lett. 23, 1195–1197 (2011).
[Crossref]

Song, K. Y.

Spillane, S.

T. Kippenberg, S. Spillane, B. Min, and K. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

Staines, S.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18, 1813–1815 (2006).
[Crossref]

Starbuck, A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Steel, M. J.

Stiller, B.

Suh, M.-G.

Sylvestre, T.

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Tan, W. C.

Y. Zhou, X. Xia, W. T. Snider, J. Kim, Q. Chen, W. C. Tan, and C. K. Madsen, “Two-stage taper enhanced ultra-high Q As2S3 ring resonator on LiNbO3,” IEEE Photon. Technol. Lett. 23, 1195–1197 (2011).
[Crossref]

Tang, W.

Terra, O.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref]

Thévenaz, L.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008).
[Crossref]

Thourhout, D. V.

R. V. Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

Tomes, M.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) Rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Udem, T.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref]

Ursini, L.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref]

Vahala, K.

J. Li, M.-G. Suh, and K. Vahala, “Microresonator Brillouin gyroscope,” Optica 4, 346–348 (2017).
[Crossref]

T. Kippenberg, S. Spillane, B. Min, and K. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

Vahala, K. J.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012).
[Crossref]

Van Laer, R.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Vidal, B.

Villuendas, F.

J. Domingo, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[Crossref]

Vu, K.

Wade, A.

D. Y. Choi, A. Wade, S. Madden, R. Wang, D. Bulla, and B. Luther-Davies, “Photo-induced and thermal annealing of chalcogenide films for waveguide fabrication,” Phys. Procedia 48, 196–205 (2013).
[Crossref]

Wang, R.

D. Y. Choi, A. Wade, S. Madden, R. Wang, D. Bulla, and B. Luther-Davies, “Photo-induced and thermal annealing of chalcogenide films for waveguide fabrication,” Phys. Procedia 48, 196–205 (2013).
[Crossref]

Wang, Z.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18, 1813–1815 (2006).
[Crossref]

Waterhouse, R. B.

Wolff, C.

Xia, X.

Y. Zhou, X. Xia, W. T. Snider, J. Kim, Q. Chen, W. C. Tan, and C. K. Madsen, “Two-stage taper enhanced ultra-high Q As2S3 ring resonator on LiNbO3,” IEEE Photon. Technol. Lett. 23, 1195–1197 (2011).
[Crossref]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Yao, X. S.

Ye, T.

Ylinen, S.

Zadok, A.

Zarinetchi, F.

Zemmouri, J.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: theoretical analysis,” Phys. Rev. A 62, 1–4 (2000).
[Crossref]

Zhang, W.

W. Zhang and R. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1182–1184 (2012).
[Crossref]

Zhou, Y.

Y. Zhou, X. Xia, W. T. Snider, J. Kim, Q. Chen, W. C. Tan, and C. K. Madsen, “Two-stage taper enhanced ultra-high Q As2S3 ring resonator on LiNbO3,” IEEE Photon. Technol. Lett. 23, 1195–1197 (2011).
[Crossref]

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

Zong, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18, 1813–1815 (2006).
[Crossref]

Zou, W.

IEEE J. Sel. Top. Quantum Electron. (2)

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

T. Kippenberg, S. Spillane, B. Min, and K. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (4)

Y. Zhou, X. Xia, W. T. Snider, J. Kim, Q. Chen, W. C. Tan, and C. K. Madsen, “Two-stage taper enhanced ultra-high Q As2S3 ring resonator on LiNbO3,” IEEE Photon. Technol. Lett. 23, 1195–1197 (2011).
[Crossref]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18, 1813–1815 (2006).
[Crossref]

J. Domingo, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[Crossref]

W. Zhang and R. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 1182–1184 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Laser Photon. Rev. (2)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev. 8, 653–666 (2014).
[Crossref]

Nat. Commun. (2)

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref]

Nat. Photonics (5)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008).
[Crossref]

New J. Phys. (2)

R. V. Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

C. Wolff, R. V. Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 025006 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (11)

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37, 969–971 (2012).
[Crossref]

B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett. 32, 23–25 (2007).
[Crossref]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33, 926–928 (2008).
[Crossref]

D. Marpaung, B. Morrison, R. Pant, and B. J. Eggleton, “Frequency agile microwave photonic notch filter with anomalously high stopband rejection,” Opt. Lett. 38, 4300–4303 (2013).
[Crossref]

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39, 482–485 (2014).
[Crossref]

M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41, 4633–4636 (2016).
[Crossref]

Y. Liu, D. Marpaung, A. Choudhary, and B. J. Eggleton, “Lossless and high-resolution RF photonic notch filter,” Opt. Lett. 41, 5306–5309 (2016).
[Crossref]

A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett. 40, 4154–4157 (2015).
[Crossref]

A. Loayssa, R. Hernández, D. Benito, and S. Galech, “Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation,” Opt. Lett. 29, 638–640 (2004).
[Crossref]

S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16, 393–395 (1991).
[Crossref]

X. S. Yao, “High-quality microwave signal generation by use of Brillouin scattering in optical fibers,” Opt. Lett. 22, 1329–1331 (1997).
[Crossref]

Optica (1)

Photon. Res. (2)

Phys. Procedia (1)

D. Y. Choi, A. Wade, S. Madden, R. Wang, D. Bulla, and B. Luther-Davies, “Photo-induced and thermal annealing of chalcogenide films for waveguide fabrication,” Phys. Procedia 48, 196–205 (2013).
[Crossref]

Phys. Rev. A (2)

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: theoretical analysis,” Phys. Rev. A 62, 1–4 (2000).
[Crossref]

S. M. F. Raupach, A. Koczwara, and G. Grosche, “Brillouin amplification supports 1×10−20 uncertainty in optical frequency transfer over 1400  km of underground fiber,” Phys. Rev. A 92, 021801 (2015).
[Crossref]

Phys. Rev. Lett. (2)

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) Rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Phys. Rev. X (1)

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[Crossref]

Sci. Rep. (1)

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref]

Science (2)

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

Other (2)

G. Agrawal, “Stimulated Raman scattering,” in Nonlinear Fiber Optics (Elsevier, 2013), pp. 295–352.

E. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “Inter-modal Brillouin scattering in an integrated waveguide,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper STu3N.3.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary Material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

As2S3 silicon hybrid circuit. (a) Schematic of the hybrid circuit with a number of components indicated: 1. Silicon grating couplers with tapers to 450  nm×220  nm nanowires; 2. Silicon nanowire taper region with As2S3 overlay waveguide; 3. As2S3 waveguide lead into the hybrid structure; 4. Spiral waveguide formed out of As2S3; 5. Alignment markers formed in the silicon layer for patterning the As2S3 structures; 6. Reference silicon structures existing on the same chip. (b) SEM image of the end of the silicon taper before cladding deposition. (c) Schematic cross section of waveguide in chalcogenide-only region. (d) SEM image of chalcogenide region cross section with silica cladding. (e) Calculated effective indices for ten waveguide modes with increasing waveguide width. Waveguide widths used throughout the work, 1.9 μm in the spiral, 2.6 μm in the resonator, and 0.85 μm in the coupler, are indicated with dashed vertical lines. (f) Optical mode simulation of fundamental TE mode of 1.9 μm wide As2S3 waveguide.

Fig. 2.
Fig. 2.

(a) Peak SBS gain coefficient and effective lengths for varying waveguide width. (b) Corresponding GSBS×Leff values.

Fig. 3.
Fig. 3.

Backwards SBS in As2S3 spiral waveguide. (a) Optical spectrum measurement of SBS gain and loss. (b) Setup schematic for high-resolution pump probe. (c) High-resolution SBS spectrum for various pump powers. (d) Peak gain values up to 180 mW coupled pump power with fit. (e) Nonlinear loss comparison of this work, silicon nanowire, and silicon membrane.

Fig. 4.
Fig. 4.

Brillouin lasing in planar As2S3 resonator. (a) Schematic of the hybrid ring resonator structure. (b) Concept figure for the lasing conditions. The cavity free spectral range needs to precisely match the Brillouin shift. (c) Typical optical transmission of ring resonator. (d) Setup used for measuring the laser and resonator. (e) Lasing signal measured on OSA. The Brillouin lasing signal is observed in blue solid trace. The tunable laser is shifted slightly, and the lasing no longer occurs. A number of peaks due to the modes of the laser are observable in the orange-dashed trace. (f) RF beat of the back-reflected pump and lasing signal. The measured linewidth was less than 5 MHz, significantly narrower than the natural lifetime of 40 MHz, confirming that we are above the lasing threshold. (g) Brillouin lasing while monitoring the resonance position. Both the pump and generated Stokes are aligned to cavity resonances.

Tables (1)

Tables Icon

Table 1. Comparison of SBS Performance in Different Integrated Devicesa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

PS=Poexp(GSBSLeffPP),
Pth=π2n2λp2LTripGBQtot2(1+K)3K,
Δvs=Δvp(1+γA/Γc)2,

Metrics