Abstract

All-dielectric nanophotonics is an exciting and rapidly developing area of nano-optics that utilizes the resonant behavior of high-index low-loss dielectric nanoparticles to enhance light–matter interaction at the nanoscale. When experimental implementation of a specific all-dielectric nanostructure is desired, two crucial factors have to be considered: the choice of a high-index material and a fabrication method. The degree to which various effects can be enhanced relies on the dielectric response of the chosen material as well as the fabrication accuracy. Here, we provide an overview of available high-index materials and existing fabrication techniques for the realization of all-dielectric nanostructures. We compare performance of the chosen materials in the visible and IR spectral ranges in terms of scattering efficiencies and Q factors of the magnetic Mie resonance. Methods for all-dielectric nanostructure fabrication are discussed and their advantages and disadvantages are highlighted. We also present an outlook for the search for better materials with higher refractive indices and novel fabrication methods that will enable low-cost manufacturing of optically resonant high-index nanoparticles. We believe that this information will be valuable across the field of nanophotonics and particularly for the design of resonant all-dielectric nanostructures.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multipolar nonlinear nanophotonics

Daria Smirnova and Yuri S. Kivshar
Optica 3(11) 1241-1255 (2016)

Nanogradient all-dielectric films: technology of fabrication and the first experiments

A. B. Shvartsburg, Yu. A. Obod, A. I. Kuzmichev, O. D. Volpian, and Yu.N. Parkhomenko
Opt. Mater. Express 4(11) 2250-2261 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Pelton, J. Aizpurua, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
    [Crossref]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref]
  3. V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
    [Crossref]
  4. X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3, e179 (2014).
    [Crossref]
  5. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
    [Crossref]
  6. P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
    [Crossref]
  7. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
    [Crossref]
  8. J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” App. Phys. Lett. 100, 11105 (2012).
    [Crossref]
  9. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
    [Crossref]
  10. M. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4, 457–461 (2010).
    [Crossref]
  11. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105, 127401 (2010).
    [Crossref]
  12. M. I. Stockman, “Spaser action, loss compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett. 106, 156802 (2011).
    [Crossref]
  13. A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, O. Hess, M. A. Maxwell-Bloch, A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in Langevin approach,” ACS Nano 6, 2420–2431 (2012).
    [Crossref]
  14. A. A. Lisyansky, I. A. Nechepurenko, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Channel spaser: coherent excitation of one-dimensional plasmons from quantum dots located along a linear channel,” Phys. Rev. B 84, 153409 (2011).
    [Crossref]
  15. E. S. Andrianov, D. G. Baranov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Loss compensation by spasers in plasmonic systems,” Opt. Express 21, 13467–13478 (2013).
    [Crossref]
  16. J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96, 181102 (2010).
    [Crossref]
  17. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
    [Crossref]
  18. K. Feng, W. Streyer, Y. Zhong, A. Hoffman, and D. Wasserman, “Photonic materials, structures and devices for Reststrahlen optics,” Opt. Express 23, A1418–A1433 (2015).
    [Crossref]
  19. G. Mie, “Beiträge zur optik trüber medien speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [Crossref]
  20. R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: from microcavities to photonic sponges,” Adv. Mater. 20, 95–98 (2008).
    [Crossref]
  21. E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19, 3455–3463 (2011).
    [Crossref]
  22. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
    [Crossref]
  23. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref]
  24. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
    [Crossref]
  25. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
    [Crossref]
  26. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
    [Crossref]
  27. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
    [Crossref]
  28. B. I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
    [Crossref]
  29. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
    [Crossref]
  30. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
    [Crossref]
  31. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
    [Crossref]
  32. P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
    [Crossref]
  33. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
    [Crossref]
  34. M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
    [Crossref]
  35. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
    [Crossref]
  36. Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
    [Crossref]
  37. B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
    [Crossref]
  38. P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Saenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
    [Crossref]
  39. P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
    [Crossref]
  40. A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108, 211105 (2016).
    [Crossref]
  41. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
    [Crossref]
  42. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
    [Crossref]
  43. J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
    [Crossref]
  44. A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
    [Crossref]
  45. P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5, 18322 (2015).
    [Crossref]
  46. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref]
  47. R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, “From optical magnetic resonance to dielectric nanophotonics (a review),” Opt. Spectrosc. 119, 551–568 (2015).
    [Crossref]
  48. S. V. Li, D. G. Baranov, A. E. Krasnok, and P. A. Belov, “All-dielectric nanoantennas for unidirectional excitation of electromagnetic guided modes,” Appl. Phys. Lett. 107, 171101 (2015).
    [Crossref]
  49. D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, and P. Belov, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
    [Crossref]
  50. M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
    [Crossref]
  51. S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
    [Crossref]
  52. M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
    [Crossref]
  53. D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
    [Crossref]
  54. I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
    [Crossref]
  55. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
    [Crossref]
  56. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [Crossref]
  57. M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4, 692–706 (2012).
    [Crossref]
  58. T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
    [Crossref]
  59. X. Zambrana-Puyalto and N. Bonod, “Purcell factor of spherical Mie resonators,” Phys. Rev. B 91, 195422 (2015).
    [Crossref]
  60. D. Smirnova and Y. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3, 1241 (2016).
    [Crossref]
  61. C. F. Klingshirn, Semiconductor Optics (Springer, 2012).
  62. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 2010).
  63. H. M. Nussenzveig, Causality and Dispersion Relations (Academic, 1972).
  64. J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).
    [Crossref]
  65. T. S. Moss, “Relations between the refractive index and energy gap of semiconductors,” Phys. Status Solidi B 131, 415–427 (1985).
    [Crossref]
  66. N. Ravindra, P. Ganapathy, and J. Choi, “Energy gap-refractive index relations in semiconductors-an overview,” Infrared Phys. Technol. 50, 21–29 (2006).
    [Crossref]
  67. P. Herve and L. Vandamme, “General relation between refractive index and energy gap in semiconductors,” Infrared Phys. Technol. 35, 609–615 (1994).
    [Crossref]
  68. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300  k,” Prog. Photovoltaics 3, 189–192 (1995).
    [Crossref]
  69. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
    [Crossref]
  70. D. Pierce and W. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972).
    [Crossref]
  71. G. Jellison, “Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 151–160 (1992).
    [Crossref]
  72. D. Aspnes and A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  ev,” Phys. Rev. B 27, 985–1009 (1983).
    [Crossref]
  73. J. R. DeVore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am. 41, 416–419 (1951).
    [Crossref]
  74. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  75. R. Ferrini, M. Patrini, and S. Franchi, “Optical functions from 0.02 to 6  ev of AlxGa1-xSb/GaSb epitaxial layers,” J. Appl. Phys. 84, 4517–4524 (1998).
    [Crossref]
  76. R. S. Caldwell and H. Fan, “Optical properties of tellurium and selenium,” Phys. Rev. 114, 664–675 (1959).
    [Crossref]
  77. F. Weiting and Y. Yixun, “Temperature effects on the refractive index of lead telluride and zinc selenide,” Infrared Phys. 30, 371–373 (1990).
    [Crossref]
  78. C. Okoye, “Electronic and optical properties of snte and gete,” J. Phys. Condens. Matter 14, 8625–8637 (2002).
    [Crossref]
  79. J. I. Larruquert, A. P. Pérez-Marín, S. García-Cortés, L. Rodríguez-de Marcos, J. A. Aznárez, and J. A. Méndez, “Self-consistent optical constants of SiC thin films,” J. Opt. Soc. Am. A 28, 2340–2345 (2011).
    [Crossref]
  80. U. Zywietz, M. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photon. 2, 913–920 (2015).
    [Crossref]
  81. S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, “Broken symmetry dielectric resonators for high quality factor Fano metasurfaces,” ACS Photon. 3, 2362–2367 (2016).
    [Crossref]
  82. J. Fan and P. Chu, “Group IV nanoparticles: synthesis, properties, and biological applications,” Small 6, 2080–2098 (2010).
    [Crossref]
  83. K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
    [Crossref]
  84. P. Blandin, K. Maximova, M. Gongalsky, J. Sanchez-Royo, V. Chirvony, M. Sentis, V. Timoshenko, and A. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
    [Crossref]
  85. L. Gu, D. Hall, Z. Qin, E. Anglin, J. Joo, D. Mooney, S. Howell, and M. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nat. Commun. 4, 2326 (2013).
    [Crossref]
  86. R. Kormer, B. Butz, E. Spiecker, and W. Peukert, “Crystal shape engineering of silicon nanoparticles in a thermal aerosol reactor,” Cryst. Growth Des. 12, 1330–1336 (2012).
    [Crossref]
  87. M. van de Haar, J. van de Groep, B. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24, 2047–2064 (2016).
    [Crossref]
  88. E.-K. Lee, J.-H. Song, K.-Y. Jeong, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Resonant light scattering from a single dielectric nano-antenna formed by electron beam-induced deposition,” Sci. Rep. 5, 10400 (2015).
    [Crossref]
  89. J. Feng, Q. Li, and S. Fan, “Compact and low cross-talk silicon-on-insulator crossing using a periodic dielectric waveguide,” Opt. Lett. 35, 3904–3906 (2010).
    [Crossref]
  90. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
    [Crossref]
  91. P. Spinelli, M. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref]
  92. R. Verre, L. Shao, N. O. Länk, P. Karpinski, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and M. Käll, “Metasurfaces and colloidal suspensions composed of 3D chiral Si nanoresonators,” Adv. Mater. (2017).
    [Crossref]
  93. S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
    [Crossref]
  94. S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
    [Crossref]
  95. M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 1 (2017).
    [Crossref]
  96. S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III-V semiconductor nanoresonators-a new strategy for passive, active and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
    [Crossref]
  97. S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, and I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
    [Crossref]
  98. P. Spinelli, B. Macco, M. A. Verschuuren, W. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett. 102, 233902 (2013).
    [Crossref]
  99. R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
    [Crossref]
  100. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
    [Crossref]
  101. M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
    [Crossref]
  102. L. Shi, T. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
    [Crossref]
  103. W. O’Mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology (Noyes, 1990).
  104. J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3, 1280–1286 (2015).
    [Crossref]
  105. L. Shi, J. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
    [Crossref]
  106. S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14, 1446–1452 (2014).
    [Crossref]
  107. M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
    [Crossref]
  108. T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
    [Crossref]
  109. T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17, 3940–3945 (2017).
    [Crossref]
  110. T.-J. Zhu, X. Chen, Y.-Q. Cao, and X.-B. Zhao, “Controllable synthesis and shape evolution of PbTe three-dimensional hierarchical superstructures via an alkaline hydrothermal method,” J. Phys. Chem. C 113, 8085–8091 (2009).
    [Crossref]
  111. J. Ye and C. Thompson, “Templated solid-state dewetting to controllably produce complex patterns,” Adv. Mater. 23, 1567–1571 (2011).
    [Crossref]
  112. C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42, 399–434 (2012).
    [Crossref]
  113. M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
    [Crossref]
  114. E. Weidmann and J. Anderson, “Structure and growth of oriented tellurium thin films,” Thin Solid Films 7, 265–276 (1971).
    [Crossref]
  115. P. Zhang, B. Yang, P. Rugheimer, M. Roberts, D. Savage, F. Liu, and M. Lagally, “Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator,” J. Phys. D 42, 175309 (2009).
    [Crossref]
  116. J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
    [Crossref]
  117. S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
    [Crossref]
  118. P. Dmitriev, S. Makarov, V. Milichko, I. Mukhin, A. Gudovskikh, A. Sitnikova, A. Samusev, A. Krasnok, and P. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8, 5043–5048 (2015).
    [Crossref]
  119. T. Schwarz-Selinger, D. G. Cahill, S.-C. Chen, S.-J. Moon, and C. Grigoropoulos, “Micron-scale modifications of Si surface morphology by pulsed-laser texturing,” Phys. Rev. B 64, 155323 (2001).
    [Crossref]
  120. U. Zywietz, C. Reinhardt, A. Evlyukhin, T. Birr, and B. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114, 45–50 (2014).
    [Crossref]
  121. T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
    [Crossref]
  122. J. Bohandy, B. Kim, F. Adrian, and A. Jette, “Metal deposition at 532  nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988).
    [Crossref]
  123. J.-H. Yoo, J. In, C. Zheng, I. Sakellari, R. Raman, M. Matthews, S. Elhadj, and C. Grigoropoulos, “Directed dewetting of amorphous silicon film by a donut-shaped laser pulse,” Nanotechnology 26, 165303 (2015).
    [Crossref]
  124. Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, “Three-dimensional dirac semimetals: design principles and predictions of new materials,” Phys. Rev. B 91, 205128 (2015).
    [Crossref]
  125. T. Wehling, A. Black-Schaffer, and A. Balatsky, “Dirac materials,” Adv. Phys. 63, 1–76 (2014).
    [Crossref]
  126. H. Weng, X. Dai, and Z. Fang, “Topological semimetals predicted from first-principles calculations,” J. Phys. Condens. Matter 28, 303001 (2016).
    [Crossref]

2017 (5)

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
[Crossref]

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 1 (2017).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17, 3940–3945 (2017).
[Crossref]

2016 (16)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
[Crossref]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
[Crossref]

S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III-V semiconductor nanoresonators-a new strategy for passive, active and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
[Crossref]

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, “Broken symmetry dielectric resonators for high quality factor Fano metasurfaces,” ACS Photon. 3, 2362–2367 (2016).
[Crossref]

M. van de Haar, J. van de Groep, B. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24, 2047–2064 (2016).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

H. Weng, X. Dai, and Z. Fang, “Topological semimetals predicted from first-principles calculations,” J. Phys. Condens. Matter 28, 303001 (2016).
[Crossref]

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

D. Smirnova and Y. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3, 1241 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108, 211105 (2016).
[Crossref]

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, and P. Belov, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

2015 (21)

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

K. Feng, W. Streyer, Y. Zhong, A. Hoffman, and D. Wasserman, “Photonic materials, structures and devices for Reststrahlen optics,” Opt. Express 23, A1418–A1433 (2015).
[Crossref]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5, 18322 (2015).
[Crossref]

R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, “From optical magnetic resonance to dielectric nanophotonics (a review),” Opt. Spectrosc. 119, 551–568 (2015).
[Crossref]

S. V. Li, D. G. Baranov, A. E. Krasnok, and P. A. Belov, “All-dielectric nanoantennas for unidirectional excitation of electromagnetic guided modes,” Appl. Phys. Lett. 107, 171101 (2015).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).
[Crossref]

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
[Crossref]

J.-H. Yoo, J. In, C. Zheng, I. Sakellari, R. Raman, M. Matthews, S. Elhadj, and C. Grigoropoulos, “Directed dewetting of amorphous silicon film by a donut-shaped laser pulse,” Nanotechnology 26, 165303 (2015).
[Crossref]

Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, “Three-dimensional dirac semimetals: design principles and predictions of new materials,” Phys. Rev. B 91, 205128 (2015).
[Crossref]

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref]

P. Dmitriev, S. Makarov, V. Milichko, I. Mukhin, A. Gudovskikh, A. Sitnikova, A. Samusev, A. Krasnok, and P. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8, 5043–5048 (2015).
[Crossref]

E.-K. Lee, J.-H. Song, K.-Y. Jeong, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Resonant light scattering from a single dielectric nano-antenna formed by electron beam-induced deposition,” Sci. Rep. 5, 10400 (2015).
[Crossref]

U. Zywietz, M. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photon. 2, 913–920 (2015).
[Crossref]

X. Zambrana-Puyalto and N. Bonod, “Purcell factor of spherical Mie resonators,” Phys. Rev. B 91, 195422 (2015).
[Crossref]

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3, 1280–1286 (2015).
[Crossref]

2014 (10)

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14, 1446–1452 (2014).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

U. Zywietz, C. Reinhardt, A. Evlyukhin, T. Birr, and B. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114, 45–50 (2014).
[Crossref]

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref]

T. Wehling, A. Black-Schaffer, and A. Balatsky, “Dirac materials,” Adv. Phys. 63, 1–76 (2014).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3, e179 (2014).
[Crossref]

2013 (11)

E. S. Andrianov, D. G. Baranov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Loss compensation by spasers in plasmonic systems,” Opt. Express 21, 13467–13478 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Saenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

P. Blandin, K. Maximova, M. Gongalsky, J. Sanchez-Royo, V. Chirvony, M. Sentis, V. Timoshenko, and A. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[Crossref]

L. Gu, D. Hall, Z. Qin, E. Anglin, J. Joo, D. Mooney, S. Howell, and M. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nat. Commun. 4, 2326 (2013).
[Crossref]

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

L. Shi, J. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, and I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

P. Spinelli, B. Macco, M. A. Verschuuren, W. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett. 102, 233902 (2013).
[Crossref]

2012 (14)

L. Shi, T. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42, 399–434 (2012).
[Crossref]

P. Spinelli, M. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

R. Kormer, B. Butz, E. Spiecker, and W. Peukert, “Crystal shape engineering of silicon nanoparticles in a thermal aerosol reactor,” Cryst. Growth Des. 12, 1330–1336 (2012).
[Crossref]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4, 692–706 (2012).
[Crossref]

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, O. Hess, M. A. Maxwell-Bloch, A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in Langevin approach,” ACS Nano 6, 2420–2431 (2012).
[Crossref]

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” App. Phys. Lett. 100, 11105 (2012).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

2011 (9)

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19, 3455–3463 (2011).
[Crossref]

V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
[Crossref]

A. A. Lisyansky, I. A. Nechepurenko, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Channel spaser: coherent excitation of one-dimensional plasmons from quantum dots located along a linear channel,” Phys. Rev. B 84, 153409 (2011).
[Crossref]

M. I. Stockman, “Spaser action, loss compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett. 106, 156802 (2011).
[Crossref]

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref]

J. I. Larruquert, A. P. Pérez-Marín, S. García-Cortés, L. Rodríguez-de Marcos, J. A. Aznárez, and J. A. Méndez, “Self-consistent optical constants of SiC thin films,” J. Opt. Soc. Am. A 28, 2340–2345 (2011).
[Crossref]

J. Ye and C. Thompson, “Templated solid-state dewetting to controllably produce complex patterns,” Adv. Mater. 23, 1567–1571 (2011).
[Crossref]

2010 (8)

J. Feng, Q. Li, and S. Fan, “Compact and low cross-talk silicon-on-insulator crossing using a periodic dielectric waveguide,” Opt. Lett. 35, 3904–3906 (2010).
[Crossref]

J. Fan and P. Chu, “Group IV nanoparticles: synthesis, properties, and biological applications,” Small 6, 2080–2098 (2010).
[Crossref]

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96, 181102 (2010).
[Crossref]

M. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4, 457–461 (2010).
[Crossref]

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105, 127401 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
[Crossref]

2009 (3)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[Crossref]

T.-J. Zhu, X. Chen, Y.-Q. Cao, and X.-B. Zhao, “Controllable synthesis and shape evolution of PbTe three-dimensional hierarchical superstructures via an alkaline hydrothermal method,” J. Phys. Chem. C 113, 8085–8091 (2009).
[Crossref]

P. Zhang, B. Yang, P. Rugheimer, M. Roberts, D. Savage, F. Liu, and M. Lagally, “Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator,” J. Phys. D 42, 175309 (2009).
[Crossref]

2008 (3)

B. I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref]

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: from microcavities to photonic sponges,” Adv. Mater. 20, 95–98 (2008).
[Crossref]

M. Pelton, J. Aizpurua, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

2007 (1)

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref]

2006 (2)

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
[Crossref]

N. Ravindra, P. Ganapathy, and J. Choi, “Energy gap-refractive index relations in semiconductors-an overview,” Infrared Phys. Technol. 50, 21–29 (2006).
[Crossref]

2005 (1)

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[Crossref]

2002 (1)

C. Okoye, “Electronic and optical properties of snte and gete,” J. Phys. Condens. Matter 14, 8625–8637 (2002).
[Crossref]

2001 (1)

T. Schwarz-Selinger, D. G. Cahill, S.-C. Chen, S.-J. Moon, and C. Grigoropoulos, “Micron-scale modifications of Si surface morphology by pulsed-laser texturing,” Phys. Rev. B 64, 155323 (2001).
[Crossref]

1998 (1)

R. Ferrini, M. Patrini, and S. Franchi, “Optical functions from 0.02 to 6  ev of AlxGa1-xSb/GaSb epitaxial layers,” J. Appl. Phys. 84, 4517–4524 (1998).
[Crossref]

1995 (1)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300  k,” Prog. Photovoltaics 3, 189–192 (1995).
[Crossref]

1994 (1)

P. Herve and L. Vandamme, “General relation between refractive index and energy gap in semiconductors,” Infrared Phys. Technol. 35, 609–615 (1994).
[Crossref]

1992 (1)

G. Jellison, “Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 151–160 (1992).
[Crossref]

1990 (1)

F. Weiting and Y. Yixun, “Temperature effects on the refractive index of lead telluride and zinc selenide,” Infrared Phys. 30, 371–373 (1990).
[Crossref]

1988 (1)

J. Bohandy, B. Kim, F. Adrian, and A. Jette, “Metal deposition at 532  nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988).
[Crossref]

1985 (1)

T. S. Moss, “Relations between the refractive index and energy gap of semiconductors,” Phys. Status Solidi B 131, 415–427 (1985).
[Crossref]

1983 (1)

D. Aspnes and A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  ev,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

1980 (1)

H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[Crossref]

1972 (1)

D. Pierce and W. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972).
[Crossref]

1971 (1)

E. Weidmann and J. Anderson, “Structure and growth of oriented tellurium thin films,” Thin Solid Films 7, 265–276 (1971).
[Crossref]

1959 (1)

R. S. Caldwell and H. Fan, “Optical properties of tellurium and selenium,” Phys. Rev. 114, 664–675 (1959).
[Crossref]

1951 (1)

1908 (1)

G. Mie, “Beiträge zur optik trüber medien speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Abbarchi, M.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Abdeddaim, R.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3, 1280–1286 (2015).
[Crossref]

Adrian, F.

J. Bohandy, B. Kim, F. Adrian, and A. Jette, “Metal deposition at 532  nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988).
[Crossref]

Agio, M.

M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4, 692–706 (2012).
[Crossref]

Aieta, F.

Aitchison, J. S.

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[Crossref]

Aizpurua, J.

U. Zywietz, M. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photon. 2, 913–920 (2015).
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Saenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref]

M. Pelton, J. Aizpurua, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Albella, P.

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5, 18322 (2015).
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Saenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Al-Kattan, A.

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

Anderson, J.

E. Weidmann and J. Anderson, “Structure and growth of oriented tellurium thin films,” Thin Solid Films 7, 265–276 (1971).
[Crossref]

Andrianov, E. S.

Anglin, E.

L. Gu, D. Hall, Z. Qin, E. Anglin, J. Joo, D. Mooney, S. Howell, and M. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nat. Commun. 4, 2326 (2013).
[Crossref]

Antosiewicz, T. J.

R. Verre, L. Shao, N. O. Länk, P. Karpinski, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and M. Käll, “Metasurfaces and colloidal suspensions composed of 3D chiral Si nanoresonators,” Adv. Mater. (2017).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Ashida, M.

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref]

Aspnes, D.

D. Aspnes and A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  ev,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Aznárez, J. A.

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Balatsky, A.

T. Wehling, A. Black-Schaffer, and A. Balatsky, “Dirac materials,” Adv. Phys. 63, 1–76 (2014).
[Crossref]

Baranov, D. G.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

S. V. Li, D. G. Baranov, A. E. Krasnok, and P. A. Belov, “All-dielectric nanoantennas for unidirectional excitation of electromagnetic guided modes,” Appl. Phys. Lett. 107, 171101 (2015).
[Crossref]

E. S. Andrianov, D. G. Baranov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Loss compensation by spasers in plasmonic systems,” Opt. Express 21, 13467–13478 (2013).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Baryshnikova, K.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, and P. Belov, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Basilio, L. I.

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, “Broken symmetry dielectric resonators for high quality factor Fano metasurfaces,” ACS Photon. 3, 2362–2367 (2016).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Bebey, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

Bedu, F.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3, 1280–1286 (2015).
[Crossref]

Beermann, J.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

Belov, P.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108, 211105 (2016).
[Crossref]

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, and P. Belov, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

P. Dmitriev, S. Makarov, V. Milichko, I. Mukhin, A. Gudovskikh, A. Sitnikova, A. Samusev, A. Krasnok, and P. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8, 5043–5048 (2015).
[Crossref]

Belov, P. A.

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

S. V. Li, D. G. Baranov, A. E. Krasnok, and P. A. Belov, “All-dielectric nanoantennas for unidirectional excitation of electromagnetic guided modes,” Appl. Phys. Lett. 107, 171101 (2015).
[Crossref]

R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, “From optical magnetic resonance to dielectric nanophotonics (a review),” Opt. Spectrosc. 119, 551–568 (2015).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

Benkouider, A.

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Berbezier, I.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Berthelot, J.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

Bharadwaj, P.

Bidault, S.

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

Birr, T.

U. Zywietz, C. Reinhardt, A. Evlyukhin, T. Birr, and B. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114, 45–50 (2014).
[Crossref]

Black-Schaffer, A.

T. Wehling, A. Black-Schaffer, and A. Balatsky, “Dirac materials,” Adv. Phys. 63, 1–76 (2014).
[Crossref]

Blandin, P.

P. Blandin, K. Maximova, M. Gongalsky, J. Sanchez-Royo, V. Chirvony, M. Sentis, V. Timoshenko, and A. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[Crossref]

Bohandy, J.

J. Bohandy, B. Kim, F. Adrian, and A. Jette, “Metal deposition at 532  nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988).
[Crossref]

Bokor, J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[Crossref]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Bonod, N.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3, 1280–1286 (2015).
[Crossref]

X. Zambrana-Puyalto and N. Bonod, “Purcell factor of spherical Mie resonators,” Phys. Rev. B 91, 195422 (2015).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

Bower, J. E.

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, and I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Brener, I.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 1 (2017).
[Crossref]

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
[Crossref]

S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III-V semiconductor nanoresonators-a new strategy for passive, active and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
[Crossref]

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, “Broken symmetry dielectric resonators for high quality factor Fano metasurfaces,” ACS Photon. 3, 2362–2367 (2016).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, and I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Brenny, B.

Briggs, D. P.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14, 1446–1452 (2014).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Burckel, D. B.

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, and I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

Butakov, N. A.

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17, 3940–3945 (2017).
[Crossref]

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
[Crossref]

Butz, B.

R. Kormer, B. Butz, E. Spiecker, and W. Peukert, “Crystal shape engineering of silicon nanoparticles in a thermal aerosol reactor,” Cryst. Growth Des. 12, 1330–1336 (2012).
[Crossref]

Cabrini, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[Crossref]

Cahill, D. G.

T. Schwarz-Selinger, D. G. Cahill, S.-C. Chen, S.-J. Moon, and C. Grigoropoulos, “Micron-scale modifications of Si surface morphology by pulsed-laser texturing,” Phys. Rev. B 64, 155323 (2001).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Caldwell, J. D.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).
[Crossref]

Caldwell, R. S.

R. S. Caldwell and H. Fan, “Optical properties of tellurium and selenium,” Phys. Rev. 114, 664–675 (1959).
[Crossref]

Campione, S.

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, “Broken symmetry dielectric resonators for high quality factor Fano metasurfaces,” ACS Photon. 3, 2362–2367 (2016).
[Crossref]

Cao, Y.-Q.

T.-J. Zhu, X. Chen, Y.-Q. Cao, and X.-B. Zhao, “Controllable synthesis and shape evolution of PbTe three-dimensional hierarchical superstructures via an alkaline hydrothermal method,” J. Phys. Chem. C 113, 8085–8091 (2009).
[Crossref]

Capasso, F.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Car, R.

Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, “Three-dimensional dirac semimetals: design principles and predictions of new materials,” Phys. Rev. B 91, 205128 (2015).
[Crossref]

Cardona, M.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 2010).

Cava, R. J.

Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, “Three-dimensional dirac semimetals: design principles and predictions of new materials,” Phys. Rev. B 91, 205128 (2015).
[Crossref]

Chantada, L.

Chen, H.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref]

Chen, S.-C.

T. Schwarz-Selinger, D. G. Cahill, S.-C. Chen, S.-J. Moon, and C. Grigoropoulos, “Micron-scale modifications of Si surface morphology by pulsed-laser texturing,” Phys. Rev. B 64, 155323 (2001).
[Crossref]

Chen, W. T.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Chen, X.

T.-J. Zhu, X. Chen, Y.-Q. Cao, and X.-B. Zhao, “Controllable synthesis and shape evolution of PbTe three-dimensional hierarchical superstructures via an alkaline hydrothermal method,” J. Phys. Chem. C 113, 8085–8091 (2009).
[Crossref]

Cheng, W.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

Chenot, S.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3, 1280–1286 (2015).
[Crossref]

Chichkov, B.

U. Zywietz, M. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photon. 2, 913–920 (2015).
[Crossref]

U. Zywietz, C. Reinhardt, A. Evlyukhin, T. Birr, and B. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114, 45–50 (2014).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
[Crossref]

Chirvony, V.

P. Blandin, K. Maximova, M. Gongalsky, J. Sanchez-Royo, V. Chirvony, M. Sentis, V. Timoshenko, and A. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[Crossref]

Choi, D.-Y.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Choi, J.

N. Ravindra, P. Ganapathy, and J. Choi, “Energy gap-refractive index relations in semiconductors-an overview,” Infrared Phys. Technol. 50, 21–29 (2006).
[Crossref]

Chong, K. E.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Choo, H.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[Crossref]

Chu, P.

J. Fan and P. Chu, “Group IV nanoparticles: synthesis, properties, and biological applications,” Small 6, 2080–2098 (2010).
[Crossref]

Claude, J.-B.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

Clem, P. G.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Cummer, S. A.

B. I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref]

Dai, X.

H. Weng, X. Dai, and Z. Fang, “Topological semimetals predicted from first-principles calculations,” J. Phys. Condens. Matter 28, 303001 (2016).
[Crossref]

Danz, N.

M. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4, 457–461 (2010).
[Crossref]

David, T.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

Decker, M.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Delobbe, A.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

Deutsch, B.

Devlin, R.

Devlin, R. C.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

DeVore, J. R.

Dhuey, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[Crossref]

Dmitriev, P.

P. Dmitriev, S. Makarov, V. Milichko, I. Mukhin, A. Gudovskikh, A. Sitnikova, A. Samusev, A. Krasnok, and P. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8, 5043–5048 (2015).
[Crossref]

Dmitriev, P. A.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

Dolgova, T.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 1 (2017).
[Crossref]

Dominguez, J.

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, and I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Dorofeenko, A. V.

E. S. Andrianov, D. G. Baranov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Loss compensation by spasers in plasmonic systems,” Opt. Express 21, 13467–13478 (2013).
[Crossref]

A. A. Lisyansky, I. A. Nechepurenko, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Channel spaser: coherent excitation of one-dimensional plasmons from quantum dots located along a linear channel,” Phys. Rev. B 84, 153409 (2011).
[Crossref]

Eich, M.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

Elhadj, S.

J.-H. Yoo, J. In, C. Zheng, I. Sakellari, R. Raman, M. Matthews, S. Elhadj, and C. Grigoropoulos, “Directed dewetting of amorphous silicon film by a donut-shaped laser pulse,” Nanotechnology 26, 165303 (2015).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Evans, H. A.

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17, 3940–3945 (2017).
[Crossref]

Evlyukhin, A.

U. Zywietz, M. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photon. 2, 913–920 (2015).
[Crossref]

U. Zywietz, C. Reinhardt, A. Evlyukhin, T. Birr, and B. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114, 45–50 (2014).
[Crossref]

Evlyukhin, A. B.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
[Crossref]

Eyraud, C.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Ezhov, A. A.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

Fan, H.

R. S. Caldwell and H. Fan, “Optical properties of tellurium and selenium,” Phys. Rev. 114, 664–675 (1959).
[Crossref]

Fan, J.

J. Fan and P. Chu, “Group IV nanoparticles: synthesis, properties, and biological applications,” Small 6, 2080–2098 (2010).
[Crossref]

Fan, S.

Fan, X.

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3, e179 (2014).
[Crossref]

Fang, Z.

H. Weng, X. Dai, and Z. Fang, “Topological semimetals predicted from first-principles calculations,” J. Phys. Condens. Matter 28, 303001 (2016).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Favre, L.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Fedyanin, A.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 1 (2017).
[Crossref]

Fedyanin, A. A.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

Feng, J.

Feng, K.

Fenollosa, R.

L. Shi, J. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

L. Shi, T. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19, 3455–3463 (2011).
[Crossref]

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: from microcavities to photonic sponges,” Adv. Mater. 20, 95–98 (2008).
[Crossref]

Fernandez-Dominguez, A. I.

V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Ferrini, R.

R. Ferrini, M. Patrini, and S. Franchi, “Optical functions from 0.02 to 6  ev of AlxGa1-xSb/GaSb epitaxial layers,” J. Appl. Phys. 84, 4517–4524 (1998).
[Crossref]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Franchi, S.

R. Ferrini, M. Patrini, and S. Franchi, “Optical functions from 0.02 to 6  ev of AlxGa1-xSb/GaSb epitaxial layers,” J. Appl. Phys. 84, 4517–4524 (1998).
[Crossref]

Froufe-Pérez, L. S.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref]

Fu, Y. H.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Gallas, B.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3, 1280–1286 (2015).
[Crossref]

Ganapathy, P.

N. Ravindra, P. Ganapathy, and J. Choi, “Energy gap-refractive index relations in semiconductors-an overview,” Infrared Phys. Technol. 50, 21–29 (2006).
[Crossref]

García-Cámara, B.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

García-Cortés, S.

García-Etxarri, A.

Gather, M.

M. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4, 457–461 (2010).
[Crossref]

Geffrin, J. M.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Genevet, P.

Giannini, V.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).
[Crossref]

V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Gibson, Q. D.

Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, “Three-dimensional dirac semimetals: design principles and predictions of new materials,” Phys. Rev. B 91, 205128 (2015).
[Crossref]

Ginn, J. C.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Glembocki, O. J.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).
[Crossref]

Glybovski, S.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108, 211105 (2016).
[Crossref]

Gómez-Medina, R.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref]

Gongalsky, M.

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

P. Blandin, K. Maximova, M. Gongalsky, J. Sanchez-Royo, V. Chirvony, M. Sentis, V. Timoshenko, and A. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[Crossref]

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Gonzales, E. F.

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, and I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

González, F.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Green, M. A.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300  k,” Prog. Photovoltaics 3, 189–192 (1995).
[Crossref]

Grigoropoulos, C.

J.-H. Yoo, J. In, C. Zheng, I. Sakellari, R. Raman, M. Matthews, S. Elhadj, and C. Grigoropoulos, “Directed dewetting of amorphous silicon film by a donut-shaped laser pulse,” Nanotechnology 26, 165303 (2015).
[Crossref]

T. Schwarz-Selinger, D. G. Cahill, S.-C. Chen, S.-J. Moon, and C. Grigoropoulos, “Micron-scale modifications of Si surface morphology by pulsed-laser texturing,” Phys. Rev. B 64, 155323 (2001).
[Crossref]

Gu, L.

L. Gu, D. Hall, Z. Qin, E. Anglin, J. Joo, D. Mooney, S. Howell, and M. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nat. Commun. 4, 2326 (2013).
[Crossref]

Gudovskikh, A.

P. Dmitriev, S. Makarov, V. Milichko, I. Mukhin, A. Gudovskikh, A. Sitnikova, A. Samusev, A. Krasnok, and P. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8, 5043–5048 (2015).
[Crossref]

Hall, D.

L. Gu, D. Hall, Z. Qin, E. Anglin, J. Joo, D. Mooney, S. Howell, and M. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nat. Commun. 4, 2326 (2013).
[Crossref]

Hamm, J. M.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, O. Hess, M. A. Maxwell-Bloch, A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in Langevin approach,” ACS Nano 6, 2420–2431 (2012).
[Crossref]

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, O. Hess, M. A. Maxwell-Bloch, A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in Langevin approach,” ACS Nano 6, 2420–2431 (2012).
[Crossref]

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105, 127401 (2010).
[Crossref]

Harris, J.

L. Shi, J. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

Heck, S. C.

V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Herring, R. B.

W. O’Mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology (Noyes, 1990).

Herve, P.

P. Herve and L. Vandamme, “General relation between refractive index and energy gap in semiconductors,” Infrared Phys. Technol. 35, 609–615 (1994).
[Crossref]

Hess, O.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, O. Hess, M. A. Maxwell-Bloch, A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in Langevin approach,” ACS Nano 6, 2420–2431 (2012).
[Crossref]

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, O. Hess, M. A. Maxwell-Bloch, A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in Langevin approach,” ACS Nano 6, 2420–2431 (2012).
[Crossref]

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105, 127401 (2010).
[Crossref]

Hines, P. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Hirschberger, M.

Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, “Three-dimensional dirac semimetals: design principles and predictions of new materials,” Phys. Rev. B 91, 205128 (2015).
[Crossref]

Hoffman, A.

Hopkins, B.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Howell, S.

L. Gu, D. Hall, Z. Qin, E. Anglin, J. Joo, D. Mooney, S. Howell, and M. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nat. Commun. 4, 2326 (2013).
[Crossref]

Hunt, L. P.

W. O’Mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology (Noyes, 1990).

Ichikawa, S.

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref]

Ihlefeld, J. F.

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, and I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Iida, T.

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref]

In, J.

J.-H. Yoo, J. In, C. Zheng, I. Sakellari, R. Raman, M. Matthews, S. Elhadj, and C. Grigoropoulos, “Directed dewetting of amorphous silicon film by a donut-shaped laser pulse,” Nanotechnology 26, 165303 (2015).
[Crossref]

Inaba, K.

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref]

Ishihara, H.

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Ivanov, A.

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

Iyer, P. P.

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

Jamshidi, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[Crossref]

Jellison, G.

G. Jellison, “Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 151–160 (1992).
[Crossref]

Jeong, K.-Y.

E.-K. Lee, J.-H. Song, K.-Y. Jeong, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Resonant light scattering from a single dielectric nano-antenna formed by electron beam-induced deposition,” Sci. Rep. 5, 10400 (2015).
[Crossref]

Jette, A.

J. Bohandy, B. Kim, F. Adrian, and A. Jette, “Metal deposition at 532  nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988).
[Crossref]

Joo, J.

L. Gu, D. Hall, Z. Qin, E. Anglin, J. Joo, D. Mooney, S. Howell, and M. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nat. Commun. 4, 2326 (2013).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Kabashin, A.

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

P. Blandin, K. Maximova, M. Gongalsky, J. Sanchez-Royo, V. Chirvony, M. Sentis, V. Timoshenko, and A. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[Crossref]

Kafesaki, M.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

Käll, M.

R. Verre, L. Shao, N. O. Länk, P. Karpinski, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and M. Käll, “Metasurfaces and colloidal suspensions composed of 3D chiral Si nanoresonators,” Adv. Mater. (2017).
[Crossref]

Kang, J.-H.

E.-K. Lee, J.-H. Song, K.-Y. Jeong, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Resonant light scattering from a single dielectric nano-antenna formed by electron beam-induced deposition,” Sci. Rep. 5, 10400 (2015).
[Crossref]

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14, 1446–1452 (2014).
[Crossref]

Kargina, J.

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

Karpinski, P.

R. Verre, L. Shao, N. O. Länk, P. Karpinski, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and M. Käll, “Metasurfaces and colloidal suspensions composed of 3D chiral Si nanoresonators,” Adv. Mater. (2017).
[Crossref]

Keeler, G.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 1 (2017).
[Crossref]

Keeler, G. A.

S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III-V semiconductor nanoresonators-a new strategy for passive, active and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
[Crossref]

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
[Crossref]

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, “Broken symmetry dielectric resonators for high quality factor Fano metasurfaces,” ACS Photon. 3, 2362–2367 (2016).
[Crossref]

Keevers, M. J.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300  k,” Prog. Photovoltaics 3, 189–192 (1995).
[Crossref]

Kessels, W.

P. Spinelli, B. Macco, M. A. Verschuuren, W. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett. 102, 233902 (2013).
[Crossref]

Khorasaninejad, M.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
[Crossref]

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” App. Phys. Lett. 100, 11105 (2012).
[Crossref]

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96, 181102 (2010).
[Crossref]

Kim, B.

J. Bohandy, B. Kim, F. Adrian, and A. Jette, “Metal deposition at 532  nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988).
[Crossref]

Kim, M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[Crossref]

Kim, S. J.

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14, 1446–1452 (2014).
[Crossref]

Kivshar, Y.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108, 211105 (2016).
[Crossref]

D. Smirnova and Y. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3, 1241 (2016).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Kivshar, Y. S.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

Klingshirn, C. F.

C. F. Klingshirn, Semiconductor Optics (Springer, 2012).

Korgel, B.

L. Shi, J. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

Kormer, R.

R. Kormer, B. Butz, E. Spiecker, and W. Peukert, “Crystal shape engineering of silicon nanoparticles in a thermal aerosol reactor,” Cryst. Growth Des. 12, 1330–1336 (2012).
[Crossref]

Koschny, T.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

Krasnok, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, and P. Belov, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108, 211105 (2016).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

P. Dmitriev, S. Makarov, V. Milichko, I. Mukhin, A. Gudovskikh, A. Sitnikova, A. Samusev, A. Krasnok, and P. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8, 5043–5048 (2015).
[Crossref]

Krasnok, A. E.

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, “From optical magnetic resonance to dielectric nanophotonics (a review),” Opt. Spectrosc. 119, 551–568 (2015).
[Crossref]

S. V. Li, D. G. Baranov, A. E. Krasnok, and P. A. Belov, “All-dielectric nanoantennas for unidirectional excitation of electromagnetic guided modes,” Appl. Phys. Lett. 107, 171101 (2015).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

Kravchencko, I. I.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Krishnamurthy, S.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Kudryashov, S.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Kudryashov, S. I.

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Lagally, M.

P. Zhang, B. Yang, P. Rugheimer, M. Roberts, D. Savage, F. Liu, and M. Lagally, “Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator,” J. Phys. D 42, 175309 (2009).
[Crossref]

Lakhani, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[Crossref]

Langston, W. L.

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, “Broken symmetry dielectric resonators for high quality factor Fano metasurfaces,” ACS Photon. 3, 2362–2367 (2016).
[Crossref]

Länk, N. O.

R. Verre, L. Shao, N. O. Länk, P. Karpinski, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and M. Käll, “Metasurfaces and colloidal suspensions composed of 3D chiral Si nanoresonators,” Adv. Mater. (2017).
[Crossref]

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

Larruquert, J. I.

Lee, E.-K.

E.-K. Lee, J.-H. Song, K.-Y. Jeong, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Resonant light scattering from a single dielectric nano-antenna formed by electron beam-induced deposition,” Sci. Rep. 5, 10400 (2015).
[Crossref]

Leosson, K.

M. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4, 457–461 (2010).
[Crossref]

Lermusiaux, L.

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Lewi, T.

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17, 3940–3945 (2017).
[Crossref]

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
[Crossref]

Li, H.

H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[Crossref]

Li, Q.

Li, S. V.

S. V. Li, D. G. Baranov, A. E. Krasnok, and P. A. Belov, “All-dielectric nanoantennas for unidirectional excitation of electromagnetic guided modes,” Appl. Phys. Lett. 107, 171101 (2015).
[Crossref]

Li, W.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Lin, Z.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref]

Lindsay, L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).
[Crossref]

Lisyansky, A. A.

E. S. Andrianov, D. G. Baranov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Loss compensation by spasers in plasmonic systems,” Opt. Express 21, 13467–13478 (2013).
[Crossref]

A. A. Lisyansky, I. A. Nechepurenko, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Channel spaser: coherent excitation of one-dimensional plasmons from quantum dots located along a linear channel,” Phys. Rev. B 84, 153409 (2011).
[Crossref]

Litchinitser, N. M.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

Litman, A.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Liu, F.

P. Zhang, B. Yang, P. Rugheimer, M. Roberts, D. Savage, F. Liu, and M. Lagally, “Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator,” J. Phys. D 42, 175309 (2009).
[Crossref]

Liu, P.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref]

Liu, S.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 1 (2017).
[Crossref]

S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III-V semiconductor nanoresonators-a new strategy for passive, active and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
[Crossref]

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
[Crossref]

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, “Broken symmetry dielectric resonators for high quality factor Fano metasurfaces,” ACS Photon. 3, 2362–2367 (2016).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, and I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

López, C.

Lu, X.

L. Shi, J. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

Luk, T. S.

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, “Broken symmetry dielectric resonators for high quality factor Fano metasurfaces,” ACS Photon. 3, 2362–2367 (2016).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Luk’yanchuk, B.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Lukyanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

Lukyanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
[Crossref]

Macco, B.

P. Spinelli, B. Macco, M. A. Verschuuren, W. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett. 102, 233902 (2013).
[Crossref]

Maier, S. A.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5, 18322 (2015).
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Saenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
[Crossref]

Makarov, S.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108, 211105 (2016).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

P. Dmitriev, S. Makarov, V. Milichko, I. Mukhin, A. Gudovskikh, A. Sitnikova, A. Samusev, A. Krasnok, and P. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8, 5043–5048 (2015).
[Crossref]

Makarov, S. V.

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, “From optical magnetic resonance to dielectric nanophotonics (a review),” Opt. Spectrosc. 119, 551–568 (2015).
[Crossref]

Markovich, D.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, and P. Belov, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Matthews, M.

J.-H. Yoo, J. In, C. Zheng, I. Sakellari, R. Raman, M. Matthews, S. Elhadj, and C. Grigoropoulos, “Directed dewetting of amorphous silicon film by a donut-shaped laser pulse,” Nanotechnology 26, 165303 (2015).
[Crossref]

Maximova, K.

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

P. Blandin, K. Maximova, M. Gongalsky, J. Sanchez-Royo, V. Chirvony, M. Sentis, V. Timoshenko, and A. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[Crossref]

Maxwell-Bloch, M. A.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, O. Hess, M. A. Maxwell-Bloch, A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in Langevin approach,” ACS Nano 6, 2420–2431 (2012).
[Crossref]

Meerholz, K.

M. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4, 457–461 (2010).
[Crossref]

Melik-Gaykazyan, E. V.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

Méndez, J. A.

Meseguer, F.

L. Shi, J. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

L. Shi, T. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19, 3455–3463 (2011).
[Crossref]

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: from microcavities to photonic sponges,” Adv. Mater. 20, 95–98 (2008).
[Crossref]

Metayer, L.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

Mie, G.

G. Mie, “Beiträge zur optik trüber medien speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Mikhailovsky, A. A.

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
[Crossref]

Milichko, V.

P. Dmitriev, S. Makarov, V. Milichko, I. Mukhin, A. Gudovskikh, A. Sitnikova, A. Samusev, A. Krasnok, and P. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8, 5043–5048 (2015).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Milichko, V. A.

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

Moitra, P.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Mojahedi, M.

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[Crossref]

Moon, S.-J.

T. Schwarz-Selinger, D. G. Cahill, S.-C. Chen, S.-J. Moon, and C. Grigoropoulos, “Micron-scale modifications of Si surface morphology by pulsed-laser texturing,” Phys. Rev. B 64, 155323 (2001).
[Crossref]

Mooney, D.

L. Gu, D. Hall, Z. Qin, E. Anglin, J. Joo, D. Mooney, S. Howell, and M. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nat. Commun. 4, 2326 (2013).
[Crossref]

Moreno, F.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Saenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Moss, T. S.

T. S. Moss, “Relations between the refractive index and energy gap of semiconductors,” Phys. Status Solidi B 131, 415–427 (1985).
[Crossref]

Mozharov, A.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Muechler, L.

Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, “Three-dimensional dirac semimetals: design principles and predictions of new materials,” Phys. Rev. B 91, 205128 (2015).
[Crossref]

Mukhin, I.

P. Dmitriev, S. Makarov, V. Milichko, I. Mukhin, A. Gudovskikh, A. Sitnikova, A. Samusev, A. Krasnok, and P. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8, 5043–5048 (2015).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Mukhin, I. S.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

Naffouti, M.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Nechepurenko, I. A.

A. A. Lisyansky, I. A. Nechepurenko, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Channel spaser: coherent excitation of one-dimensional plasmons from quantum dots located along a linear channel,” Phys. Rev. B 84, 153409 (2011).
[Crossref]

Neshev, D. N.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Nieto-Vesperinas, M.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref]

Nikiforov, V.

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

Nikolskiy, K.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[Crossref]

Nussenzveig, H. M.

H. M. Nussenzveig, Causality and Dispersion Relations (Academic, 1972).

O’Mara, W.

W. O’Mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology (Noyes, 1990).

Oh, J.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Okamoto, S.

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref]

Okoye, C.

C. Okoye, “Electronic and optical properties of snte and gete,” J. Phys. Condens. Matter 14, 8625–8637 (2002).
[Crossref]

Olsson, E.

R. Verre, L. Shao, N. O. Länk, P. Karpinski, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and M. Käll, “Metasurfaces and colloidal suspensions composed of 3D chiral Si nanoresonators,” Adv. Mater. (2017).
[Crossref]

Ong, N. P.

Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, “Three-dimensional dirac semimetals: design principles and predictions of new materials,” Phys. Rev. B 91, 205128 (2015).
[Crossref]

Osminkina, L.

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

Ozerov, I.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3, 1280–1286 (2015).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Pandey, A.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

Paniagua-Domínguez, R.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Park, H.-G.

E.-K. Lee, J.-H. Song, K.-Y. Jeong, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Resonant light scattering from a single dielectric nano-antenna formed by electron beam-induced deposition,” Sci. Rep. 5, 10400 (2015).
[Crossref]

Park, J.

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14, 1446–1452 (2014).
[Crossref]

Patrini, M.

R. Ferrini, M. Patrini, and S. Franchi, “Optical functions from 0.02 to 6  ev of AlxGa1-xSb/GaSb epitaxial layers,” J. Appl. Phys. 84, 4517–4524 (1998).
[Crossref]

Peake, G. M.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
[Crossref]

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Pérez-Marín, A. P.

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

Pertsch, T.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 1 (2017).
[Crossref]

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
[Crossref]

Peters, D. W.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Petrov, A.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

Petrov, M.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108, 211105 (2016).
[Crossref]

Peukert, W.

R. Kormer, B. Butz, E. Spiecker, and W. Peukert, “Crystal shape engineering of silicon nanoparticles in a thermal aerosol reactor,” Cryst. Growth Des. 12, 1330–1336 (2012).
[Crossref]

Pierce, D.

D. Pierce and W. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972).
[Crossref]

Polman, A.

M. van de Haar, J. van de Groep, B. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24, 2047–2064 (2016).
[Crossref]

P. Spinelli, B. Macco, M. A. Verschuuren, W. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett. 102, 233902 (2013).
[Crossref]

P. Spinelli, M. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

Popa, B. I.

B. I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref]

Poyli, M. A.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Saenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

Prorok, S.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

Proust, J.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3, 1280–1286 (2015).
[Crossref]

Pukhov, A. A.

E. S. Andrianov, D. G. Baranov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Loss compensation by spasers in plasmonic systems,” Opt. Express 21, 13467–13478 (2013).
[Crossref]

A. A. Lisyansky, I. A. Nechepurenko, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Channel spaser: coherent excitation of one-dimensional plasmons from quantum dots located along a linear channel,” Phys. Rev. B 84, 153409 (2011).
[Crossref]

Pusch, A.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, O. Hess, M. A. Maxwell-Bloch, A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in Langevin approach,” ACS Nano 6, 2420–2431 (2012).
[Crossref]

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, O. Hess, M. A. Maxwell-Bloch, A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in Langevin approach,” ACS Nano 6, 2420–2431 (2012).
[Crossref]

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105, 127401 (2010).
[Crossref]

Qin, Z.

L. Gu, D. Hall, Z. Qin, E. Anglin, J. Joo, D. Mooney, S. Howell, and M. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nat. Commun. 4, 2326 (2013).
[Crossref]

Raman, R.

J.-H. Yoo, J. In, C. Zheng, I. Sakellari, R. Raman, M. Matthews, S. Elhadj, and C. Grigoropoulos, “Directed dewetting of amorphous silicon film by a donut-shaped laser pulse,” Nanotechnology 26, 165303 (2015).
[Crossref]

Ravindra, N.

N. Ravindra, P. Ganapathy, and J. Choi, “Energy gap-refractive index relations in semiconductors-an overview,” Infrared Phys. Technol. 50, 21–29 (2006).
[Crossref]

Reinecke, T. L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).
[Crossref]

Reinhardt, C.

U. Zywietz, M. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photon. 2, 913–920 (2015).
[Crossref]

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

U. Zywietz, C. Reinhardt, A. Evlyukhin, T. Birr, and B. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114, 45–50 (2014).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
[Crossref]

Reno, J.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
[Crossref]

Reno, J. L.

S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III-V semiconductor nanoresonators-a new strategy for passive, active and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
[Crossref]

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, “Broken symmetry dielectric resonators for high quality factor Fano metasurfaces,” ACS Photon. 3, 2362–2367 (2016).
[Crossref]

Roberts, M.

P. Zhang, B. Yang, P. Rugheimer, M. Roberts, D. Savage, F. Liu, and M. Lagally, “Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator,” J. Phys. D 42, 175309 (2009).
[Crossref]

Rodriguez, I.

L. Shi, J. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

Rodríguez-de Marcos, L.

Rolly, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

Ronda, A.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Rugheimer, P.

P. Zhang, B. Yang, P. Rugheimer, M. Roberts, D. Savage, F. Liu, and M. Lagally, “Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator,” J. Phys. D 42, 175309 (2009).
[Crossref]

Ryabchikov, Y.

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

Saenz, J. J.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Saenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

Sáenz, J. J.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref]

Sailor, M.

L. Gu, D. Hall, Z. Qin, E. Anglin, J. Joo, D. Mooney, S. Howell, and M. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nat. Commun. 4, 2326 (2013).
[Crossref]

Sakellari, I.

J.-H. Yoo, J. In, C. Zheng, I. Sakellari, R. Raman, M. Matthews, S. Elhadj, and C. Grigoropoulos, “Directed dewetting of amorphous silicon film by a donut-shaped laser pulse,” Nanotechnology 26, 165303 (2015).
[Crossref]

Samusev, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, and P. Belov, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

P. Dmitriev, S. Makarov, V. Milichko, I. Mukhin, A. Gudovskikh, A. Sitnikova, A. Samusev, A. Krasnok, and P. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8, 5043–5048 (2015).
[Crossref]

Samusev, A. K.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

Sanchez-Royo, J.

P. Blandin, K. Maximova, M. Gongalsky, J. Sanchez-Royo, V. Chirvony, M. Sentis, V. Timoshenko, and A. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[Crossref]

Saravi, S.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
[Crossref]

Savage, D.

P. Zhang, B. Yang, P. Rugheimer, M. Roberts, D. Savage, F. Liu, and M. Lagally, “Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator,” J. Phys. D 42, 175309 (2009).
[Crossref]

Savelev, R.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108, 211105 (2016).
[Crossref]

Savelev, R. S.

R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, “From optical magnetic resonance to dielectric nanophotonics (a review),” Opt. Spectrosc. 119, 551–568 (2015).
[Crossref]

Scheffold, F.

Schilling, J.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
[Crossref]

Schmidt, M.

U. Zywietz, M. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photon. 2, 913–920 (2015).
[Crossref]

Schmidt, M. K.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Saenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

Schoop, L. M.

Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, “Three-dimensional dirac semimetals: design principles and predictions of new materials,” Phys. Rev. B 91, 205128 (2015).
[Crossref]

Schuck, P. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[Crossref]

Schuller, J. A.

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17, 3940–3945 (2017).
[Crossref]

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref]

Schwartzberg, A. M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[Crossref]

Schwarz-Selinger, T.

T. Schwarz-Selinger, D. G. Cahill, S.-C. Chen, S.-J. Moon, and C. Grigoropoulos, “Micron-scale modifications of Si surface morphology by pulsed-laser texturing,” Phys. Rev. B 64, 155323 (2001).
[Crossref]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
[Crossref]

Sentis, M.

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

P. Blandin, K. Maximova, M. Gongalsky, J. Sanchez-Royo, V. Chirvony, M. Sentis, V. Timoshenko, and A. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[Crossref]

Seo, M.-K.

E.-K. Lee, J.-H. Song, K.-Y. Jeong, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Resonant light scattering from a single dielectric nano-antenna formed by electron beam-induced deposition,” Sci. Rep. 5, 10400 (2015).
[Crossref]

Seok, T. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[Crossref]

Setzpfandt, F.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
[Crossref]

Shalaev, M. I.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Shalin, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, and P. Belov, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Shao, L.

R. Verre, L. Shao, N. O. Länk, P. Karpinski, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and M. Käll, “Metasurfaces and colloidal suspensions composed of 3D chiral Si nanoresonators,” Adv. Mater. (2017).
[Crossref]

Shcherbakov, M.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 1 (2017).
[Crossref]

Shcherbakov, M. R.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

Shi, L.

L. Shi, J. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

L. Shi, T. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Shibanuma, T.

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5, 18322 (2015).
[Crossref]

Shorokhov, A. S.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

Simovski, C.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108, 211105 (2016).
[Crossref]

Sinclair, M. B.

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, “Broken symmetry dielectric resonators for high quality factor Fano metasurfaces,” ACS Photon. 3, 2362–2367 (2016).
[Crossref]

S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III-V semiconductor nanoresonators-a new strategy for passive, active and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
[Crossref]

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
[Crossref]

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, and I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Singh, D. J.

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3, e179 (2014).
[Crossref]

Sitnikova, A.

P. Dmitriev, S. Makarov, V. Milichko, I. Mukhin, A. Gudovskikh, A. Sitnikova, A. Samusev, A. Krasnok, and P. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8, 5043–5048 (2015).
[Crossref]

Slovick, B. A.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Smirnova, D.

Song, J.-H.

E.-K. Lee, J.-H. Song, K.-Y. Jeong, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Resonant light scattering from a single dielectric nano-antenna formed by electron beam-induced deposition,” Sci. Rep. 5, 10400 (2015).
[Crossref]

Soukoulis, C. M.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
[Crossref]

Soumahoro, I.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3, 1280–1286 (2015).
[Crossref]

Spicer, W.

D. Pierce and W. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972).
[Crossref]

Spiecker, E.

R. Kormer, B. Butz, E. Spiecker, and W. Peukert, “Crystal shape engineering of silicon nanoparticles in a thermal aerosol reactor,” Cryst. Growth Des. 12, 1330–1336 (2012).
[Crossref]

Spinelli, P.

P. Spinelli, B. Macco, M. A. Verschuuren, W. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett. 102, 233902 (2013).
[Crossref]

P. Spinelli, M. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

Staude, I.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 1 (2017).
[Crossref]

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
[Crossref]

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Stevens, J. O.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Stockman, M. I.

M. I. Stockman, “Spaser action, loss compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett. 106, 156802 (2011).
[Crossref]

Stout, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

Streyer, W.

Studna, A.

D. Aspnes and A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  ev,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Sun, G.

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” App. Phys. Lett. 100, 11105 (2012).
[Crossref]

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96, 181102 (2010).
[Crossref]

Sun, J.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

Sviridov, A.

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

Tamarov, K.

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

Tassin, P.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

Taubner, T.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref]

Thomann, I.

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14, 1446–1452 (2014).
[Crossref]

Thompson, C.

J. Ye and C. Thompson, “Templated solid-state dewetting to controllably produce complex patterns,” Adv. Mater. 23, 1567–1571 (2011).
[Crossref]

Thompson, C. V.

C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42, 399–434 (2012).
[Crossref]

Timoshenko, V.

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

P. Blandin, K. Maximova, M. Gongalsky, J. Sanchez-Royo, V. Chirvony, M. Sentis, V. Timoshenko, and A. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[Crossref]

Tsakmakidis, K. L.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, O. Hess, M. A. Maxwell-Bloch, A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in Langevin approach,” ACS Nano 6, 2420–2431 (2012).
[Crossref]

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, O. Hess, M. A. Maxwell-Bloch, A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in Langevin approach,” ACS Nano 6, 2420–2431 (2012).
[Crossref]

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105, 127401 (2010).
[Crossref]

Tsukernik, A.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

Tuzer, T.

L. Shi, T. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Tymczenko, M.

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: from microcavities to photonic sponges,” Adv. Mater. 20, 95–98 (2008).
[Crossref]

Vabishchevich, P.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 1 (2017).
[Crossref]

Vabishchevich, P. P.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Vaillon, R.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Valentine, J.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

van de Groep, J.

van de Haar, M.

Vandamme, L.

P. Herve and L. Vandamme, “General relation between refractive index and energy gap in semiconductors,” Infrared Phys. Technol. 35, 609–615 (1994).
[Crossref]

Vaskin, A.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 1 (2017).
[Crossref]

Vasudev, A. P.

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14, 1446–1452 (2014).
[Crossref]

Verre, R.

R. Verre, L. Shao, N. O. Länk, P. Karpinski, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and M. Käll, “Metasurfaces and colloidal suspensions composed of 3D chiral Si nanoresonators,” Adv. Mater. (2017).
[Crossref]

Verschuuren, M.

P. Spinelli, M. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

Verschuuren, M. A.

P. Spinelli, B. Macco, M. A. Verschuuren, W. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett. 102, 233902 (2013).
[Crossref]

Vial, B.

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Vinogradov, A. P.

E. S. Andrianov, D. G. Baranov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Loss compensation by spasers in plasmonic systems,” Opt. Express 21, 13467–13478 (2013).
[Crossref]

A. A. Lisyansky, I. A. Nechepurenko, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Channel spaser: coherent excitation of one-dimensional plasmons from quantum dots located along a linear channel,” Phys. Rev. B 84, 153409 (2011).
[Crossref]

Vurgaftman, I.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).
[Crossref]

Wang, C.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref]

Wang, H.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref]

Warne, L. K.

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, “Broken symmetry dielectric resonators for high quality factor Fano metasurfaces,” ACS Photon. 3, 2362–2367 (2016).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Wasserman, D.

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
[Crossref]

Wehling, T.

T. Wehling, A. Black-Schaffer, and A. Balatsky, “Dirac materials,” Adv. Phys. 63, 1–76 (2014).
[Crossref]

Weidmann, E.

E. Weidmann and J. Anderson, “Structure and growth of oriented tellurium thin films,” Thin Solid Films 7, 265–276 (1971).
[Crossref]

Weiting, F.

F. Weiting and Y. Yixun, “Temperature effects on the refractive index of lead telluride and zinc selenide,” Infrared Phys. 30, 371–373 (1990).
[Crossref]

Wendt, J. R.

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, “Broken symmetry dielectric resonators for high quality factor Fano metasurfaces,” ACS Photon. 3, 2362–2367 (2016).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Weng, H.

H. Weng, X. Dai, and Z. Fang, “Topological semimetals predicted from first-principles calculations,” J. Phys. Condens. Matter 28, 303001 (2016).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Wheeler, M. S.

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

Wood, T.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

Wu, M. C.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[Crossref]

Wuestner, S.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, O. Hess, M. A. Maxwell-Bloch, A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in Langevin approach,” ACS Nano 6, 2420–2431 (2012).
[Crossref]

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, O. Hess, M. A. Maxwell-Bloch, A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in Langevin approach,” ACS Nano 6, 2420–2431 (2012).
[Crossref]

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105, 127401 (2010).
[Crossref]

Xie, L. S.

Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, “Three-dimensional dirac semimetals: design principles and predictions of new materials,” Phys. Rev. B 91, 205128 (2015).
[Crossref]

Xifré-Pérez, E.

Yablonovitch, E.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[Crossref]

Yan, J.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref]

Yang, B.

P. Zhang, B. Yang, P. Rugheimer, M. Roberts, D. Savage, F. Liu, and M. Lagally, “Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator,” J. Phys. D 42, 175309 (2009).
[Crossref]

Yang, G.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref]

Yang, Y.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
[Crossref]

Yankovich, A. B.

R. Verre, L. Shao, N. O. Länk, P. Karpinski, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and M. Käll, “Metasurfaces and colloidal suspensions composed of 3D chiral Si nanoresonators,” Adv. Mater. (2017).
[Crossref]

Ye, J.

J. Ye and C. Thompson, “Templated solid-state dewetting to controllably produce complex patterns,” Adv. Mater. 23, 1567–1571 (2011).
[Crossref]

Yixun, Y.

F. Weiting and Y. Yixun, “Temperature effects on the refractive index of lead telluride and zinc selenide,” Infrared Phys. 30, 371–373 (1990).
[Crossref]

Yoo, J.-H.

J.-H. Yoo, J. In, C. Zheng, I. Sakellari, R. Raman, M. Matthews, S. Elhadj, and C. Grigoropoulos, “Directed dewetting of amorphous silicon film by a donut-shaped laser pulse,” Nanotechnology 26, 165303 (2015).
[Crossref]

Yu, P. Y.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 2010).

Yu, Y. F.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Zambrana-Puyalto, X.

X. Zambrana-Puyalto and N. Bonod, “Purcell factor of spherical Mie resonators,” Phys. Rev. B 91, 195422 (2015).
[Crossref]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Zhang, P.

P. Zhang, B. Yang, P. Rugheimer, M. Roberts, D. Savage, F. Liu, and M. Lagally, “Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator,” J. Phys. D 42, 175309 (2009).
[Crossref]

Zhao, X.-B.

T.-J. Zhu, X. Chen, Y.-Q. Cao, and X.-B. Zhao, “Controllable synthesis and shape evolution of PbTe three-dimensional hierarchical superstructures via an alkaline hydrothermal method,” J. Phys. Chem. C 113, 8085–8091 (2009).
[Crossref]

Zheng, C.

J.-H. Yoo, J. In, C. Zheng, I. Sakellari, R. Raman, M. Matthews, S. Elhadj, and C. Grigoropoulos, “Directed dewetting of amorphous silicon film by a donut-shaped laser pulse,” Nanotechnology 26, 165303 (2015).
[Crossref]

Zheng, W.

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3, e179 (2014).
[Crossref]

Zhong, Y.

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Zhu, T.-J.

T.-J. Zhu, X. Chen, Y.-Q. Cao, and X.-B. Zhao, “Controllable synthesis and shape evolution of PbTe three-dimensional hierarchical superstructures via an alkaline hydrothermal method,” J. Phys. Chem. C 113, 8085–8091 (2009).
[Crossref]

Zia, R.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref]

Zinovyev, S.

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

Zubyuk, V.

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 1 (2017).
[Crossref]

Zywietz, U.

U. Zywietz, M. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photon. 2, 913–920 (2015).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

U. Zywietz, C. Reinhardt, A. Evlyukhin, T. Birr, and B. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114, 45–50 (2014).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

ACS Nano (3)

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, O. Hess, M. A. Maxwell-Bloch, A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in Langevin approach,” ACS Nano 6, 2420–2431 (2012).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

ACS Photon. (5)

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

U. Zywietz, M. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photon. 2, 913–920 (2015).
[Crossref]

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, and M. B. Sinclair, “Broken symmetry dielectric resonators for high quality factor Fano metasurfaces,” ACS Photon. 3, 2362–2367 (2016).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

Adv. Mater. (4)

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: from microcavities to photonic sponges,” Adv. Mater. 20, 95–98 (2008).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

L. Shi, T. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

J. Ye and C. Thompson, “Templated solid-state dewetting to controllably produce complex patterns,” Adv. Mater. 23, 1567–1571 (2011).
[Crossref]

Adv. Opt. Mater. (2)

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3, 1280–1286 (2015).
[Crossref]

S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III-V semiconductor nanoresonators-a new strategy for passive, active and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Adv. Phys. (1)

T. Wehling, A. Black-Schaffer, and A. Balatsky, “Dirac materials,” Adv. Phys. 63, 1–76 (2014).
[Crossref]

Ann. Phys. (1)

G. Mie, “Beiträge zur optik trüber medien speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Annu. Rev. Mater. Res. (1)

C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42, 399–434 (2012).
[Crossref]

App. Phys. Lett. (1)

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” App. Phys. Lett. 100, 11105 (2012).
[Crossref]

Appl. Phys. A (1)

U. Zywietz, C. Reinhardt, A. Evlyukhin, T. Birr, and B. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys. A 114, 45–50 (2014).
[Crossref]

Appl. Phys. Lett. (5)

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, and I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

P. Spinelli, B. Macco, M. A. Verschuuren, W. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett. 102, 233902 (2013).
[Crossref]

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96, 181102 (2010).
[Crossref]

S. V. Li, D. G. Baranov, A. E. Krasnok, and P. A. Belov, “All-dielectric nanoantennas for unidirectional excitation of electromagnetic guided modes,” Appl. Phys. Lett. 107, 171101 (2015).
[Crossref]

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108, 211105 (2016).
[Crossref]

Chem. Rev. (1)

V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Cryst. Growth Des. (1)

R. Kormer, B. Butz, E. Spiecker, and W. Peukert, “Crystal shape engineering of silicon nanoparticles in a thermal aerosol reactor,” Cryst. Growth Des. 12, 1330–1336 (2012).
[Crossref]

Infrared Phys. (1)

F. Weiting and Y. Yixun, “Temperature effects on the refractive index of lead telluride and zinc selenide,” Infrared Phys. 30, 371–373 (1990).
[Crossref]

Infrared Phys. Technol. (2)

N. Ravindra, P. Ganapathy, and J. Choi, “Energy gap-refractive index relations in semiconductors-an overview,” Infrared Phys. Technol. 50, 21–29 (2006).
[Crossref]

P. Herve and L. Vandamme, “General relation between refractive index and energy gap in semiconductors,” Infrared Phys. Technol. 35, 609–615 (1994).
[Crossref]

J. Appl. Phys. (2)

R. Ferrini, M. Patrini, and S. Franchi, “Optical functions from 0.02 to 6  ev of AlxGa1-xSb/GaSb epitaxial layers,” J. Appl. Phys. 84, 4517–4524 (1998).
[Crossref]

J. Bohandy, B. Kim, F. Adrian, and A. Jette, “Metal deposition at 532  nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988).
[Crossref]

J. Mater. Chem. B (1)

P. Blandin, K. Maximova, M. Gongalsky, J. Sanchez-Royo, V. Chirvony, M. Sentis, V. Timoshenko, and A. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[Crossref]

J. Opt. (1)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (2)

T.-J. Zhu, X. Chen, Y.-Q. Cao, and X.-B. Zhao, “Controllable synthesis and shape evolution of PbTe three-dimensional hierarchical superstructures via an alkaline hydrothermal method,” J. Phys. Chem. C 113, 8085–8091 (2009).
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Saenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[Crossref]

J. Phys. Condens. Matter (2)

H. Weng, X. Dai, and Z. Fang, “Topological semimetals predicted from first-principles calculations,” J. Phys. Condens. Matter 28, 303001 (2016).
[Crossref]

C. Okoye, “Electronic and optical properties of snte and gete,” J. Phys. Condens. Matter 14, 8625–8637 (2002).
[Crossref]

J. Phys. D (1)

P. Zhang, B. Yang, P. Rugheimer, M. Roberts, D. Savage, F. Liu, and M. Lagally, “Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator,” J. Phys. D 42, 175309 (2009).
[Crossref]

Laser Photon. Rev. (3)

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

M. Pelton, J. Aizpurua, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Light Sci. Appl. (1)

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3, e179 (2014).
[Crossref]

Nano Lett. (11)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[Crossref]

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14, 1446–1452 (2014).
[Crossref]

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
[Crossref]

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17, 3940–3945 (2017).
[Crossref]

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref]

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
[Crossref]

Nanophotonics (1)

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).
[Crossref]

Nanoscale (4)

M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4, 692–706 (2012).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

P. Dmitriev, S. Makarov, V. Milichko, I. Mukhin, A. Gudovskikh, A. Sitnikova, A. Samusev, A. Krasnok, and P. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8, 5043–5048 (2015).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

Nanotechnology (1)

J.-H. Yoo, J. In, C. Zheng, I. Sakellari, R. Raman, M. Matthews, S. Elhadj, and C. Grigoropoulos, “Directed dewetting of amorphous silicon film by a donut-shaped laser pulse,” Nanotechnology 26, 165303 (2015).
[Crossref]

Nat. Commun. (8)

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref]

M. Shcherbakov, S. Liu, V. Zubyuk, A. Vaskin, P. Vabishchevich, G. Keeler, T. Pertsch, T. Dolgova, I. Staude, I. Brener, and A. Fedyanin, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 1 (2017).
[Crossref]

P. Spinelli, M. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

L. Shi, J. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

L. Gu, D. Hall, Z. Qin, E. Anglin, J. Joo, D. Mooney, S. Howell, and M. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nat. Commun. 4, 2326 (2013).
[Crossref]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Nat. Nanotechnol. (3)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Nat. Photonics (4)

M. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4, 457–461 (2010).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
[Crossref]

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Opt. Mater. (1)

G. Jellison, “Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 151–160 (1992).
[Crossref]

Opt. Spectrosc. (1)

R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, “From optical magnetic resonance to dielectric nanophotonics (a review),” Opt. Spectrosc. 119, 551–568 (2015).
[Crossref]

Optica (2)

Phys. Rev. (1)

R. S. Caldwell and H. Fan, “Optical properties of tellurium and selenium,” Phys. Rev. 114, 664–675 (1959).
[Crossref]

Phys. Rev. B (9)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
[Crossref]

Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, “Three-dimensional dirac semimetals: design principles and predictions of new materials,” Phys. Rev. B 91, 205128 (2015).
[Crossref]

T. Schwarz-Selinger, D. G. Cahill, S.-C. Chen, S.-J. Moon, and C. Grigoropoulos, “Micron-scale modifications of Si surface morphology by pulsed-laser texturing,” Phys. Rev. B 64, 155323 (2001).
[Crossref]

X. Zambrana-Puyalto and N. Bonod, “Purcell factor of spherical Mie resonators,” Phys. Rev. B 91, 195422 (2015).
[Crossref]

D. Aspnes and A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  ev,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

D. Pierce and W. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972).
[Crossref]

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85, 245432 (2012).
[Crossref]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[Crossref]

A. A. Lisyansky, I. A. Nechepurenko, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Channel spaser: coherent excitation of one-dimensional plasmons from quantum dots located along a linear channel,” Phys. Rev. B 84, 153409 (2011).
[Crossref]

Phys. Rev. Lett. (5)

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105, 127401 (2010).
[Crossref]

M. I. Stockman, “Spaser action, loss compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett. 106, 156802 (2011).
[Crossref]

B. I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Phys. Status Solidi B (1)

T. S. Moss, “Relations between the refractive index and energy gap of semiconductors,” Phys. Status Solidi B 131, 415–427 (1985).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
[Crossref]

Prog. Photovoltaics (1)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300  k,” Prog. Photovoltaics 3, 189–192 (1995).
[Crossref]

Sci. Rep. (7)

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5, 18322 (2015).
[Crossref]

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, and P. Belov, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

K. Tamarov, L. Osminkina, S. Zinovyev, K. Maximova, J. Kargina, M. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A. Sviridov, M. Sentis, A. Ivanov, V. Nikiforov, A. Kabashin, and V. Timoshenko, “Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy,” Sci. Rep. 4, 7034 (2014).
[Crossref]

E.-K. Lee, J.-H. Song, K.-Y. Jeong, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Resonant light scattering from a single dielectric nano-antenna formed by electron beam-induced deposition,” Sci. Rep. 5, 10400 (2015).
[Crossref]

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref]

Science (2)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Small (1)

J. Fan and P. Chu, “Group IV nanoparticles: synthesis, properties, and biological applications,” Small 6, 2080–2098 (2010).
[Crossref]

Thin Solid Films (1)

E. Weidmann and J. Anderson, “Structure and growth of oriented tellurium thin films,” Thin Solid Films 7, 265–276 (1971).
[Crossref]

Other (6)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

R. Verre, L. Shao, N. O. Länk, P. Karpinski, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and M. Käll, “Metasurfaces and colloidal suspensions composed of 3D chiral Si nanoresonators,” Adv. Mater. (2017).
[Crossref]

W. O’Mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology (Noyes, 1990).

C. F. Klingshirn, Semiconductor Optics (Springer, 2012).

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 2010).

H. M. Nussenzveig, Causality and Dispersion Relations (Academic, 1972).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Schematic illustration of fundamental resonances and induced currents in plasmonic and dielectric nanoparticles. Free electrons of the metal give rise to the conduction currents in plasmonic nanoparticles, while bounded charges in dielectrics cannot move freely across the particle and give rise to the displacement currents. (b) Refractive index dependence of the Q factor of the magnetic dipole resonance of a spherical nanoparticle and the respective dependence of the resonant nanoparticle diameter D. The nanoparticle size is continuously tuned such that is satisfies the MD resonance condition at each point.

Fig. 2.
Fig. 2.

(a) Refractive indices of materials available for dielectric nanophotonics from visible to mid-IR spectral ranges. (b) A typical dielectric response of a high-index material exhibiting a series of resonances. Shaded area depicts two high-index plateau related to material resonances. (c) Refractive index of several semiconductors, and SiC showing behavior very similar to that of the generic material shown in (b).

Fig. 3.
Fig. 3.

Quantitative comparison of the available high-index materials for all-dielectric nanophotonics. (a)–(c) Q factors of the magnetic dipole (MD) resonance of spherical nanoparticles made of various high-index materials as a function of wavelength in the (a) visible, (b) near-IR, and (c) mid-IR regions. The nanosphere sizes were continuously tuned in such a way that they satisfy the MD resonance condition at each wavelength. GeTe is marked with * because theoretical values of refractive index were used to calculate the response of GeTe nanoparticles. (d)–(f) The antenna radiation efficiency ηrad at the MD resonance for the same scope of materials.

Fig. 4.
Fig. 4.

Q factors of the MD resonance of nanodisks with equal height and diameter. The nanodisk sizes were continuously tuned in such a way that they satisfy the MD resonance condition at each wavelength.

Fig. 5.
Fig. 5.

Schematic comparison of fabrication techniques of high-index nanostructures.

Fig. 6.
Fig. 6.

Examples of high-index dielectric nanostructures fabricated by lithography. (a) Scanning electron microscopy (SEM) image of hollow Si cylinder. (b) SEM image of carbonaceous dielectric nanorod antenna fabricated by electron-beam-induced deposition. (c) Periodic dielectric waveguide crossing. (d) Silicon nanoparticles obtained by means of reactive-ion-etching through a mask. (e) Si nanoparticles with additionally deposited Si3N4 thin film. (f) High-index cubic tellurium resonators. Reprinted with permission from: (a) Ref. [87], (b) Ref. [88], (c) Ref. [89], (d) Ref. [90], (e) Ref. [91], (f) Ref. [30].

Fig. 7.
Fig. 7.

Examples of high-index dielectric nanostructures fabricated by chemical methods and dewetting. (a) Self-aligned silicon nanoparticles obtained by chemical deposition. (b) Periodic Fe2O3 nanobeam-array with different periods fabricated via combination of lithography (top image) and oxidation in air (bottom). (c) Dark-field optical image of silicon nanoparticles obtained by thin film dewetting. (d) AFM image of SiGe islands in array received after thermal dewetting. Reprinted with permission from: (a) Ref. [105], (b) Ref. [106], (c) Ref. [107], (d) Ref. [108].

Fig. 8.
Fig. 8.

Examples of high-index dielectric nanostructures fabricated by laser assisted methods. (a) Dark-field optical image of silicon nanoparticle obtained via femtosecond laser ablation of bulk silicon. (b) SEM image of a silicon nanosphere trimer. (c) TEM image of a ZnO submicrosphere. (d)–(e) Demonstration of the laser-printing method: (d) array of amorphous Si nanoparticles fabricated by LIT method and visualized with dark-field microscopy (scale bar, 20 μm). The insert shows a SEM image of a single Si nanoparticle in this array (scale bar, 200 nm). (e) Dark-field optical image of silicon nanoparticles obtained via femtosecond laser ablation of thin silicon film. In picture (e) red nanoparticles are amorphized, while yellow are annealed and crystalline. (f) SEM images of Si nanoparticle dimer structures on a glass substrate. (g) Optical image of an array of the silicon nanoparticles fabricated by direct laser writing; inset displays SEM image of the written nanoparticles covered by a 10 nm gold layer with the scale bar of 700 nm. (h) AFM image of typical laser dimples on c-Si. Reprinted with permission from: (a) Ref. [23], (b) Ref. [116], (c) Ref. [117], (d), (e) Ref. [24], (f) Ref. [80], (g) Ref. [118], (h) Ref. [119].

Fig. 9.
Fig. 9.

High-refractive-index materials for all-dielectric nanophotonics: Q factors of spherical resonators made from these materials. Materials that can be nanostructured by the available fabrication techniques are marked by green; nonstructurable materials are marked by blue color.

Tables (1)

Tables Icon

Table 1. Optical Properties of Selected High-Index Materials

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(ElocEinc)2γradQ2V,
ηrad=σscatσscat+σabs,
n4Eg=95  eV.

Metrics