Abstract

Polarization-resolved coherent Raman scattering (polar-CRS) provides rich information on molecular orientational organization, with the strong advantages of being a label-free and chemically specific imaging method. Its implementation, however, strongly reduces the imaging acquisition rate, due to limits imposed by polarization tuning. Here we demonstrate fast-polar-CRS imaging based on combined electro-optic polarization and acousto-optic amplitude modulations, applicable to both stimulated Raman scattering and coherent anti-Stokes Raman scattering imaging. The proposed scheme adds polarization information without compromising the capacities of regular CRS intensity imaging; increases the speed of orientational imaging by two orders of magnitude as compared with previous approaches; and does not require post-processing analyses. We show that this method permits sub-second time-scale imaging of lipid order packing and local lipid membrane deformations in artificial lipid multilayers, but also in red blood cell ghosts, demonstrating its high sensitivity down to a single lipid bilayer membrane.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rotating-polarization CARS microscopy: combining chemical and molecular orientation sensitivity

Giuseppe de Vito, Angelo Bifone, and Vincenzo Piazza
Opt. Express 20(28) 29369-29377 (2012)

RP-CARS: label-free optical readout of the myelin intrinsic healthiness

Giuseppe de Vito, Ilaria Tonazzini, Marco Cecchini, and Vincenzo Piazza
Opt. Express 22(11) 13733-13743 (2014)

Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams

E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté
Opt. Express 17(21) 18419-18432 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [Crossref]
  2. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
    [Crossref]
  3. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
    [Crossref]
  4. J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine,” Science 350, aaa8870 (2015).
    [Crossref]
  5. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
    [Crossref]
  6. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
    [Crossref]
  7. D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117, 4634–4640 (2013).
    [Crossref]
  8. C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
  9. C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3, 1377–1380 (2016).
    [Crossref]
  10. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photon. 3, 205–271 (2011).
    [Crossref]
  11. J.-X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 100, 9826–9830 (2011).
    [Crossref]
  12. A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
    [Crossref]
  13. B. G. Saar, H.-S. Park, X. S. Xie, and O. D. Lavrentovich, “Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 15, 13585–13596 (2007).
    [Crossref]
  14. M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
    [Crossref]
  15. F. Munhoz, H. Rigneault, and S. Brasselet, “High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy,” Phys. Rev. Lett. 105, 123903 (2010).
    [Crossref]
  16. G. W. H. Wurpel, H. A. Rinia, and M. Muller, “Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy,” J. Microsc. 218, 37–45 (2005).
    [Crossref]
  17. F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
    [Crossref]
  18. Y. Fu, T. B. Huff, H.-W. Wang, J.-X. Cheng, and H. Wang, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 16, 19396–19409 (2008).
    [Crossref]
  19. G. de Vito, A. Bifone, and V. Piazza, “Rotating-polarization CARS microscopy: combining chemical and molecular orientation sensitivity,” Opt. Express 20, 29369–29377 (2012).
    [Crossref]
  20. G. de Vito, V. Cappello, I. Tonazzini, M. Cecchini, and V. Piazza, “RP-CARS reveals molecular spatial order anomalies in myelin of an animal model of Krabbe disease,” J. Biophoton. 10, 385–393 (2017).
    [Crossref]
  21. P. Gasecka, A. Jaouen, F.-Z. Bioud, H. B. de Aguiar, J. Duboisset, P. Ferrand, H. Rigneault, N. Balla, F. Debarbieux, and S. Brasselet, “Lipid order degradation in autoimmune demyelination probed by polarization resolved coherent Raman microscopy,” bioRxiv (2017), doi: 10.1101/105965.
    [Crossref]
  22. R. Turcotte, D. J. Rutledge, E. Bélanger, D. Dill, W. B. Macklin, and D. C. Côté, “Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy,” Sci. Rep. 6, 31685 (2016).
    [Crossref]
  23. J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
    [Crossref]
  24. M. Samim, D. Sandkuijl, I. Tretyakov, R. Cisek, and V. Barzda, “Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams,” Int. J. Mol. Sci. 14, 18520–18534 (2013).
    [Crossref]
  25. P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
    [Crossref]
  26. J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, and T. F. Heinz, “Homodyne detection of second-harmonic generation as a probe of electric fields,” Appl. Phys. B 68, 333–341 (1999).
    [Crossref]
  27. C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
    [Crossref]
  28. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651–3658 (2009).
    [Crossref]
  29. E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, R. D. Muir, and G. J. Simpson, “Polarization-modulated second harmonic generation ellipsometric microscopy at video rate,” Anal. Chem. 86, 8448–8456 (2014).
    [Crossref]
  30. E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
    [Crossref]
  31. D. A. Cheresh, J. Leng, and R. L. Klemke, “Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells,” J. Cell Biol. 146, 1107–1116 (1999).
    [Crossref]
  32. A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).
  33. R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, “Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses,” Biophys. J. 96, L13–L15 (2009).
    [Crossref]
  34. A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
    [Crossref]
  35. X. Nan, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208 (2003).
    [Crossref]
  36. E. Bélanger, F. P. Henry, R. Vallée, M. A. Randolph, I. E. Kochevar, J. M. Winograd, C. P. Lin, and D. Côté, “In vivo evaluation of demyelination and remyelination in a nerve crush injury model,” Biomed. Opt. Express 2, 2698–2708 (2011).
    [Crossref]
  37. S. Dochow, C. Beleites, T. Henkel, G. Mayer, J. Albert, J. Clement, C. Krafft, and J. Popp, “Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps,” Anal. Bioanal. Chem. 405, 2743–2746 (2013).
    [Crossref]
  38. M. Andreana, M.-A. Houle, D. J. Moffatt, A. Ridsdale, E. Buettner, F. Légaré, and A. Stolow, “Amplitude and polarization modulated hyperspectral stimulated Raman scattering microscopy,” Opt. Express 23, 28119–28131 (2015).
    [Crossref]
  39. R. P. Davis, A. J. Moad, G. S. Goeken, R. D. Wampler, and G. J. Simpson, “Selection rules and symmetry relations for four-wave mixing measurements of uniaxial assemblies,” J. Phys. Chem. B 112, 5834–5848 (2008).
    [Crossref]

2017 (1)

G. de Vito, V. Cappello, I. Tonazzini, M. Cecchini, and V. Piazza, “RP-CARS reveals molecular spatial order anomalies in myelin of an animal model of Krabbe disease,” J. Biophoton. 10, 385–393 (2017).
[Crossref]

2016 (3)

R. Turcotte, D. J. Rutledge, E. Bélanger, D. Dill, W. B. Macklin, and D. C. Côté, “Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy,” Sci. Rep. 6, 31685 (2016).
[Crossref]

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref]

C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3, 1377–1380 (2016).
[Crossref]

2015 (5)

M. Andreana, M.-A. Houle, D. J. Moffatt, A. Ridsdale, E. Buettner, F. Légaré, and A. Stolow, “Amplitude and polarization modulated hyperspectral stimulated Raman scattering microscopy,” Opt. Express 23, 28119–28131 (2015).
[Crossref]

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine,” Science 350, aaa8870 (2015).
[Crossref]

2014 (2)

E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, R. D. Muir, and G. J. Simpson, “Polarization-modulated second harmonic generation ellipsometric microscopy at video rate,” Anal. Chem. 86, 8448–8456 (2014).
[Crossref]

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

2013 (4)

S. Dochow, C. Beleites, T. Henkel, G. Mayer, J. Albert, J. Clement, C. Krafft, and J. Popp, “Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps,” Anal. Bioanal. Chem. 405, 2743–2746 (2013).
[Crossref]

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[Crossref]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117, 4634–4640 (2013).
[Crossref]

M. Samim, D. Sandkuijl, I. Tretyakov, R. Cisek, and V. Barzda, “Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams,” Int. J. Mol. Sci. 14, 18520–18534 (2013).
[Crossref]

2012 (1)

2011 (3)

2010 (4)

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref]

F. Munhoz, H. Rigneault, and S. Brasselet, “High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy,” Phys. Rev. Lett. 105, 123903 (2010).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).

2009 (2)

R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, “Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses,” Biophys. J. 96, L13–L15 (2009).
[Crossref]

Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651–3658 (2009).
[Crossref]

2008 (3)

Y. Fu, T. B. Huff, H.-W. Wang, J.-X. Cheng, and H. Wang, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 16, 19396–19409 (2008).
[Crossref]

R. P. Davis, A. J. Moad, G. S. Goeken, R. D. Wampler, and G. J. Simpson, “Selection rules and symmetry relations for four-wave mixing measurements of uniaxial assemblies,” J. Phys. Chem. B 112, 5834–5848 (2008).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

2007 (2)

B. G. Saar, H.-S. Park, X. S. Xie, and O. D. Lavrentovich, “Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 15, 13585–13596 (2007).
[Crossref]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[Crossref]

2005 (2)

G. W. H. Wurpel, H. A. Rinia, and M. Muller, “Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy,” J. Microsc. 218, 37–45 (2005).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

2003 (2)

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
[Crossref]

X. Nan, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208 (2003).
[Crossref]

2002 (1)

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

1999 (3)

J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, and T. F. Heinz, “Homodyne detection of second-harmonic generation as a probe of electric fields,” Appl. Phys. B 68, 333–341 (1999).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

D. A. Cheresh, J. Leng, and R. L. Klemke, “Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells,” J. Cell Biol. 146, 1107–1116 (1999).
[Crossref]

Albert, J.

S. Dochow, C. Beleites, T. Henkel, G. Mayer, J. Albert, J. Clement, C. Krafft, and J. Popp, “Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps,” Anal. Bioanal. Chem. 405, 2743–2746 (2013).
[Crossref]

Anantharam, A.

A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).

Andreana, M.

Axelrod, D.

A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).

Balla, N.

P. Gasecka, A. Jaouen, F.-Z. Bioud, H. B. de Aguiar, J. Duboisset, P. Ferrand, H. Rigneault, N. Balla, F. Debarbieux, and S. Brasselet, “Lipid order degradation in autoimmune demyelination probed by polarization resolved coherent Raman microscopy,” bioRxiv (2017), doi: 10.1101/105965.
[Crossref]

Barzda, V.

M. Samim, D. Sandkuijl, I. Tretyakov, R. Cisek, and V. Barzda, “Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams,” Int. J. Mol. Sci. 14, 18520–18534 (2013).
[Crossref]

Bélanger, E.

R. Turcotte, D. J. Rutledge, E. Bélanger, D. Dill, W. B. Macklin, and D. C. Côté, “Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy,” Sci. Rep. 6, 31685 (2016).
[Crossref]

E. Bélanger, F. P. Henry, R. Vallée, M. A. Randolph, I. E. Kochevar, J. M. Winograd, C. P. Lin, and D. Côté, “In vivo evaluation of demyelination and remyelination in a nerve crush injury model,” Biomed. Opt. Express 2, 2698–2708 (2011).
[Crossref]

Beleites, C.

S. Dochow, C. Beleites, T. Henkel, G. Mayer, J. Albert, J. Clement, C. Krafft, and J. Popp, “Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps,” Anal. Bioanal. Chem. 405, 2743–2746 (2013).
[Crossref]

Benninger, R. K. P.

R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, “Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses,” Biophys. J. 96, L13–L15 (2009).
[Crossref]

Berto, P.

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref]

Bifone, A.

Bioud, F.-Z.

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref]

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

P. Gasecka, A. Jaouen, F.-Z. Bioud, H. B. de Aguiar, J. Duboisset, P. Ferrand, H. Rigneault, N. Balla, F. Debarbieux, and S. Brasselet, “Lipid order degradation in autoimmune demyelination probed by polarization resolved coherent Raman microscopy,” bioRxiv (2017), doi: 10.1101/105965.
[Crossref]

Brasselet, S.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref]

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref]

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[Crossref]

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photon. 3, 205–271 (2011).
[Crossref]

F. Munhoz, H. Rigneault, and S. Brasselet, “High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy,” Phys. Rev. Lett. 105, 123903 (2010).
[Crossref]

P. Gasecka, A. Jaouen, F.-Z. Bioud, H. B. de Aguiar, J. Duboisset, P. Ferrand, H. Rigneault, N. Balla, F. Debarbieux, and S. Brasselet, “Lipid order degradation in autoimmune demyelination probed by polarization resolved coherent Raman microscopy,” bioRxiv (2017), doi: 10.1101/105965.
[Crossref]

Buettner, E.

Camp, C. H.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

Cappello, V.

G. de Vito, V. Cappello, I. Tonazzini, M. Cecchini, and V. Piazza, “RP-CARS reveals molecular spatial order anomalies in myelin of an animal model of Krabbe disease,” J. Biophoton. 10, 385–393 (2017).
[Crossref]

Cecchini, M.

G. de Vito, V. Cappello, I. Tonazzini, M. Cecchini, and V. Piazza, “RP-CARS reveals molecular spatial order anomalies in myelin of an animal model of Krabbe disease,” J. Biophoton. 10, 385–393 (2017).
[Crossref]

Chen, A. J.

Cheng, J.-X.

C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3, 1377–1380 (2016).
[Crossref]

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine,” Science 350, aaa8870 (2015).
[Crossref]

J.-X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 100, 9826–9830 (2011).
[Crossref]

Y. Fu, T. B. Huff, H.-W. Wang, J.-X. Cheng, and H. Wang, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 16, 19396–19409 (2008).
[Crossref]

Cheresh, D. A.

D. A. Cheresh, J. Leng, and R. L. Klemke, “Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells,” J. Cell Biol. 146, 1107–1116 (1999).
[Crossref]

Cicerone, M. T.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

Cisek, R.

M. Samim, D. Sandkuijl, I. Tretyakov, R. Cisek, and V. Barzda, “Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams,” Int. J. Mol. Sci. 14, 18520–18534 (2013).
[Crossref]

Cleff, C.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref]

Clement, J.

S. Dochow, C. Beleites, T. Henkel, G. Mayer, J. Albert, J. Clement, C. Krafft, and J. Popp, “Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps,” Anal. Bioanal. Chem. 405, 2743–2746 (2013).
[Crossref]

Cote, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Côté, D.

Côté, D. C.

R. Turcotte, D. J. Rutledge, E. Bélanger, D. Dill, W. B. Macklin, and D. C. Côté, “Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy,” Sci. Rep. 6, 31685 (2016).
[Crossref]

Culley, F. J.

R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, “Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses,” Biophys. J. 96, L13–L15 (2009).
[Crossref]

Da Silva, L. B.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

Dadap, J. I.

J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, and T. F. Heinz, “Homodyne detection of second-harmonic generation as a probe of electric fields,” Appl. Phys. B 68, 333–341 (1999).
[Crossref]

Dake, F.

Davis, D. M.

R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, “Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses,” Biophys. J. 96, L13–L15 (2009).
[Crossref]

Davis, R. P.

R. P. Davis, A. J. Moad, G. S. Goeken, R. D. Wampler, and G. J. Simpson, “Selection rules and symmetry relations for four-wave mixing measurements of uniaxial assemblies,” J. Phys. Chem. B 112, 5834–5848 (2008).
[Crossref]

de Aguiar, H. B.

P. Gasecka, A. Jaouen, F.-Z. Bioud, H. B. de Aguiar, J. Duboisset, P. Ferrand, H. Rigneault, N. Balla, F. Debarbieux, and S. Brasselet, “Lipid order degradation in autoimmune demyelination probed by polarization resolved coherent Raman microscopy,” bioRxiv (2017), doi: 10.1101/105965.
[Crossref]

de Vito, G.

G. de Vito, V. Cappello, I. Tonazzini, M. Cecchini, and V. Piazza, “RP-CARS reveals molecular spatial order anomalies in myelin of an animal model of Krabbe disease,” J. Biophoton. 10, 385–393 (2017).
[Crossref]

G. de Vito, A. Bifone, and V. Piazza, “Rotating-polarization CARS microscopy: combining chemical and molecular orientation sensitivity,” Opt. Express 20, 29369–29377 (2012).
[Crossref]

Debarbieux, F.

P. Gasecka, A. Jaouen, F.-Z. Bioud, H. B. de Aguiar, J. Duboisset, P. Ferrand, H. Rigneault, N. Balla, F. Debarbieux, and S. Brasselet, “Lipid order degradation in autoimmune demyelination probed by polarization resolved coherent Raman microscopy,” bioRxiv (2017), doi: 10.1101/105965.
[Crossref]

DeWalt, E. L.

E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, R. D. Muir, and G. J. Simpson, “Polarization-modulated second harmonic generation ellipsometric microscopy at video rate,” Anal. Chem. 86, 8448–8456 (2014).
[Crossref]

Dill, D.

R. Turcotte, D. J. Rutledge, E. Bélanger, D. Dill, W. B. Macklin, and D. C. Côté, “Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy,” Sci. Rep. 6, 31685 (2016).
[Crossref]

Dochow, S.

S. Dochow, C. Beleites, T. Henkel, G. Mayer, J. Albert, J. Clement, C. Krafft, and J. Popp, “Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps,” Anal. Bioanal. Chem. 405, 2743–2746 (2013).
[Crossref]

Duboisset, J.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref]

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref]

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

P. Gasecka, A. Jaouen, F.-Z. Bioud, H. B. de Aguiar, J. Duboisset, P. Ferrand, H. Rigneault, N. Balla, F. Debarbieux, and S. Brasselet, “Lipid order degradation in autoimmune demyelination probed by polarization resolved coherent Raman microscopy,” bioRxiv (2017), doi: 10.1101/105965.
[Crossref]

Eakins, G.

Edwards, R. H.

A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Ferrand, P.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref]

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref]

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[Crossref]

P. Gasecka, A. Jaouen, F.-Z. Bioud, H. B. de Aguiar, J. Duboisset, P. Ferrand, H. Rigneault, N. Balla, F. Debarbieux, and S. Brasselet, “Lipid order degradation in autoimmune demyelination probed by polarization resolved coherent Raman microscopy,” bioRxiv (2017), doi: 10.1101/105965.
[Crossref]

French, P. M. W.

R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, “Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses,” Biophys. J. 96, L13–L15 (2009).
[Crossref]

Freudiger, C.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117, 4634–4640 (2013).
[Crossref]

Freudiger, C. W.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

Fu, D.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117, 4634–4640 (2013).
[Crossref]

Fu, Y.

Fukui, K.

Gasecka, A.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref]

Gasecka, P.

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref]

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

P. Gasecka, A. Jaouen, F.-Z. Bioud, H. B. de Aguiar, J. Duboisset, P. Ferrand, H. Rigneault, N. Balla, F. Debarbieux, and S. Brasselet, “Lipid order degradation in autoimmune demyelination probed by polarization resolved coherent Raman microscopy,” bioRxiv (2017), doi: 10.1101/105965.
[Crossref]

Goeken, G. S.

R. P. Davis, A. J. Moad, G. S. Goeken, R. D. Wampler, and G. J. Simpson, “Selection rules and symmetry relations for four-wave mixing measurements of uniaxial assemblies,” J. Phys. Chem. B 112, 5834–5848 (2008).
[Crossref]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

Heinz, T. F.

J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, and T. F. Heinz, “Homodyne detection of second-harmonic generation as a probe of electric fields,” Appl. Phys. B 68, 333–341 (1999).
[Crossref]

Henkel, T.

S. Dochow, C. Beleites, T. Henkel, G. Mayer, J. Albert, J. Clement, C. Krafft, and J. Popp, “Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps,” Anal. Bioanal. Chem. 405, 2743–2746 (2013).
[Crossref]

Henry, F. P.

Holtom, G.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117, 4634–4640 (2013).
[Crossref]

Holtom, G. R.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Holz, R. W.

A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).

Hong, W.

Houle, M.-A.

Huang, K.-C.

Huff, T. B.

Itoh, K.

Jaouen, A.

P. Gasecka, A. Jaouen, F.-Z. Bioud, H. B. de Aguiar, J. Duboisset, P. Ferrand, H. Rigneault, N. Balla, F. Debarbieux, and S. Brasselet, “Lipid order degradation in autoimmune demyelination probed by polarization resolved coherent Raman microscopy,” bioRxiv (2017), doi: 10.1101/105965.
[Crossref]

Kachynski, A. V.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[Crossref]

Kajiyama, S.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

Karanja, C.

Kim, B.-M.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

Klemke, R. L.

D. A. Cheresh, J. Leng, and R. L. Klemke, “Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells,” J. Cell Biol. 146, 1107–1116 (1999).
[Crossref]

Kochevar, I. E.

Krafft, C.

S. Dochow, C. Beleites, T. Henkel, G. Mayer, J. Albert, J. Clement, C. Krafft, and J. Popp, “Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps,” Anal. Bioanal. Chem. 405, 2743–2746 (2013).
[Crossref]

Kress, A.

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[Crossref]

Kuzmin, A. N.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[Crossref]

Lavrentovich, O. D.

Lee, S.-Y.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).

Légaré, F.

Leng, J.

D. A. Cheresh, J. Leng, and R. L. Klemke, “Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells,” J. Cell Biol. 146, 1107–1116 (1999).
[Crossref]

Li, J.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).

Liao, C.-S.

C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3, 1377–1380 (2016).
[Crossref]

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).

Lin, C. P.

E. Bélanger, F. P. Henry, R. Vallée, M. A. Randolph, I. E. Kochevar, J. M. Winograd, C. P. Lin, and D. Côté, “In vivo evaluation of demyelination and remyelination in a nerve crush injury model,” Biomed. Opt. Express 2, 2698–2708 (2011).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

Macklin, W. B.

R. Turcotte, D. J. Rutledge, E. Bélanger, D. Dill, W. B. Macklin, and D. C. Côté, “Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy,” Sci. Rep. 6, 31685 (2016).
[Crossref]

Mayer, G.

S. Dochow, C. Beleites, T. Henkel, G. Mayer, J. Albert, J. Clement, C. Krafft, and J. Popp, “Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps,” Anal. Bioanal. Chem. 405, 2743–2746 (2013).
[Crossref]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

Misewich, J. A.

J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, and T. F. Heinz, “Homodyne detection of second-harmonic generation as a probe of electric fields,” Appl. Phys. B 68, 333–341 (1999).
[Crossref]

Moad, A. J.

R. P. Davis, A. J. Moad, G. S. Goeken, R. D. Wampler, and G. J. Simpson, “Selection rules and symmetry relations for four-wave mixing measurements of uniaxial assemblies,” J. Phys. Chem. B 112, 5834–5848 (2008).
[Crossref]

Moffatt, D. J.

Muir, R. D.

E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, R. D. Muir, and G. J. Simpson, “Polarization-modulated second harmonic generation ellipsometric microscopy at video rate,” Anal. Chem. 86, 8448–8456 (2014).
[Crossref]

Muller, M.

G. W. H. Wurpel, H. A. Rinia, and M. Muller, “Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy,” J. Microsc. 218, 37–45 (2005).
[Crossref]

Munhoz, F.

F. Munhoz, H. Rigneault, and S. Brasselet, “High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy,” Phys. Rev. Lett. 105, 123903 (2010).
[Crossref]

Nan, X.

X. Nan, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208 (2003).
[Crossref]

Neil, M. A. A.

R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, “Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses,” Biophys. J. 96, L13–L15 (2009).
[Crossref]

Oertel, D. C.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref]

Oglesbee, R. A.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).

Önfelt, B.

R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, “Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses,” Biophys. J. 96, L13–L15 (2009).
[Crossref]

Onoa, B.

A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).

Ozeki, Y.

Park, H.-S.

Pautot, S.

J.-X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 100, 9826–9830 (2011).
[Crossref]

Piazza, V.

G. de Vito, V. Cappello, I. Tonazzini, M. Cecchini, and V. Piazza, “RP-CARS reveals molecular spatial order anomalies in myelin of an animal model of Krabbe disease,” J. Biophoton. 10, 385–393 (2017).
[Crossref]

G. de Vito, A. Bifone, and V. Piazza, “Rotating-polarization CARS microscopy: combining chemical and molecular orientation sensitivity,” Opt. Express 20, 29369–29377 (2012).
[Crossref]

Popp, J.

S. Dochow, C. Beleites, T. Henkel, G. Mayer, J. Albert, J. Clement, C. Krafft, and J. Popp, “Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps,” Anal. Bioanal. Chem. 405, 2743–2746 (2013).
[Crossref]

Potma, E. O.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
[Crossref]

Prasad, P. N.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[Crossref]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Ranchon, H.

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[Crossref]

Randolph, M. A.

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

Reiser, K. M.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

Ridsdale, A.

Rigneault, H.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref]

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref]

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[Crossref]

F. Munhoz, H. Rigneault, and S. Brasselet, “High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy,” Phys. Rev. Lett. 105, 123903 (2010).
[Crossref]

P. Gasecka, A. Jaouen, F.-Z. Bioud, H. B. de Aguiar, J. Duboisset, P. Ferrand, H. Rigneault, N. Balla, F. Debarbieux, and S. Brasselet, “Lipid order degradation in autoimmune demyelination probed by polarization resolved coherent Raman microscopy,” bioRxiv (2017), doi: 10.1101/105965.
[Crossref]

Rinia, H. A.

G. W. H. Wurpel, H. A. Rinia, and M. Muller, “Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy,” J. Microsc. 218, 37–45 (2005).
[Crossref]

Rubenchik, A. M.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

Rutledge, D. J.

R. Turcotte, D. J. Rutledge, E. Bélanger, D. Dill, W. B. Macklin, and D. C. Côté, “Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy,” Sci. Rep. 6, 31685 (2016).
[Crossref]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

B. G. Saar, H.-S. Park, X. S. Xie, and O. D. Lavrentovich, “Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 15, 13585–13596 (2007).
[Crossref]

Samim, M.

M. Samim, D. Sandkuijl, I. Tretyakov, R. Cisek, and V. Barzda, “Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams,” Int. J. Mol. Sci. 14, 18520–18534 (2013).
[Crossref]

Sandkuijl, D.

M. Samim, D. Sandkuijl, I. Tretyakov, R. Cisek, and V. Barzda, “Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams,” Int. J. Mol. Sci. 14, 18520–18534 (2013).
[Crossref]

Savatier, J.

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[Crossref]

Schmitt, P. D.

E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, R. D. Muir, and G. J. Simpson, “Polarization-modulated second harmonic generation ellipsometric microscopy at video rate,” Anal. Chem. 86, 8448–8456 (2014).
[Crossref]

Schnyder, T.

R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, “Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses,” Biophys. J. 96, L13–L15 (2009).
[Crossref]

Shan, J.

J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, and T. F. Heinz, “Homodyne detection of second-harmonic generation as a probe of electric fields,” Appl. Phys. B 68, 333–341 (1999).
[Crossref]

Simpson, G. J.

E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, R. D. Muir, and G. J. Simpson, “Polarization-modulated second harmonic generation ellipsometric microscopy at video rate,” Anal. Chem. 86, 8448–8456 (2014).
[Crossref]

R. P. Davis, A. J. Moad, G. S. Goeken, R. D. Wampler, and G. J. Simpson, “Selection rules and symmetry relations for four-wave mixing measurements of uniaxial assemblies,” J. Phys. Chem. B 112, 5834–5848 (2008).
[Crossref]

Slipchenko, M. N.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).

Smalyukh, I. I.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[Crossref]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

Stoller, P.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

Stolow, A.

Sullivan, S. Z.

E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, R. D. Muir, and G. J. Simpson, “Polarization-modulated second harmonic generation ellipsometric microscopy at video rate,” Anal. Chem. 86, 8448–8456 (2014).
[Crossref]

Taner, S. B.

R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, “Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses,” Biophys. J. 96, L13–L15 (2009).
[Crossref]

Tonazzini, I.

G. de Vito, V. Cappello, I. Tonazzini, M. Cecchini, and V. Piazza, “RP-CARS reveals molecular spatial order anomalies in myelin of an animal model of Krabbe disease,” J. Biophoton. 10, 385–393 (2017).
[Crossref]

Tretyakov, I.

M. Samim, D. Sandkuijl, I. Tretyakov, R. Cisek, and V. Barzda, “Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams,” Int. J. Mol. Sci. 14, 18520–18534 (2013).
[Crossref]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

Turcotte, R.

R. Turcotte, D. J. Rutledge, E. Bélanger, D. Dill, W. B. Macklin, and D. C. Côté, “Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy,” Sci. Rep. 6, 31685 (2016).
[Crossref]

Valenton, T.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref]

Vallée, R.

Vanherberghen, B.

R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, “Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses,” Biophys. J. 96, L13–L15 (2009).
[Crossref]

Wampler, R. D.

R. P. Davis, A. J. Moad, G. S. Goeken, R. D. Wampler, and G. J. Simpson, “Selection rules and symmetry relations for four-wave mixing measurements of uniaxial assemblies,” J. Phys. Chem. B 112, 5834–5848 (2008).
[Crossref]

Wang, H.

Wang, H.-W.

Wang, P.

C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3, 1377–1380 (2016).
[Crossref]

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).

Wang, X.

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[Crossref]

Ward, J. L.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref]

Weitz, D. A.

J.-X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 100, 9826–9830 (2011).
[Crossref]

Weling, A. S.

J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, and T. F. Heinz, “Homodyne detection of second-harmonic generation as a probe of electric fields,” Appl. Phys. B 68, 333–341 (1999).
[Crossref]

Winograd, J. M.

Wurpel, G. W. H.

G. W. H. Wurpel, H. A. Rinia, and M. Muller, “Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy,” J. Microsc. 218, 37–45 (2005).
[Crossref]

Wüstner, D.

R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, “Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses,” Biophys. J. 96, L13–L15 (2009).
[Crossref]

Xie, X. S.

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine,” Science 350, aaa8870 (2015).
[Crossref]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117, 4634–4640 (2013).
[Crossref]

J.-X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 100, 9826–9830 (2011).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

B. G. Saar, H.-S. Park, X. S. Xie, and O. D. Lavrentovich, “Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 15, 13585–13596 (2007).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Young, S.

R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, “Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses,” Biophys. J. 96, L13–L15 (2009).
[Crossref]

Younger, R.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref]

Zhang, X.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117, 4634–4640 (2013).
[Crossref]

Zimmerley, M.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Adv. Opt. Photon. (1)

Anal. Bioanal. Chem. (1)

S. Dochow, C. Beleites, T. Henkel, G. Mayer, J. Albert, J. Clement, C. Krafft, and J. Popp, “Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps,” Anal. Bioanal. Chem. 405, 2743–2746 (2013).
[Crossref]

Anal. Chem. (1)

E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, R. D. Muir, and G. J. Simpson, “Polarization-modulated second harmonic generation ellipsometric microscopy at video rate,” Anal. Chem. 86, 8448–8456 (2014).
[Crossref]

Appl. Phys. B (1)

J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, and T. F. Heinz, “Homodyne detection of second-harmonic generation as a probe of electric fields,” Appl. Phys. B 68, 333–341 (1999).
[Crossref]

Appl. Phys. Lett. (1)

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (2)

R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, “Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses,” Biophys. J. 96, L13–L15 (2009).
[Crossref]

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[Crossref]

Int. J. Mol. Sci. (1)

M. Samim, D. Sandkuijl, I. Tretyakov, R. Cisek, and V. Barzda, “Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams,” Int. J. Mol. Sci. 14, 18520–18534 (2013).
[Crossref]

J. Biomed. Opt. (1)

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

J. Biophoton. (1)

G. de Vito, V. Cappello, I. Tonazzini, M. Cecchini, and V. Piazza, “RP-CARS reveals molecular spatial order anomalies in myelin of an animal model of Krabbe disease,” J. Biophoton. 10, 385–393 (2017).
[Crossref]

J. Cell Biol. (2)

D. A. Cheresh, J. Leng, and R. L. Klemke, “Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells,” J. Cell Biol. 146, 1107–1116 (1999).
[Crossref]

A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).

J. Lipid Res. (1)

X. Nan, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208 (2003).
[Crossref]

J. Microsc. (1)

G. W. H. Wurpel, H. A. Rinia, and M. Muller, “Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy,” J. Microsc. 218, 37–45 (2005).
[Crossref]

J. Phys. Chem. B (4)

R. P. Davis, A. J. Moad, G. S. Goeken, R. D. Wampler, and G. J. Simpson, “Selection rules and symmetry relations for four-wave mixing measurements of uniaxial assemblies,” J. Phys. Chem. B 112, 5834–5848 (2008).
[Crossref]

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref]

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117, 4634–4640 (2013).
[Crossref]

J. Raman Spectrosc. (1)

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
[Crossref]

Light Sci. Appl. (1)

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).

Nat. Commun. (1)

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref]

Nat. Photonics (1)

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

Opt. Express (5)

Optica (1)

Phys. Rev. A (1)

F.-Z. Bioud, P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, “Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 89, 013836 (2014).
[Crossref]

Phys. Rev. Lett. (2)

F. Munhoz, H. Rigneault, and S. Brasselet, “High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy,” Phys. Rev. Lett. 105, 123903 (2010).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

J.-X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 100, 9826–9830 (2011).
[Crossref]

Sci. Rep. (1)

R. Turcotte, D. J. Rutledge, E. Bélanger, D. Dill, W. B. Macklin, and D. C. Côté, “Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy,” Sci. Rep. 6, 31685 (2016).
[Crossref]

Science (3)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine,” Science 350, aaa8870 (2015).
[Crossref]

Other (1)

P. Gasecka, A. Jaouen, F.-Z. Bioud, H. B. de Aguiar, J. Duboisset, P. Ferrand, H. Rigneault, N. Balla, F. Debarbieux, and S. Brasselet, “Lipid order degradation in autoimmune demyelination probed by polarization resolved coherent Raman microscopy,” bioRxiv (2017), doi: 10.1101/105965.
[Crossref]

Supplementary Material (8)

NameDescription
» Supplement 1       Supplementary Material
» Visualization 1       SRS - DPPC MLV -1 image/s - Size : 12 µm × 12 µm.
» Visualization 2       SRS - DPPC MLV -1 image/s - Size : 20 µm × 20 µm.
» Visualization 3       CARS - DPPC MLV -1 image/s - Size : 17 µm × 17 µm.
» Visualization 4       CARS - DPPC MLV -0.25 image/s - Size : 10 µm × 10 µm.
» Visualization 5       CARS - RBCell -1 image/s - Size : 20 µm × 20 µm.
» Visualization 6       CARS - RBCell -1 image/s - Size : 5 µm × 5 µm.
» Visualization 7       epiCARS - DPPC MLV -1 image/s - Size : 17 µm × 17 µm.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Principle of CARS, depicting the pump (ωp), Stokes (ωs), and anti-Stokes radiation (ωas) frequencies, as well as the resonant vibration (Ωr). (b) Principle of SRS (here SRG). The schematics show the time sequences of the modulated incident pump and monitored Stokes, which are both affected by the resonance. (c) Schematic representation of a lipid bilayer with nonlinear induced dipoles (red arrows) lying along the CH bonds probed at 2845  cm1. (d) The pump (linear rotating) and Stokes (circular) are represented in the sample plane as well as the resulting double modulation produced for the Stokes beam when the pump is modulated in polarization and intensity. (e) Optical setup. M, mirror; SM, scanning mirrors; DC, dichroic mirror; PD, photodiode; PMT, photomultiplier; AOM, acousto-optic modulator; EOM, electro-optic modulator (Pockels cell); OPO, optical parametric oscillator.

Fig. 2.
Fig. 2.

Fast-polarization-resolved SRS in a DPPC MLV, under different modulation conditions. [(a)–(d)] Pure EOM modulation (100 kHz). (a) S2 amplitude from lock-in amplifier. (b) φ2 from lock-in amplifier phase. (c) Composite image showing φ2 as a stick, colored with S2 for each measured pixel for which S2 is greater than 4 times the mean S2 background. (d) Zoomed in view of image (c). [(e)–(h)] EOM (100 kHz) and AOM (2 MHz) double modulation. (e) SRS amplitude from lock-in amplifier at 2 MHz. (f) Composite image showing (S2,φ2) as colored sticks and the AOM amplitude as a background. (g) Zoomed in view of the top left corner of image (f). (h) Zoomed in view of the bottom left corner of image (f). In both experiments, the powers of the pump and Stokes beams are, respectively, 8 mW and 6.5 mW at the sample plane, and the image (pixel dwell time: 50 μs) is generated in 1 s. All S2 values are normalized with respect to the maximum in the image. Scale bars: 6 μm. Pixel size: 300 nm.

Fig. 3.
Fig. 3.

(a) Regular-polarization SRS on a DPPC MLV, using step angles of 5° (acquisition time 112s). Absolute (S2n,φ2) values are represented as colored sticks and a0 as gray-scaled background (stick directions follow similar behavior as in Fig. 2). (b) Fast-polarization SRS on the same MLV (acquisition time 1 s). Scale bars: 6 μm. For both measurements, the powers of the pump and Stokes beams are, respectively, 8 mW and 6.5 mW at the sample plane and the pixel dwell time is 50 μs. (c) Dependence of the standard deviation of S2, over the MLV contour, normalized by its mean value, on the dwell time per pixel. (d) Same parameter as in panel (c), versus the total incident power. The dashed lines are an inverse square root fit of the measured data.

Fig. 4.
Fig. 4.

Fast-polarization dynamics of lipid order in DPPC MLVs. All S2 values are normalized to their maximum within a time sequence. (a) SRS image of a MLV taken at different times of the observation sequence, shown as a composite image (S2,φ2) as colored sticks, using the AOM amplitude as a (gray) background. Scale bar: 2 μm. Pixel size: 200 nm. Pixel dwell time: 50 μs. (see Visualization 1). (b) Zoom on the upper part of the MLV contour showing no change of lipid order during the measurement over tens of seconds. (c) CARS image sequence, taken in similar conditions, on a MLV moving over the sample surface. Scale bar: 3 μm. Pixel size: 300 nm. Pixel dwell time: 50 μs. (see Visualization 3). (d) Zoom on the MLV showing loss of order and reconfiguration of membrane mesoscopic geometry.

Fig. 5.
Fig. 5.

Fast-polarization dynamics of lipid order in thin lipid membranes. All S2 values are normalized with respect to the maximum in the image sequence. The images are made of composite (S2,φ2) as colored sticks, using the AOM amplitude as a (gray) background. (a) SRS image of a thin DPPC MLV with zooms at two times of the recorded sequence. Scale bar: 4 μm. Pixel size: 200 nm. Pixel dwell time: 50 μs. Power in sample plane: 20 mW. (b) CARS image sequence in red blood cell ghosts. Each image is obtained from an average of five consecutive images to increase the signal to noise per pixel (see Visualization 5). A threshold is applied, which rejects all pixels for which the S2 signal is below 1.3 times its minimal value. This permits determining, based on simulations, a bias less on φ2 than 10°. (c) Zoom on the red blood cell membrane. Scale bars: 4 μm. Pixel size: 200 nm. Pixel dwell time: 50 μs. Power in sample plane: 16 mW.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ISRS,CARS(α)a0+S2cos2(αφ2),
S2n=S2/a0.

Metrics