Abstract

Optoacoustic microscopy (OAM) is a hybrid imaging method that can achieve high spatial resolution at superficial depths through use of focused illumination; it can be adapted for imaging with ultrasonic resolution at much greater depths where the excitation light is diffuse. These two distinct modes of operation can be further combined to create a highly scalable technique that can image at multiple penetration scales by gradually exchanging microscopic optical resolution in superficial tissue layers with ultrasonic resolution at diffuse (macroscopic) depths. However, OAM commonly employs scanning acquisition geometries that impede the effective use of synthetic aperture focusing techniques due to varying illumination patterns and non-uniformity of the excitation light field. Here we present a universal framework for scanning optoacoustic microscopy that uses a weighted synthetic aperture focusing technique (W-SAFT) to create a uniform imaging sensitivity across microscopic, mesoscopic, and macroscopic penetration regimes. Robust performance of the new multi-scale reconstruction methodology is showcased with simulations and synthetic phantoms, and validated with experimental data acquired from a highly scattering juvenile zebrafish specimen. It is shown that consideration of the light fluence is vital for maintaining the optically dictated lateral resolution at ballistic depths while optimizing the resolution of out-of-focus ultrasonic data; additionally, the dynamic-range compression facilitates the visualization across the entire imaged volume. The newly introduced W-SAFT reconstruction framework is universally applicable to a wide palette of scanning-based optoacoustic imaging techniques employing non-uniform and/or varying illumination, such as acoustic resolution and hybrid focus microscopy, raster-scan optoacoustic mesoscopy, as well as tomographic approaches using scanning of focused array transducers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optoacoustic imaging with synthetic aperture focusing and coherence weighting

C.-K. Liao, M.-L. Li, and P.-C. Li
Opt. Lett. 29(21) 2506-2508 (2004)

Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique

Jake Turner, Héctor Estrada, Moritz Kneipp, and Daniel Razansky
Opt. Lett. 39(12) 3390-3393 (2014)

Photoacoustic microscopy in vivo using synthetic-aperture focusing technique combined with three-dimensional deconvolution

De Cai, Zhongfei Li, Yao Li, Zhendong Guo, and Sung-Liang Chen
Opt. Express 25(2) 1421-1434 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
    [Crossref]
  2. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3, 503–509 (2009).
    [Crossref]
  3. R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3, 1724 (2012).
    [Crossref]
  4. E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4, 36–42 (2016).
    [Crossref]
  5. S.-L. Chen, Z. Xie, L. J. Guo, and X. Wang, “A fiber-optic system for dual-modality photoacoustic microscopy and confocal fluorescence microscopy using miniature components,” Photoacoustics 1, 30–35 (2013).
    [Crossref]
  6. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33, 929–931 (2008).
    [Crossref]
  7. R. G. Maev, Acoustic Microscopy: Fundamentals and Applications (Wiley, 2008).
  8. M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31, 474–476 (2006).
    [Crossref]
  9. J. Turner, H. Estrada, M. Kneipp, and D. Razansky, “Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique,” Opt. Lett. 39, 3390–3393 (2014).
    [Crossref]
  10. M. Á. Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt. Lett. 37, 4080–4082 (2012).
    [Crossref]
  11. X. L. Deán-Ben, H. Estrada, M. Kneipp, J. Turner, and D. Razansky, “Three-dimensional modeling of the transducer shape in acoustic resolution optoacoustic microscopy,” Proc. SPIE 8943, 89434V (2014).
    [Crossref]
  12. H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11, 045601 (2014).
    [Crossref]
  13. R. Cao, J. P. Kilroy, B. Ning, T. Wang, J. A. Hossack, and S. Hu, “Multispectral photoacoustic microscopy based on an optical-acoustic objective,” Photoacoustics 3, 55–59 (2015).
    [Crossref]
  14. A. E. Siegman, “How to (maybe) measure laser beam quality,” in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues (Optical Society of America, 1998), paper MQ1.
  15. F. Träger, Springer Handbook of Lasers and Optics (Springer, 2012).
  16. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29, 1275–1285 (2010).
    [Crossref]
  17. J. A. Jensen, “Field: A program for simulating ultrasound systems,” in 10th Nordic Baltic Conference on Biomedical Imaging (Citeseer, 1996), Vol. 4, pp. 351–353.
  18. H. Estrada, E. Sobol, O. Baum, and D. Razansky, “Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation,” Laser Phys. Lett. 11, 125601 (2014).
    [Crossref]
  19. M. Kneipp, H. Estrada, A. Lauri, J. Turner, V. Ntziachristos, G. G. Westmeyer, and D. Razansky, “Volumetric tracking of migratory melanophores during zebrafish development by optoacoustic microscopy,” Mech. Dev. 138, 300–304 (2015).
    [Crossref]
  20. D. Salgado, C. Marcelle, P. D. Currie, and R. J. Bryson-Richardson, “The zebrafish anatomy portal: A novel integrated resource to facilitate zebrafish research,” Dev. Biol. 372, 1–4 (2012).
    [Crossref]
  21. B. E. Treeby, “Acoustic attenuation compensation in photoacoustic tomography using time-variant filtering,” J. Biomed. Opt. 18, 036008 (2013).
    [Crossref]
  22. M. Omar, J. Gateau, and V. Ntziachristos, “Raster-scan optoacoustic mesoscopy in the 25–125 Mhz range,” Opt. Lett. 38, 2472–2474 (2013).
    [Crossref]
  23. A. Chekkoury, J. Gateau, W. Driessen, P. Symvoulidis, N. Bézière, A. Feuchtinger, A. Walch, and V. Ntziachristos, “Optical mesoscopy without the scatter: broadband multispectral optoacoustic mesoscopy,” Biomed. Opt. Express 6, 3134–3148 (2015).
    [Crossref]
  24. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
    [Crossref]
  25. D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6, 1121–1129 (2011).
    [Crossref]

2016 (1)

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4, 36–42 (2016).
[Crossref]

2015 (3)

R. Cao, J. P. Kilroy, B. Ning, T. Wang, J. A. Hossack, and S. Hu, “Multispectral photoacoustic microscopy based on an optical-acoustic objective,” Photoacoustics 3, 55–59 (2015).
[Crossref]

M. Kneipp, H. Estrada, A. Lauri, J. Turner, V. Ntziachristos, G. G. Westmeyer, and D. Razansky, “Volumetric tracking of migratory melanophores during zebrafish development by optoacoustic microscopy,” Mech. Dev. 138, 300–304 (2015).
[Crossref]

A. Chekkoury, J. Gateau, W. Driessen, P. Symvoulidis, N. Bézière, A. Feuchtinger, A. Walch, and V. Ntziachristos, “Optical mesoscopy without the scatter: broadband multispectral optoacoustic mesoscopy,” Biomed. Opt. Express 6, 3134–3148 (2015).
[Crossref]

2014 (4)

J. Turner, H. Estrada, M. Kneipp, and D. Razansky, “Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique,” Opt. Lett. 39, 3390–3393 (2014).
[Crossref]

X. L. Deán-Ben, H. Estrada, M. Kneipp, J. Turner, and D. Razansky, “Three-dimensional modeling of the transducer shape in acoustic resolution optoacoustic microscopy,” Proc. SPIE 8943, 89434V (2014).
[Crossref]

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11, 045601 (2014).
[Crossref]

H. Estrada, E. Sobol, O. Baum, and D. Razansky, “Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation,” Laser Phys. Lett. 11, 125601 (2014).
[Crossref]

2013 (3)

S.-L. Chen, Z. Xie, L. J. Guo, and X. Wang, “A fiber-optic system for dual-modality photoacoustic microscopy and confocal fluorescence microscopy using miniature components,” Photoacoustics 1, 30–35 (2013).
[Crossref]

B. E. Treeby, “Acoustic attenuation compensation in photoacoustic tomography using time-variant filtering,” J. Biomed. Opt. 18, 036008 (2013).
[Crossref]

M. Omar, J. Gateau, and V. Ntziachristos, “Raster-scan optoacoustic mesoscopy in the 25–125 Mhz range,” Opt. Lett. 38, 2472–2474 (2013).
[Crossref]

2012 (3)

2011 (1)

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6, 1121–1129 (2011).
[Crossref]

2010 (2)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29, 1275–1285 (2010).
[Crossref]

2009 (2)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3, 503–509 (2009).
[Crossref]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

2008 (1)

2006 (1)

Araque Caballero, M. Á.

Baum, O.

H. Estrada, E. Sobol, O. Baum, and D. Razansky, “Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation,” Laser Phys. Lett. 11, 125601 (2014).
[Crossref]

Bézière, N.

Bryson-Richardson, R. J.

D. Salgado, C. Marcelle, P. D. Currie, and R. J. Bryson-Richardson, “The zebrafish anatomy portal: A novel integrated resource to facilitate zebrafish research,” Dev. Biol. 372, 1–4 (2012).
[Crossref]

Buehler, A.

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6, 1121–1129 (2011).
[Crossref]

Cao, R.

R. Cao, J. P. Kilroy, B. Ning, T. Wang, J. A. Hossack, and S. Hu, “Multispectral photoacoustic microscopy based on an optical-acoustic objective,” Photoacoustics 3, 55–59 (2015).
[Crossref]

Chekkoury, A.

Chen, S.-L.

S.-L. Chen, Z. Xie, L. J. Guo, and X. Wang, “A fiber-optic system for dual-modality photoacoustic microscopy and confocal fluorescence microscopy using miniature components,” Photoacoustics 1, 30–35 (2013).
[Crossref]

Currie, P. D.

D. Salgado, C. Marcelle, P. D. Currie, and R. J. Bryson-Richardson, “The zebrafish anatomy portal: A novel integrated resource to facilitate zebrafish research,” Dev. Biol. 372, 1–4 (2012).
[Crossref]

Deán-Ben, X. L.

X. L. Deán-Ben, H. Estrada, M. Kneipp, J. Turner, and D. Razansky, “Three-dimensional modeling of the transducer shape in acoustic resolution optoacoustic microscopy,” Proc. SPIE 8943, 89434V (2014).
[Crossref]

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Driessen, W.

Estrada, H.

M. Kneipp, H. Estrada, A. Lauri, J. Turner, V. Ntziachristos, G. G. Westmeyer, and D. Razansky, “Volumetric tracking of migratory melanophores during zebrafish development by optoacoustic microscopy,” Mech. Dev. 138, 300–304 (2015).
[Crossref]

H. Estrada, E. Sobol, O. Baum, and D. Razansky, “Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation,” Laser Phys. Lett. 11, 125601 (2014).
[Crossref]

X. L. Deán-Ben, H. Estrada, M. Kneipp, J. Turner, and D. Razansky, “Three-dimensional modeling of the transducer shape in acoustic resolution optoacoustic microscopy,” Proc. SPIE 8943, 89434V (2014).
[Crossref]

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11, 045601 (2014).
[Crossref]

J. Turner, H. Estrada, M. Kneipp, and D. Razansky, “Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique,” Opt. Lett. 39, 3390–3393 (2014).
[Crossref]

Feuchtinger, A.

Gateau, J.

Guo, L. J.

S.-L. Chen, Z. Xie, L. J. Guo, and X. Wang, “A fiber-optic system for dual-modality photoacoustic microscopy and confocal fluorescence microscopy using miniature components,” Photoacoustics 1, 30–35 (2013).
[Crossref]

Hossack, J. A.

R. Cao, J. P. Kilroy, B. Ning, T. Wang, J. A. Hossack, and S. Hu, “Multispectral photoacoustic microscopy based on an optical-acoustic objective,” Photoacoustics 3, 55–59 (2015).
[Crossref]

Hu, S.

R. Cao, J. P. Kilroy, B. Ning, T. Wang, J. A. Hossack, and S. Hu, “Multispectral photoacoustic microscopy based on an optical-acoustic objective,” Photoacoustics 3, 55–59 (2015).
[Crossref]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33, 929–931 (2008).
[Crossref]

Jensen, J. A.

J. A. Jensen, “Field: A program for simulating ultrasound systems,” in 10th Nordic Baltic Conference on Biomedical Imaging (Citeseer, 1996), Vol. 4, pp. 351–353.

Kilroy, J. P.

R. Cao, J. P. Kilroy, B. Ning, T. Wang, J. A. Hossack, and S. Hu, “Multispectral photoacoustic microscopy based on an optical-acoustic objective,” Photoacoustics 3, 55–59 (2015).
[Crossref]

Kneipp, M.

M. Kneipp, H. Estrada, A. Lauri, J. Turner, V. Ntziachristos, G. G. Westmeyer, and D. Razansky, “Volumetric tracking of migratory melanophores during zebrafish development by optoacoustic microscopy,” Mech. Dev. 138, 300–304 (2015).
[Crossref]

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11, 045601 (2014).
[Crossref]

X. L. Deán-Ben, H. Estrada, M. Kneipp, J. Turner, and D. Razansky, “Three-dimensional modeling of the transducer shape in acoustic resolution optoacoustic microscopy,” Proc. SPIE 8943, 89434V (2014).
[Crossref]

J. Turner, H. Estrada, M. Kneipp, and D. Razansky, “Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique,” Opt. Lett. 39, 3390–3393 (2014).
[Crossref]

Kolios, M. C.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4, 36–42 (2016).
[Crossref]

Koster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Lauri, A.

M. Kneipp, H. Estrada, A. Lauri, J. Turner, V. Ntziachristos, G. G. Westmeyer, and D. Razansky, “Volumetric tracking of migratory melanophores during zebrafish development by optoacoustic microscopy,” Mech. Dev. 138, 300–304 (2015).
[Crossref]

Li, M.-L.

Ma, R.

R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3, 1724 (2012).
[Crossref]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Maev, R. G.

R. G. Maev, Acoustic Microscopy: Fundamentals and Applications (Wiley, 2008).

Marcelle, C.

D. Salgado, C. Marcelle, P. D. Currie, and R. J. Bryson-Richardson, “The zebrafish anatomy portal: A novel integrated resource to facilitate zebrafish research,” Dev. Biol. 372, 1–4 (2012).
[Crossref]

Maslov, K.

Moore, M. J.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4, 36–42 (2016).
[Crossref]

Ning, B.

R. Cao, J. P. Kilroy, B. Ning, T. Wang, J. A. Hossack, and S. Hu, “Multispectral photoacoustic microscopy based on an optical-acoustic objective,” Photoacoustics 3, 55–59 (2015).
[Crossref]

Ntziachristos, V.

M. Kneipp, H. Estrada, A. Lauri, J. Turner, V. Ntziachristos, G. G. Westmeyer, and D. Razansky, “Volumetric tracking of migratory melanophores during zebrafish development by optoacoustic microscopy,” Mech. Dev. 138, 300–304 (2015).
[Crossref]

A. Chekkoury, J. Gateau, W. Driessen, P. Symvoulidis, N. Bézière, A. Feuchtinger, A. Walch, and V. Ntziachristos, “Optical mesoscopy without the scatter: broadband multispectral optoacoustic mesoscopy,” Biomed. Opt. Express 6, 3134–3148 (2015).
[Crossref]

M. Omar, J. Gateau, and V. Ntziachristos, “Raster-scan optoacoustic mesoscopy in the 25–125 Mhz range,” Opt. Lett. 38, 2472–2474 (2013).
[Crossref]

M. Á. Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt. Lett. 37, 4080–4082 (2012).
[Crossref]

R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3, 1724 (2012).
[Crossref]

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6, 1121–1129 (2011).
[Crossref]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29, 1275–1285 (2010).
[Crossref]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Omar, M.

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Razansky, D.

M. Kneipp, H. Estrada, A. Lauri, J. Turner, V. Ntziachristos, G. G. Westmeyer, and D. Razansky, “Volumetric tracking of migratory melanophores during zebrafish development by optoacoustic microscopy,” Mech. Dev. 138, 300–304 (2015).
[Crossref]

X. L. Deán-Ben, H. Estrada, M. Kneipp, J. Turner, and D. Razansky, “Three-dimensional modeling of the transducer shape in acoustic resolution optoacoustic microscopy,” Proc. SPIE 8943, 89434V (2014).
[Crossref]

H. Estrada, E. Sobol, O. Baum, and D. Razansky, “Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation,” Laser Phys. Lett. 11, 125601 (2014).
[Crossref]

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11, 045601 (2014).
[Crossref]

J. Turner, H. Estrada, M. Kneipp, and D. Razansky, “Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique,” Opt. Lett. 39, 3390–3393 (2014).
[Crossref]

M. Á. Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt. Lett. 37, 4080–4082 (2012).
[Crossref]

R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3, 1724 (2012).
[Crossref]

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6, 1121–1129 (2011).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29, 1275–1285 (2010).
[Crossref]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Rosenthal, A.

M. Á. Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt. Lett. 37, 4080–4082 (2012).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29, 1275–1285 (2010).
[Crossref]

Salgado, D.

D. Salgado, C. Marcelle, P. D. Currie, and R. J. Bryson-Richardson, “The zebrafish anatomy portal: A novel integrated resource to facilitate zebrafish research,” Dev. Biol. 372, 1–4 (2012).
[Crossref]

Shoham, S.

Siegman, A. E.

A. E. Siegman, “How to (maybe) measure laser beam quality,” in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues (Optical Society of America, 1998), paper MQ1.

Sobol, E.

H. Estrada, E. Sobol, O. Baum, and D. Razansky, “Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation,” Laser Phys. Lett. 11, 125601 (2014).
[Crossref]

Söntges, S.

Stoica, G.

Strohm, E. M.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4, 36–42 (2016).
[Crossref]

Symvoulidis, P.

Träger, F.

F. Träger, Springer Handbook of Lasers and Optics (Springer, 2012).

Treeby, B. E.

B. E. Treeby, “Acoustic attenuation compensation in photoacoustic tomography using time-variant filtering,” J. Biomed. Opt. 18, 036008 (2013).
[Crossref]

Turner, J.

M. Kneipp, H. Estrada, A. Lauri, J. Turner, V. Ntziachristos, G. G. Westmeyer, and D. Razansky, “Volumetric tracking of migratory melanophores during zebrafish development by optoacoustic microscopy,” Mech. Dev. 138, 300–304 (2015).
[Crossref]

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11, 045601 (2014).
[Crossref]

X. L. Deán-Ben, H. Estrada, M. Kneipp, J. Turner, and D. Razansky, “Three-dimensional modeling of the transducer shape in acoustic resolution optoacoustic microscopy,” Proc. SPIE 8943, 89434V (2014).
[Crossref]

J. Turner, H. Estrada, M. Kneipp, and D. Razansky, “Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique,” Opt. Lett. 39, 3390–3393 (2014).
[Crossref]

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Walch, A.

Wang, L. V.

Wang, T.

R. Cao, J. P. Kilroy, B. Ning, T. Wang, J. A. Hossack, and S. Hu, “Multispectral photoacoustic microscopy based on an optical-acoustic objective,” Photoacoustics 3, 55–59 (2015).
[Crossref]

Wang, X.

S.-L. Chen, Z. Xie, L. J. Guo, and X. Wang, “A fiber-optic system for dual-modality photoacoustic microscopy and confocal fluorescence microscopy using miniature components,” Photoacoustics 1, 30–35 (2013).
[Crossref]

Westmeyer, G. G.

M. Kneipp, H. Estrada, A. Lauri, J. Turner, V. Ntziachristos, G. G. Westmeyer, and D. Razansky, “Volumetric tracking of migratory melanophores during zebrafish development by optoacoustic microscopy,” Mech. Dev. 138, 300–304 (2015).
[Crossref]

Xie, Z.

S.-L. Chen, Z. Xie, L. J. Guo, and X. Wang, “A fiber-optic system for dual-modality photoacoustic microscopy and confocal fluorescence microscopy using miniature components,” Photoacoustics 1, 30–35 (2013).
[Crossref]

Zhang, H. F.

Biomed. Opt. Express (2)

Dev. Biol. (1)

D. Salgado, C. Marcelle, P. D. Currie, and R. J. Bryson-Richardson, “The zebrafish anatomy portal: A novel integrated resource to facilitate zebrafish research,” Dev. Biol. 372, 1–4 (2012).
[Crossref]

IEEE Trans. Med. Imaging (1)

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29, 1275–1285 (2010).
[Crossref]

J. Biomed. Opt. (1)

B. E. Treeby, “Acoustic attenuation compensation in photoacoustic tomography using time-variant filtering,” J. Biomed. Opt. 18, 036008 (2013).
[Crossref]

Laser Phys. Lett. (2)

H. Estrada, E. Sobol, O. Baum, and D. Razansky, “Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation,” Laser Phys. Lett. 11, 125601 (2014).
[Crossref]

H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett. 11, 045601 (2014).
[Crossref]

Mech. Dev. (1)

M. Kneipp, H. Estrada, A. Lauri, J. Turner, V. Ntziachristos, G. G. Westmeyer, and D. Razansky, “Volumetric tracking of migratory melanophores during zebrafish development by optoacoustic microscopy,” Mech. Dev. 138, 300–304 (2015).
[Crossref]

Nat. Methods (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[Crossref]

Nat. Photonics (2)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3, 503–509 (2009).
[Crossref]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Nat. Protoc. (1)

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6, 1121–1129 (2011).
[Crossref]

Opt. Lett. (5)

Photoacoustics (3)

R. Cao, J. P. Kilroy, B. Ning, T. Wang, J. A. Hossack, and S. Hu, “Multispectral photoacoustic microscopy based on an optical-acoustic objective,” Photoacoustics 3, 55–59 (2015).
[Crossref]

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4, 36–42 (2016).
[Crossref]

S.-L. Chen, Z. Xie, L. J. Guo, and X. Wang, “A fiber-optic system for dual-modality photoacoustic microscopy and confocal fluorescence microscopy using miniature components,” Photoacoustics 1, 30–35 (2013).
[Crossref]

Proc. SPIE (1)

X. L. Deán-Ben, H. Estrada, M. Kneipp, J. Turner, and D. Razansky, “Three-dimensional modeling of the transducer shape in acoustic resolution optoacoustic microscopy,” Proc. SPIE 8943, 89434V (2014).
[Crossref]

Other (4)

A. E. Siegman, “How to (maybe) measure laser beam quality,” in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues (Optical Society of America, 1998), paper MQ1.

F. Träger, Springer Handbook of Lasers and Optics (Springer, 2012).

R. G. Maev, Acoustic Microscopy: Fundamentals and Applications (Wiley, 2008).

J. A. Jensen, “Field: A program for simulating ultrasound systems,” in 10th Nordic Baltic Conference on Biomedical Imaging (Citeseer, 1996), Vol. 4, pp. 351–353.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Illustrations of the extent of the axially symmetric fields of light fluence (blue) and ultrasound-transducer field of view (red) as functions of depth z and polar-radius (radius to the focal axis) r. (a) Acoustic resolution (AR) case with broad illumination and focused detection, (b) optical resolution (OR) case with a focused illumination, (c) hybrid resolution optoacoustic microscopy (HFOAM) using both focused illumination and detection, (d) illustration of the 3D-SAFT operation.
Fig. 2.
Fig. 2. Schematic illustration of the process of implementing W-SAFT. The top row is a diagram of the illustrative imaging target containing five sutures, each of which are within the scattering and non-scattering portions of the phantom to a varying degree. Each subsequent row of the figure corresponds to one line in Eq. (8); in row 4, color indicates depth iteration.
Fig. 3.
Fig. 3. (a) Left: depth profile of the optically scattering surface S(x,y), where gray is no-surface; right: Γ (red) and H (blue) evaluated at z. (b) MAPs through y and (c) MAPs through z. (i) simulated data, D; (ii) results of weighted SIR-SAFT; (iii) intermediate result of W-SAFT using only limit function Γ [Eq. (3)]; (iv) complete result of W-SAFT with all distortion corrections, V [Eq. (8)]. (c) also shows annotations of FWHM for three of the spheres. (d) shows the composite time-domain center shots for (i–iv), i.e., superpositions of the time-domain signals for the center of each sphere.
Fig. 4.
Fig. 4. MAPs for experimental (a) AR data and (b) OR data. In both (a) and (b), the left image is the unprocessed scan volume, and the center and right images are the weighted SIR-SAFT and W-SAFT results, respectively. The MAPs are all in z, with a depth-coded color scale. Each suture is annotated with a label (i)–(v) and a measure of FWHM. The right of each panel shows a table of SNR for each suture.
Fig. 5.
Fig. 5. (a) Top: b-scan of ultrasound data; bottom: surface depth mask. The boundaries of three subvolumes (i)–(iii) are shown as red, green, and blue boxes, respectively. MAPs of these subvolumes were made for the optoacoustic data, and are presented in (b). For each subvolume (i)–(iii), MAPs are shown for (1) signal volume, (2) SIR-SAFT result, (3) W-SAFT result, (4) annotated W-SAFT result, and (5) cross sections through two of three dimensions for SAFT-processed pulse-echo ultrasound data (as labeled); these are also annotated.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σnm(t)=Γnmkl(t)Dkl(tΔt),
V=SAFT(D,Γ),
Γi={1,if  HUi>k0,otherwise,
Wi=HUiΓi
Fi=1/SAFT(O,Wi),
C=inΓi,
Vi=SAFT(Di,ΓiGi),
for  i=1I{Wi=HUiΓiFi=1/SAFT(O,Wi)Di=Di/CVi=SAFT(Di,ΓiGi)Vi=ViFi}V=iIVi,
Ki=eα(zSi)Ui(z),VK=ViKi,

Metrics