Abstract

Future expansion of computing capabilities relies on a reduction of energy consumption in silicon-based integrated circuits. A promising solution is to replace electrical wires with optical connections, for which a key component is a nanolaser that coherently emits into silicon-based waveguides to route information across a chip, in place of bulky off-chip devices. We report room temperature, sub-μm2 footprint, quantum-well-in-nanopillar lasers grown directly on silicon and silicon-on-insulator (SOI) substrates that emit within the silicon-transparent wavelength range under optical excitation. The laser wavelength is controlled by changing the InGaAs quantum well thickness and alloy composition, quite independent of lattice mismatch with the InP barrier, a unique property of the 3D core-shell growth mode. We achieve excellent luminescence yield and low continuous wave transparency power due to the well-passivated InGaAs/InP interfaces. These sub-μm2 footprint long-wavelength lasers could enable optoelectronic integration and photon routing with silicon waveguides on the technologically relevant SOI platform.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands

Yu Han, Wai Kit Ng, Chao Ma, Qiang Li, Si Zhu, Christopher C. S. Chan, Kar Wei Ng, Stephen Lennon, Robert A. Taylor, Kam Sing Wong, and Kei May Lau
Optica 5(8) 918-923 (2018)

Room-temperature Fabry-Perot resonances in suspended InGaAs/InP quantum-well nanopillars on a silicon substrate

Gilliard N. Malheiros-Silveira, Indrasen Bhattacharya, Saniya V. Deshpande, Daria Skuridina, Fanglu Lu, and Connie J. Chang-Hasnain
Opt. Express 25(1) 271-277 (2017)

Quantum dot lasers for silicon photonics [Invited]

Alan Y. Liu, Sudharsanan Srinivasan, Justin Norman, Arthur C. Gossard, and John E. Bowers
Photon. Res. 3(5) B1-B9 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Krishnamoorthy, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
    [Crossref]
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  3. H. Liu, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
    [Crossref]
  4. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
    [Crossref]
  5. Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
    [Crossref]
  6. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref]
  7. J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Coccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744–6749 (2007).
    [Crossref]
  8. Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62, 1038–1040 (1993).
    [Crossref]
  9. L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, and C. Chang-Hasnain, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90, 043115 (2007).
    [Crossref]
  10. T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630  nm) laser,” IEEE J. Quantum Electron. 49, 923–931 (2013).
    [Crossref]
  11. A. Hazari, A. Aiello, T. Ng, B. S. Ooi, and P. Bhattacharya, “III-nitride disk-in-nanowire 1.2  μm monolithic diode laser on (001)silicon,” Appl. Phys. Lett. 107, 191107 (2015).
    [Crossref]
  12. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
    [Crossref]
  13. A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
    [Crossref]
  14. J. C. Johnson, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002).
    [Crossref]
  15. R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5, 917–920 (2005).
    [Crossref]
  16. F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
    [Crossref]
  17. Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
    [Crossref]
  18. A. Pan, W. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
    [Crossref]
  19. M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
    [Crossref]
  20. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
    [Crossref]
  21. B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAs core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
    [Crossref]
  22. D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
    [Crossref]
  23. B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
    [Crossref]
  24. M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93, 023116 (2008).
    [Crossref]
  25. F. Ren, K. W. Ng, K. Li, H. Sun, and C. J. Chang-Hasnain, “High-quality InP nanoneedles grown on silicon,” Appl. Phys. Lett. 102, 012115 (2013).
    [Crossref]
  26. K. W. Ng, W. S. Ko, T.-T. D. Tran, R. Chen, M. V. Nazarenko, F. Lu, V. G. Dubrovskii, M. Kamp, A. Forchel, and C. J. Chang-Hasnain, “Unconventional growth mechanism for monolithic integration of III-V on silicon,” ACS Nano 7, 100–107 (2013).
    [Crossref]
  27. R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
    [Crossref]
  28. F. Lu, T.-T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express 20, 12171–12176 (2012).
    [Crossref]
  29. R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
  30. W. S. Ko, I. Bhattacharya, T.-T. D. Tran, K. W. Ng, S. A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
    [Crossref]
  31. M. V. Nazarenko, N. V. Sibirev, K. W. Ng, F. Ren, W. S. Ko, V. G. Dubrovskii, and C. Chang-Hasnain, “Elastic energy relaxation and critical thickness for plastic deformation in the core-shell InGaAs/GaAs nanopillars,” J. Appl. Phys. 113, 104311 (2013).
    [Crossref]
  32. K. Li, K. W. Ng, T.-T. D. Tran, H. Sun, F. Lu, and C. Chang-Hasnain, “Wurtzite-phased InP micropillars grown on silicon with low surface recombination velocity,” Nano Lett. 15, 7189–7198 (2015).
    [Crossref]
  33. P. Wuerfel, “The chemical potential of radiation,” J. Phys. C 15, 3967–3985 (1982).
    [Crossref]
  34. T.-T. D. Tran, H. Sun, K. W. Ng, F. Ren, K. Li, F. Lu, E. Yablonovitch, and C. Chang-Hasnain, “High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1  eV,” Nano Lett. 14, 3235–3240 (2014).
    [Crossref]
  35. A. Delamarre, L. Lombez, and J. Guillemoles, “Contactless mapping of saturation currents of solar cells by photoluminescence,” Appl. Phys. Lett. 100, 131108 (2012).
    [Crossref]
  36. T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006).
    [Crossref]
  37. M. Rosenzweig, M. Moehrle, H. Dueser, and H. Venghaus, “Threshold-current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers,” IEEE J. Quantum Electron. 27, 1804–1811 (1991).
    [Crossref]
  38. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
    [Crossref]
  39. F. Schuster, J. Kapraun, G. N. Malheiros-Silveira, S. Deshpande, and C. Chang-Hasnain, “Site-controlled growth of monolithic InGaAs/InP quantum well nanopillars on silicon,” Nano Lett. 17, 2697–2702 (2017).
    [Crossref]

2017 (1)

F. Schuster, J. Kapraun, G. N. Malheiros-Silveira, S. Deshpande, and C. Chang-Hasnain, “Site-controlled growth of monolithic InGaAs/InP quantum well nanopillars on silicon,” Nano Lett. 17, 2697–2702 (2017).
[Crossref]

2016 (3)

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

W. S. Ko, I. Bhattacharya, T.-T. D. Tran, K. W. Ng, S. A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref]

2015 (2)

A. Hazari, A. Aiello, T. Ng, B. S. Ooi, and P. Bhattacharya, “III-nitride disk-in-nanowire 1.2  μm monolithic diode laser on (001)silicon,” Appl. Phys. Lett. 107, 191107 (2015).
[Crossref]

K. Li, K. W. Ng, T.-T. D. Tran, H. Sun, F. Lu, and C. Chang-Hasnain, “Wurtzite-phased InP micropillars grown on silicon with low surface recombination velocity,” Nano Lett. 15, 7189–7198 (2015).
[Crossref]

2014 (2)

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).

T.-T. D. Tran, H. Sun, K. W. Ng, F. Ren, K. Li, F. Lu, E. Yablonovitch, and C. Chang-Hasnain, “High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1  eV,” Nano Lett. 14, 3235–3240 (2014).
[Crossref]

2013 (5)

M. V. Nazarenko, N. V. Sibirev, K. W. Ng, F. Ren, W. S. Ko, V. G. Dubrovskii, and C. Chang-Hasnain, “Elastic energy relaxation and critical thickness for plastic deformation in the core-shell InGaAs/GaAs nanopillars,” J. Appl. Phys. 113, 104311 (2013).
[Crossref]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

F. Ren, K. W. Ng, K. Li, H. Sun, and C. J. Chang-Hasnain, “High-quality InP nanoneedles grown on silicon,” Appl. Phys. Lett. 102, 012115 (2013).
[Crossref]

K. W. Ng, W. S. Ko, T.-T. D. Tran, R. Chen, M. V. Nazarenko, F. Lu, V. G. Dubrovskii, M. Kamp, A. Forchel, and C. J. Chang-Hasnain, “Unconventional growth mechanism for monolithic integration of III-V on silicon,” ACS Nano 7, 100–107 (2013).
[Crossref]

T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630  nm) laser,” IEEE J. Quantum Electron. 49, 923–931 (2013).
[Crossref]

2012 (2)

F. Lu, T.-T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express 20, 12171–12176 (2012).
[Crossref]

A. Delamarre, L. Lombez, and J. Guillemoles, “Contactless mapping of saturation currents of solar cells by photoluminescence,” Appl. Phys. Lett. 100, 131108 (2012).
[Crossref]

2011 (5)

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[Crossref]

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[Crossref]

H. Liu, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

2009 (5)

A. V. Krishnamoorthy, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAs core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
[Crossref]

A. Pan, W. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[Crossref]

2008 (3)

M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
[Crossref]

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93, 023116 (2008).
[Crossref]

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[Crossref]

2007 (2)

2006 (3)

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006).
[Crossref]

2005 (1)

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5, 917–920 (2005).
[Crossref]

2002 (1)

J. C. Johnson, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002).
[Crossref]

1993 (1)

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62, 1038–1040 (1993).
[Crossref]

1991 (1)

M. Rosenzweig, M. Moehrle, H. Dueser, and H. Venghaus, “Threshold-current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers,” IEEE J. Quantum Electron. 27, 1804–1811 (1991).
[Crossref]

1982 (2)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[Crossref]

P. Wuerfel, “The chemical potential of radiation,” J. Phys. C 15, 3967–3985 (1982).
[Crossref]

Abstreiter, G.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

Agarwal, R.

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5, 917–920 (2005).
[Crossref]

Aiello, A.

A. Hazari, A. Aiello, T. Ng, B. S. Ooi, and P. Bhattacharya, “III-nitride disk-in-nanowire 1.2  μm monolithic diode laser on (001)silicon,” Appl. Phys. Lett. 107, 191107 (2015).
[Crossref]

Arakawa, Y.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[Crossref]

Baets, R.

Banerjee, A.

T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630  nm) laser,” IEEE J. Quantum Electron. 49, 923–931 (2013).
[Crossref]

Bao, J.

M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
[Crossref]

Bardos, R. A.

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006).
[Crossref]

Barrelet, C. J.

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5, 917–920 (2005).
[Crossref]

Bhat, R.

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62, 1038–1040 (1993).
[Crossref]

Bhattacharya, I.

W. S. Ko, I. Bhattacharya, T.-T. D. Tran, K. W. Ng, S. A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref]

Bhattacharya, P.

A. Hazari, A. Aiello, T. Ng, B. S. Ooi, and P. Bhattacharya, “III-nitride disk-in-nanowire 1.2  μm monolithic diode laser on (001)silicon,” Appl. Phys. Lett. 107, 191107 (2015).
[Crossref]

T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630  nm) laser,” IEEE J. Quantum Electron. 49, 923–931 (2013).
[Crossref]

Bowers, J. E.

Capasso, F.

M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
[Crossref]

Chang-Hasnain, C.

F. Schuster, J. Kapraun, G. N. Malheiros-Silveira, S. Deshpande, and C. Chang-Hasnain, “Site-controlled growth of monolithic InGaAs/InP quantum well nanopillars on silicon,” Nano Lett. 17, 2697–2702 (2017).
[Crossref]

W. S. Ko, I. Bhattacharya, T.-T. D. Tran, K. W. Ng, S. A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref]

K. Li, K. W. Ng, T.-T. D. Tran, H. Sun, F. Lu, and C. Chang-Hasnain, “Wurtzite-phased InP micropillars grown on silicon with low surface recombination velocity,” Nano Lett. 15, 7189–7198 (2015).
[Crossref]

T.-T. D. Tran, H. Sun, K. W. Ng, F. Ren, K. Li, F. Lu, E. Yablonovitch, and C. Chang-Hasnain, “High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1  eV,” Nano Lett. 14, 3235–3240 (2014).
[Crossref]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).

M. V. Nazarenko, N. V. Sibirev, K. W. Ng, F. Ren, W. S. Ko, V. G. Dubrovskii, and C. Chang-Hasnain, “Elastic energy relaxation and critical thickness for plastic deformation in the core-shell InGaAs/GaAs nanopillars,” J. Appl. Phys. 113, 104311 (2013).
[Crossref]

F. Lu, T.-T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express 20, 12171–12176 (2012).
[Crossref]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93, 023116 (2008).
[Crossref]

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, and C. Chang-Hasnain, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90, 043115 (2007).
[Crossref]

Chang-Hasnain, C. J.

F. Ren, K. W. Ng, K. Li, H. Sun, and C. J. Chang-Hasnain, “High-quality InP nanoneedles grown on silicon,” Appl. Phys. Lett. 102, 012115 (2013).
[Crossref]

K. W. Ng, W. S. Ko, T.-T. D. Tran, R. Chen, M. V. Nazarenko, F. Lu, V. G. Dubrovskii, M. Kamp, A. Forchel, and C. J. Chang-Hasnain, “Unconventional growth mechanism for monolithic integration of III-V on silicon,” ACS Nano 7, 100–107 (2013).
[Crossref]

Chase, C.

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93, 023116 (2008).
[Crossref]

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, and C. Chang-Hasnain, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90, 043115 (2007).
[Crossref]

Chen, R.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).

K. W. Ng, W. S. Ko, T.-T. D. Tran, R. Chen, M. V. Nazarenko, F. Lu, V. G. Dubrovskii, M. Kamp, A. Forchel, and C. J. Chang-Hasnain, “Unconventional growth mechanism for monolithic integration of III-V on silicon,” ACS Nano 7, 100–107 (2013).
[Crossref]

F. Lu, T.-T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express 20, 12171–12176 (2012).
[Crossref]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Chernyak, L.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[Crossref]

Chin, A. H.

A. Pan, W. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[Crossref]

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

Chu, S.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[Crossref]

Chua, C.

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62, 1038–1040 (1993).
[Crossref]

Chuang, L. C.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93, 023116 (2008).
[Crossref]

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, and C. Chang-Hasnain, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90, 043115 (2007).
[Crossref]

Chuang, S. L.

T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630  nm) laser,” IEEE J. Quantum Electron. 49, 923–931 (2013).
[Crossref]

Cohen, O.

Crankshaw, S.

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93, 023116 (2008).
[Crossref]

Dai, L.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[Crossref]

Delamarre, A.

A. Delamarre, L. Lombez, and J. Guillemoles, “Contactless mapping of saturation currents of solar cells by photoluminescence,” Appl. Phys. Lett. 100, 131108 (2012).
[Crossref]

Deshpande, S.

F. Schuster, J. Kapraun, G. N. Malheiros-Silveira, S. Deshpande, and C. Chang-Hasnain, “Site-controlled growth of monolithic InGaAs/InP quantum well nanopillars on silicon,” Nano Lett. 17, 2697–2702 (2017).
[Crossref]

Di Coccio, L.

Ding, Y.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[Crossref]

Dong, Y.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[Crossref]

Dubrovskii, V. G.

K. W. Ng, W. S. Ko, T.-T. D. Tran, R. Chen, M. V. Nazarenko, F. Lu, V. G. Dubrovskii, M. Kamp, A. Forchel, and C. J. Chang-Hasnain, “Unconventional growth mechanism for monolithic integration of III-V on silicon,” ACS Nano 7, 100–107 (2013).
[Crossref]

M. V. Nazarenko, N. V. Sibirev, K. W. Ng, F. Ren, W. S. Ko, V. G. Dubrovskii, and C. Chang-Hasnain, “Elastic energy relaxation and critical thickness for plastic deformation in the core-shell InGaAs/GaAs nanopillars,” J. Appl. Phys. 113, 104311 (2013).
[Crossref]

Dueser, H.

M. Rosenzweig, M. Moehrle, H. Dueser, and H. Venghaus, “Threshold-current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers,” IEEE J. Quantum Electron. 27, 1804–1811 (1991).
[Crossref]

Fang, A. W.

Fedeli, J.-M.

Finley, J. J.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

Forchel, A.

K. W. Ng, W. S. Ko, T.-T. D. Tran, R. Chen, M. V. Nazarenko, F. Lu, V. G. Dubrovskii, M. Kamp, A. Forchel, and C. J. Chang-Hasnain, “Unconventional growth mechanism for monolithic integration of III-V on silicon,” ACS Nano 7, 100–107 (2013).
[Crossref]

Frost, T.

T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630  nm) laser,” IEEE J. Quantum Electron. 49, 923–931 (2013).
[Crossref]

Fukui, T.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAs core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
[Crossref]

Gao, Q.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Gerke, S. A.

W. S. Ko, I. Bhattacharya, T.-T. D. Tran, K. W. Ng, S. A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref]

Gies, C.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

Gossard, A. C.

Gradecak, S.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[Crossref]

Gu, F.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[Crossref]

Guillemoles, J.

A. Delamarre, L. Lombez, and J. Guillemoles, “Contactless mapping of saturation currents of solar cells by photoluminescence,” Appl. Phys. Lett. 100, 131108 (2012).
[Crossref]

Hara, S.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAs core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
[Crossref]

Hazari, A.

A. Hazari, A. Aiello, T. Ng, B. S. Ooi, and P. Bhattacharya, “III-nitride disk-in-nanowire 1.2  μm monolithic diode laser on (001)silicon,” Appl. Phys. Lett. 107, 191107 (2015).
[Crossref]

Hu, E. L.

Hua, B.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAs core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
[Crossref]

Hwang, D. M.

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62, 1038–1040 (1993).
[Crossref]

Jagadish, C.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Janker, L.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

Jiang, N.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Johnson, J. C.

J. C. Johnson, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002).
[Crossref]

Jones, R.

Kamp, M.

K. W. Ng, W. S. Ko, T.-T. D. Tran, R. Chen, M. V. Nazarenko, F. Lu, V. G. Dubrovskii, M. Kamp, A. Forchel, and C. J. Chang-Hasnain, “Unconventional growth mechanism for monolithic integration of III-V on silicon,” ACS Nano 7, 100–107 (2013).
[Crossref]

Kaniber, M.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

Kapraun, J.

F. Schuster, J. Kapraun, G. N. Malheiros-Silveira, S. Deshpande, and C. Chang-Hasnain, “Site-controlled growth of monolithic InGaAs/InP quantum well nanopillars on silicon,” Nano Lett. 17, 2697–2702 (2017).
[Crossref]

Ko, W. S.

W. S. Ko, I. Bhattacharya, T.-T. D. Tran, K. W. Ng, S. A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).

K. W. Ng, W. S. Ko, T.-T. D. Tran, R. Chen, M. V. Nazarenko, F. Lu, V. G. Dubrovskii, M. Kamp, A. Forchel, and C. J. Chang-Hasnain, “Unconventional growth mechanism for monolithic integration of III-V on silicon,” ACS Nano 7, 100–107 (2013).
[Crossref]

M. V. Nazarenko, N. V. Sibirev, K. W. Ng, F. Ren, W. S. Ko, V. G. Dubrovskii, and C. Chang-Hasnain, “Elastic energy relaxation and critical thickness for plastic deformation in the core-shell InGaAs/GaAs nanopillars,” J. Appl. Phys. 113, 104311 (2013).
[Crossref]

F. Lu, T.-T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express 20, 12171–12176 (2012).
[Crossref]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Kobayashi, N. P.

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, and C. Chang-Hasnain, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90, 043115 (2007).
[Crossref]

Kobayashi, Y.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAs core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
[Crossref]

Koblmueller, G.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

Kong, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[Crossref]

Kostenbader, T.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Lagahe, C.

Lau, K. M.

Lee, A.

Leong, E. S. P.

A. Pan, W. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[Crossref]

Li, K.

K. Li, K. W. Ng, T.-T. D. Tran, H. Sun, F. Lu, and C. Chang-Hasnain, “Wurtzite-phased InP micropillars grown on silicon with low surface recombination velocity,” Nano Lett. 15, 7189–7198 (2015).
[Crossref]

T.-T. D. Tran, H. Sun, K. W. Ng, F. Ren, K. Li, F. Lu, E. Yablonovitch, and C. Chang-Hasnain, “High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1  eV,” Nano Lett. 14, 3235–3240 (2014).
[Crossref]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).

F. Ren, K. W. Ng, K. Li, H. Sun, and C. J. Chang-Hasnain, “High-quality InP nanoneedles grown on silicon,” Appl. Phys. Lett. 102, 012115 (2013).
[Crossref]

Li, L.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[Crossref]

Li, Q.

Li, Y.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[Crossref]

Lichtmannecker, S.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

Lieber, C. M.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[Crossref]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5, 917–920 (2005).
[Crossref]

Lin, C.-H.

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62, 1038–1040 (1993).
[Crossref]

Lin, Y.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[Crossref]

Liu, A. Y.

Liu, H.

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

H. Liu, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Liu, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[Crossref]

Liu, R.

A. Pan, W. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[Crossref]

Lo, Y. H.

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62, 1038–1040 (1993).
[Crossref]

Loitsch, B.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

Lombez, L.

A. Delamarre, L. Lombez, and J. Guillemoles, “Contactless mapping of saturation currents of solar cells by photoluminescence,” Appl. Phys. Lett. 100, 131108 (2012).
[Crossref]

Lu, F.

K. Li, K. W. Ng, T.-T. D. Tran, H. Sun, F. Lu, and C. Chang-Hasnain, “Wurtzite-phased InP micropillars grown on silicon with low surface recombination velocity,” Nano Lett. 15, 7189–7198 (2015).
[Crossref]

T.-T. D. Tran, H. Sun, K. W. Ng, F. Ren, K. Li, F. Lu, E. Yablonovitch, and C. Chang-Hasnain, “High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1  eV,” Nano Lett. 14, 3235–3240 (2014).
[Crossref]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).

K. W. Ng, W. S. Ko, T.-T. D. Tran, R. Chen, M. V. Nazarenko, F. Lu, V. G. Dubrovskii, M. Kamp, A. Forchel, and C. J. Chang-Hasnain, “Unconventional growth mechanism for monolithic integration of III-V on silicon,” ACS Nano 7, 100–107 (2013).
[Crossref]

F. Lu, T.-T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express 20, 12171–12176 (2012).
[Crossref]

Malheiros-Silveira, G. N.

F. Schuster, J. Kapraun, G. N. Malheiros-Silveira, S. Deshpande, and C. Chang-Hasnain, “Site-controlled growth of monolithic InGaAs/InP quantum well nanopillars on silicon,” Nano Lett. 17, 2697–2702 (2017).
[Crossref]

Maslov, A. V.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

Mayer, B.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

Meng, C.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[Crossref]

Meyyappan, M.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Moehrle, M.

M. Rosenzweig, M. Moehrle, H. Dueser, and H. Venghaus, “Threshold-current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers,” IEEE J. Quantum Electron. 27, 1804–1811 (1991).
[Crossref]

Moewe, M.

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93, 023116 (2008).
[Crossref]

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, and C. Chang-Hasnain, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90, 043115 (2007).
[Crossref]

Mokkapati, S.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Morkoetter, S.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

Motohisa, J.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAs core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
[Crossref]

Mueller, S.

M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
[Crossref]

Nazarenko, M. V.

K. W. Ng, W. S. Ko, T.-T. D. Tran, R. Chen, M. V. Nazarenko, F. Lu, V. G. Dubrovskii, M. Kamp, A. Forchel, and C. J. Chang-Hasnain, “Unconventional growth mechanism for monolithic integration of III-V on silicon,” ACS Nano 7, 100–107 (2013).
[Crossref]

M. V. Nazarenko, N. V. Sibirev, K. W. Ng, F. Ren, W. S. Ko, V. G. Dubrovskii, and C. Chang-Hasnain, “Elastic energy relaxation and critical thickness for plastic deformation in the core-shell InGaAs/GaAs nanopillars,” J. Appl. Phys. 113, 104311 (2013).
[Crossref]

Ng, K. W.

W. S. Ko, I. Bhattacharya, T.-T. D. Tran, K. W. Ng, S. A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref]

K. Li, K. W. Ng, T.-T. D. Tran, H. Sun, F. Lu, and C. Chang-Hasnain, “Wurtzite-phased InP micropillars grown on silicon with low surface recombination velocity,” Nano Lett. 15, 7189–7198 (2015).
[Crossref]

T.-T. D. Tran, H. Sun, K. W. Ng, F. Ren, K. Li, F. Lu, E. Yablonovitch, and C. Chang-Hasnain, “High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1  eV,” Nano Lett. 14, 3235–3240 (2014).
[Crossref]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).

K. W. Ng, W. S. Ko, T.-T. D. Tran, R. Chen, M. V. Nazarenko, F. Lu, V. G. Dubrovskii, M. Kamp, A. Forchel, and C. J. Chang-Hasnain, “Unconventional growth mechanism for monolithic integration of III-V on silicon,” ACS Nano 7, 100–107 (2013).
[Crossref]

F. Ren, K. W. Ng, K. Li, H. Sun, and C. J. Chang-Hasnain, “High-quality InP nanoneedles grown on silicon,” Appl. Phys. Lett. 102, 012115 (2013).
[Crossref]

M. V. Nazarenko, N. V. Sibirev, K. W. Ng, F. Ren, W. S. Ko, V. G. Dubrovskii, and C. Chang-Hasnain, “Elastic energy relaxation and critical thickness for plastic deformation in the core-shell InGaAs/GaAs nanopillars,” J. Appl. Phys. 113, 104311 (2013).
[Crossref]

F. Lu, T.-T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express 20, 12171–12176 (2012).
[Crossref]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Ng, T.

A. Hazari, A. Aiello, T. Ng, B. S. Ooi, and P. Bhattacharya, “III-nitride disk-in-nanowire 1.2  μm monolithic diode laser on (001)silicon,” Appl. Phys. Lett. 107, 191107 (2015).
[Crossref]

Ning, C. Z.

A. Pan, W. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[Crossref]

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

Ooi, B. S.

A. Hazari, A. Aiello, T. Ng, B. S. Ooi, and P. Bhattacharya, “III-nitride disk-in-nanowire 1.2  μm monolithic diode laser on (001)silicon,” Appl. Phys. Lett. 107, 191107 (2015).
[Crossref]

Pan, A.

A. Pan, W. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[Crossref]

Paniccia, M. J.

Parekh, D.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).

Park, H.

Park, H.-G.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[Crossref]

Parkinson, P.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Pozzi, F.

Qian, F.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[Crossref]

Regreny, P.

Reichert, T.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

Ren, F.

T.-T. D. Tran, H. Sun, K. W. Ng, F. Ren, K. Li, F. Lu, E. Yablonovitch, and C. Chang-Hasnain, “High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1  eV,” Nano Lett. 14, 3235–3240 (2014).
[Crossref]

M. V. Nazarenko, N. V. Sibirev, K. W. Ng, F. Ren, W. S. Ko, V. G. Dubrovskii, and C. Chang-Hasnain, “Elastic energy relaxation and critical thickness for plastic deformation in the core-shell InGaAs/GaAs nanopillars,” J. Appl. Phys. 113, 104311 (2013).
[Crossref]

F. Ren, K. W. Ng, K. Li, H. Sun, and C. J. Chang-Hasnain, “High-quality InP nanoneedles grown on silicon,” Appl. Phys. Lett. 102, 012115 (2013).
[Crossref]

Ren, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[Crossref]

Rojo-Romeo, P.

Ronning, C.

M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
[Crossref]

Rosenzweig, M.

M. Rosenzweig, M. Moehrle, H. Dueser, and H. Venghaus, “Threshold-current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers,” IEEE J. Quantum Electron. 27, 1804–1811 (1991).
[Crossref]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[Crossref]

Saxena, D.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Schubert, M. C.

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006).
[Crossref]

Schuster, F.

F. Schuster, J. Kapraun, G. N. Malheiros-Silveira, S. Deshpande, and C. Chang-Hasnain, “Site-controlled growth of monolithic InGaAs/InP quantum well nanopillars on silicon,” Nano Lett. 17, 2697–2702 (2017).
[Crossref]

Seassal, C.

Sedgwick, F. G.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Seeds, A.

Sibirev, N. V.

M. V. Nazarenko, N. V. Sibirev, K. W. Ng, F. Ren, W. S. Ko, V. G. Dubrovskii, and C. Chang-Hasnain, “Elastic energy relaxation and critical thickness for plastic deformation in the core-shell InGaAs/GaAs nanopillars,” J. Appl. Phys. 113, 104311 (2013).
[Crossref]

Sun, H.

K. Li, K. W. Ng, T.-T. D. Tran, H. Sun, F. Lu, and C. Chang-Hasnain, “Wurtzite-phased InP micropillars grown on silicon with low surface recombination velocity,” Nano Lett. 15, 7189–7198 (2015).
[Crossref]

T.-T. D. Tran, H. Sun, K. W. Ng, F. Ren, K. Li, F. Lu, E. Yablonovitch, and C. Chang-Hasnain, “High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1  eV,” Nano Lett. 14, 3235–3240 (2014).
[Crossref]

F. Ren, K. W. Ng, K. Li, H. Sun, and C. J. Chang-Hasnain, “High-quality InP nanoneedles grown on silicon,” Appl. Phys. Lett. 102, 012115 (2013).
[Crossref]

Sun, K.

T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630  nm) laser,” IEEE J. Quantum Electron. 49, 923–931 (2013).
[Crossref]

Sunkara, M. K.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

Tan, H. H.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Tong, L.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[Crossref]

Tran, T.-T. D.

W. S. Ko, I. Bhattacharya, T.-T. D. Tran, K. W. Ng, S. A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref]

K. Li, K. W. Ng, T.-T. D. Tran, H. Sun, F. Lu, and C. Chang-Hasnain, “Wurtzite-phased InP micropillars grown on silicon with low surface recombination velocity,” Nano Lett. 15, 7189–7198 (2015).
[Crossref]

T.-T. D. Tran, H. Sun, K. W. Ng, F. Ren, K. Li, F. Lu, E. Yablonovitch, and C. Chang-Hasnain, “High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1  eV,” Nano Lett. 14, 3235–3240 (2014).
[Crossref]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).

K. W. Ng, W. S. Ko, T.-T. D. Tran, R. Chen, M. V. Nazarenko, F. Lu, V. G. Dubrovskii, M. Kamp, A. Forchel, and C. J. Chang-Hasnain, “Unconventional growth mechanism for monolithic integration of III-V on silicon,” ACS Nano 7, 100–107 (2013).
[Crossref]

F. Lu, T.-T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express 20, 12171–12176 (2012).
[Crossref]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Treu, J.

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

Trupke, T.

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006).
[Crossref]

Vaddiraju, S.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

Venghaus, H.

M. Rosenzweig, M. Moehrle, H. Dueser, and H. Venghaus, “Threshold-current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers,” IEEE J. Quantum Electron. 27, 1804–1811 (1991).
[Crossref]

Verstuyft, S.

Wan, Y.

Wang, G.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[Crossref]

Wang, P.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[Crossref]

Wang, S.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[Crossref]

Wang, T.

Wang, Z. L.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[Crossref]

Warta, W.

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006).
[Crossref]

Wuerfel, P.

P. Wuerfel, “The chemical potential of radiation,” J. Phys. C 15, 3967–3985 (1982).
[Crossref]

Xiao, Y.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[Crossref]

Yablonovitch, E.

T.-T. D. Tran, H. Sun, K. W. Ng, F. Ren, K. Li, F. Lu, E. Yablonovitch, and C. Chang-Hasnain, “High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1  eV,” Nano Lett. 14, 3235–3240 (2014).
[Crossref]

Yan, R.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Yang, P.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Ye, Y.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[Crossref]

Yu, H.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[Crossref]

Zhao, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[Crossref]

Zhou, W.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[Crossref]

A. Pan, W. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[Crossref]

Zimmler, M. A.

M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
[Crossref]

Zou, B.

A. Pan, W. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[Crossref]

ACS Nano (1)

K. W. Ng, W. S. Ko, T.-T. D. Tran, R. Chen, M. V. Nazarenko, F. Lu, V. G. Dubrovskii, M. Kamp, A. Forchel, and C. J. Chang-Hasnain, “Unconventional growth mechanism for monolithic integration of III-V on silicon,” ACS Nano 7, 100–107 (2013).
[Crossref]

Appl. Phys. Lett. (10)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[Crossref]

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62, 1038–1040 (1993).
[Crossref]

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, and C. Chang-Hasnain, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90, 043115 (2007).
[Crossref]

A. Hazari, A. Aiello, T. Ng, B. S. Ooi, and P. Bhattacharya, “III-nitride disk-in-nanowire 1.2  μm monolithic diode laser on (001)silicon,” Appl. Phys. Lett. 107, 191107 (2015).
[Crossref]

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[Crossref]

M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
[Crossref]

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93, 023116 (2008).
[Crossref]

F. Ren, K. W. Ng, K. Li, H. Sun, and C. J. Chang-Hasnain, “High-quality InP nanoneedles grown on silicon,” Appl. Phys. Lett. 102, 012115 (2013).
[Crossref]

A. Delamarre, L. Lombez, and J. Guillemoles, “Contactless mapping of saturation currents of solar cells by photoluminescence,” Appl. Phys. Lett. 100, 131108 (2012).
[Crossref]

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Rosenzweig, M. Moehrle, H. Dueser, and H. Venghaus, “Threshold-current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers,” IEEE J. Quantum Electron. 27, 1804–1811 (1991).
[Crossref]

T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630  nm) laser,” IEEE J. Quantum Electron. 49, 923–931 (2013).
[Crossref]

J. Appl. Phys. (1)

M. V. Nazarenko, N. V. Sibirev, K. W. Ng, F. Ren, W. S. Ko, V. G. Dubrovskii, and C. Chang-Hasnain, “Elastic energy relaxation and critical thickness for plastic deformation in the core-shell InGaAs/GaAs nanopillars,” J. Appl. Phys. 113, 104311 (2013).
[Crossref]

J. Phys. C (1)

P. Wuerfel, “The chemical potential of radiation,” J. Phys. C 15, 3967–3985 (1982).
[Crossref]

Nano Lett. (8)

T.-T. D. Tran, H. Sun, K. W. Ng, F. Ren, K. Li, F. Lu, E. Yablonovitch, and C. Chang-Hasnain, “High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1  eV,” Nano Lett. 14, 3235–3240 (2014).
[Crossref]

K. Li, K. W. Ng, T.-T. D. Tran, H. Sun, F. Lu, and C. Chang-Hasnain, “Wurtzite-phased InP micropillars grown on silicon with low surface recombination velocity,” Nano Lett. 15, 7189–7198 (2015).
[Crossref]

F. Schuster, J. Kapraun, G. N. Malheiros-Silveira, S. Deshpande, and C. Chang-Hasnain, “Site-controlled growth of monolithic InGaAs/InP quantum well nanopillars on silicon,” Nano Lett. 17, 2697–2702 (2017).
[Crossref]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5, 917–920 (2005).
[Crossref]

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAs core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
[Crossref]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[Crossref]

A. Pan, W. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[Crossref]

B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkoetter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmueller, and J. J. Finley, “Monolithically integrated high-β nanowire lasers on silicon,” Nano Lett. 16, 152–156 (2016).
[Crossref]

Nat. Commun. (1)

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).

Nat. Mater. (2)

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[Crossref]

J. C. Johnson, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002).
[Crossref]

Nat. Nanotechnol. (1)

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[Crossref]

Nat. Photonics (4)

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

H. Liu, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. IEEE (2)

A. V. Krishnamoorthy, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Sci. Rep. (1)

W. S. Ko, I. Bhattacharya, T.-T. D. Tran, K. W. Ng, S. A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (2261 KB)      Supplementary document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Scanning electron micrograph of spontaneously nucleated InP nanopillars growing directly on (111) silicon, with the growth axis aligned along degenerate (111) directions. Note that the silicon substrate surface is clean and free of polycrystalline thin film deposition, unlike those with InGaAs/GaAs nanopillars [2632]. (b) Cross-sectional TEM image of a single QW (highlighted in yellow). (c) Close-up SEM of an exemplary single nanopillar. (d) Cross-sectional TEM of a nanopillar with five QWs grown conformally on the InP core, with an inset showing the individual QWs. (e) Cross-sectional TEM of a nanopillar with two QWs, and (f) high resolution TEM image showing the continuity of the lattice. Scale bars: (a) 5 μm, (b) 100 nm, (c) 1 μm, (d) 100 nm (inset: 20 nm), (e) 100 nm, and (f) 2 nm.
Fig. 2.
Fig. 2. QW luminescence and transparency conditions. (a) Schematic showing indirect excitation of QWs using 660 nm light, which is absorbed in the InP cladding layer, followed by rapid electron-hole capture into the QW heterostructure. This results in a carrier concentrating effect, leading to a high steady state carrier density at low pump excitation power. (b) Photoluminescence (PL) spectra for indirect excitation of a single QW embedded in an InP nanopillar, showing enhanced luminescence in the heterostructure compared to the bulk. This effect is more pronounced at room temperature, as explained in the text. (c) An absolute measurement of the luminescence allows us to extract the chemical potential of the photons, which exactly equals the steady state Fermi level split of the electrons and holes—thus reflecting the carrier concentration. This is plotted in (c) for the case of a QW heterostructure and compared with an undoped InP nanopillar, revealing a much higher Fermi level split in excess of the bandgap in the QW case compared to bulk InP. Additionally, in the QW case, the room temperature luminescence is less diminished compared to low temperature, reflecting a higher internal luminescence yield due to the beneficial effect of core-shell surface passivation. (d) Pillars with different growth times for the QW layer show PL spectra reflecting a quantum size effect, leading to wavelength tunability over 200 nm in the silicon-transparent window.
Fig. 3.
Fig. 3. As-grown nanopillar lasers on a SOI substrate. (a) Nanopillar lasers have been monolithically integrated on a SOI substrate, which is relevant for silicon photonics. The silicon layer is 500 nm thick. The low thickness enhances the reflection from the bottom facet of the pillar, leading to multiple longitudinal mode lasing with Fabry–Perot mode separation consistent with the pillar length. (b) Tuning the indium composition of the QW can be used to shift the lasing oscillation red from 1100 to 1300  nm, indicating a path toward the 1310 nm range that is interesting for on-chip photon routing. The lower set of spectra shows spontaneous emission, with the upper set showing spectra above the lasing threshold on the same pillars. (c) Single mode lasing at 1286 nm (within the O-band) has been obtained by tuning to a higher indium composition during growth. (d) and (e) Near-field images also show lasing mode profiles, with an incoherent image for the PL below threshold, followed by a spatially coherent speckle pattern after the onset of lasing. (f) The measured L–L curve for the laser in (c) shows a characteristic kink at threshold.
Fig. 4.
Fig. 4. Undercut cavity structure. (a) SEM image of nanopillar with a selective silicon undercut etch using SF6+O2 plasma. The etch leaves the InP pillar unaffected, while isotropically etching a pedestal under the pillar in a self-aligned manner. Both scale bars: 1 μm. (b) This enhances the quality factor of modes, with an exemplary TM52 mode revealing high quality factor greater than 103 with a small undercut etch δ of 150–200 nm. Both scale bars: 1 μm.
Fig. 5.
Fig. 5. Undercut cavity lasing up to RT. (a) Pulsed optical excitation leads to lasing from 5 K up to room temperature, showing an order of magnitude side mode suppression. (b) The lasing L–L curves show a characteristic S-shape all the way to room temperature and can be fit with a rate equation model. The threshold pump fluence shows reduced temperature sensitivity compared to reports for bulk gain media in nanopillars and nanowires. (c) Low temperature (5 K), continuous wave luminescence spectra linewidth narrowing (d) to 0.8  nm at the onset of lasing.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔFhν=kBTln(rspr0),

Metrics