Abstract

Silicon photonic integration is a means to produce an integrated on-chip fiber Bragg grating (FBG) interrogator. The possibility of integrating the light source, couplers, grating couplers, de-multiplexers, photodetectors (PDs), and other optical elements of the FBG interrogator into one chip may result in game-changing performance advances, considerable energy savings, and significant cost reductions. To the best of our knowledge, this paper is the first to present a hybrid silicon photonic chip based on III–V/silicon-on-insulator photonic integration for an FBG interrogator. The hybrid silicon photonic chip consists of a multiwavelength vertical-cavity surface-emitting laser array and input grating couplers, a multimode interference coupler, an arrayed waveguide grating, output grating couplers, and a PD array. The chip can serve as an FBG interrogator on a chip and offer unprecedented opportunities. With a footprint of 5mm×3mm, the proposed hybrid silicon photonic chip achieves an interrogation wavelength resolution of approximately 1 pm and a wavelength accuracy of about ±10pm. With the measured 1 pm wavelength resolution, the temperature measurement resolution of the proposed chip is approximately 0.1°C. The proposed hybrid silicon photonic chip possesses advantages in terms of cost, manufacturability, miniaturization, and performance. The chip supports applications that require extreme miniaturization down to the level of smart grains.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring

M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J.B. Rodriguez, E. Tournié, W. Bogaerts, M.K. Smit, and G. Roelkens
Opt. Express 22(22) 27300-27308 (2014)

Miniature interrogator for multiplexed FBG strain sensors based on a thermally tunable microring resonator array

Fan Yang, Wenjia Zhang, Shuangxiang Zhao, Qingwen Liu, Jifang Tao, and Zuyuan He
Opt. Express 27(5) 6037-6046 (2019)

III-V-on-silicon integrated micro - spectrometer for the 3 μm wavelength range

M. Muneeb, A. Vasiliev, A. Ruocco, A. Malik, H. Chen, M. Nedeljkovic, J. S. Penades, L. Cerutti, J. B. Rodriguez, G. Z. Mashanovich, M. K. Smit, E. Tourni, and G. Roelkens
Opt. Express 24(9) 9465-9472 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [Crossref]
  2. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [Crossref]
  3. L. Ferreira, J. Santos, and F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
    [Crossref]
  4. A. L. Ribeiro, L. Ferreira, J. Santos, and D. Jackson, “Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme,” Appl. Opt. 36, 934–939 (1997).
    [Crossref]
  5. W. Huang, W. Zhang, T. Zhen, F. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photon. Technol. Lett. 26, 1597–1600 (2014).
    [Crossref]
  6. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter,” Opt. Lett. 18, 1370–1372 (1993).
    [Crossref]
  7. J. Zhou, L. Xia, R. Cheng, Y. Wen, and J. Rohollahnejad, “Radio-frequency unbalanced M–Z interferometer for wavelength interrogation of fiber Bragg grating sensors,” Opt. Lett. 41, 313–316 (2016).
    [Crossref]
  8. M. D. Todd, G. A. Johnson, and B. L. Althouse, “A novel Bragg grating sensor interrogation system utilizing a scanning filter, a Mach–Zehnder interferometer and a 3 × 3 coupler,” Meas. Sci. Technol. 12, 771–777 (2001).
    [Crossref]
  9. L. S. Yan, A. Yi, W. Pan, and B. Luo, “A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser,” IEEE Photon. Technol. Lett. 22, 1391–1393 (2010).
    [Crossref]
  10. J. Koch, M. Angelmahr, and W. Schade, “Arrayed waveguide grating interrogator for fiber Bragg grating sensors: measurement and simulation,” Appl. Opt. 51, 7718–7723 (2012).
    [Crossref]
  11. Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors,” J. Lightwave Technol. 21, 132–139 (2003).
    [Crossref]
  12. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
    [Crossref]
  13. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
    [Crossref]
  14. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
    [Crossref]
  15. L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and non-local optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
    [Crossref]
  16. S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
    [Crossref]
  17. V. R. Almeida, W. Fegadolli, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photon. 2, 470–474 (2015).
    [Crossref]
  18. D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
    [Crossref]
  19. S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
    [Crossref]
  20. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
    [Crossref]
  21. D. Dai, J. Bauters, and E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
    [Crossref]
  22. W. Liu, M. Li, R. Guzzon, E. Norberg, J. Parker, M. Lu, L. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
    [Crossref]
  23. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. Wright, H. Bhaskaran, and W. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
    [Crossref]
  24. C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
    [Crossref]
  25. X. Chi, G. Douglas, P. Jonathan, O. Jason, H. Wilfried, and G. William, “Monolithic 56  Gb/s silicon photonic pulse-amplitude modulation transmitter,” Optica 3, 1060–1065 (2016).
    [Crossref]
  26. B. Redding, F. Seng, R. Sarma, and C. Hui, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
    [Crossref]
  27. S. Philip, K. Jake, S. Stasja, E. Chris, O. Jeremy, and M. G. Thompson, “Integrated silicon photonics for high-speed quantum key distribution,” Optica 4, 172–177 (2017).
    [Crossref]
  28. M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
    [Crossref]
  29. E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300  nm,” Opt. Express 21, 6101–6108 (2013).
    [Crossref]
  30. A. Ruocco, V. Thourhout, and W. Bogaerts, “Silicon photonic spectrometer for accurate peak detection using the Vernier effect and time-domain multiplexing,” J. Lightwave Technol. 32, 3351–3357 (2014).
    [Crossref]
  31. M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, M. K. Smit, and G. Roelkens, “Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring,” Opt. Express 22, 27300–27308 (2014).
    [Crossref]
  32. D. Pustakhod, E. Kleijn, K. Williams, and X. Leijtens, “High-resolution AWG-based fiber Bragg grating interrogator,” IEEE Photon. Technol. Lett. 28, 2203–2206 (2016).
    [Crossref]
  33. Y. Marin, T. Nannipieri, C. Oton, and F. Pasquale, “Integrated FBG sensors interrogation using active phase demodulation on a silicon photonic platform,” in Optical Fiber Sensors II (FF3B) (Frontiers in Optics, 2016), p. 1.
  34. X. Wang, G. R. Vargas, and R. R. Panepucci, “FBG interrogation system on a silicon chip,” in Latin America Optics and Photonics Conference, OSA Technical Digest (Optical Society of America, 2010), paper ThF3.
  35. H. Li, W. Zhou, Y. Liu, X. Dong, C. Zhang, C. Miao, M. Zhang, E. Li, and C. Tang, “Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem,” Sci. Rep. 4, 4848 (2014).
    [Crossref]
  36. F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photon. Technol. Lett. 18, 421–423 (2006).
    [Crossref]
  37. D. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delage, S. Janz, P. Cheben, J. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15, 3149–3155 (2007).
    [Crossref]
  38. D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
    [Crossref]
  39. J. Kee, D. Poenar, P. Neužil, L. Yobaş, and Y. Chen, “Design and fabrication of poly(dimethylsiloxane) arrayed waveguide grating,” Opt. Express 18, 21732–21742 (2010).
    [Crossref]
  40. K. Askin and A. Atilla, “Polymeric waveguide Bragg grating filter using soft lithography,” Opt. Express 14, 10228–10232 (2006).
    [Crossref]
  41. J. Zhao, X. Liu, Q. Huang, P. Liu, L. Wang, and X. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. 268, 2923–2925 (2010).
    [Crossref]
  42. V. Dobrusin and S. Ruschin, “Design of a fast tunable wavelength filter based on an arrayed waveguide grating,” Opt. Eng. 44, 044001 (2005).
    [Crossref]
  43. H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “200-GHz spacing, 8ch, high-speed wavelength selective arrayed-waveguide grating using buried PLZT waveguides,” IEICE Electron Express 9, 712–717 (2012).
    [Crossref]
  44. H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
    [Crossref]
  45. Y. Nasuhi, R. Kameron, K. Alan, and P. Nasser, “Design and fabrication of a broadband polarization and temperature insensitive arrayed waveguide grating on InP,” Opt. Express 13, 5535–5541 (2005).
    [Crossref]
  46. S. Keyvaninia and M. Muneeb, “Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3, 35–46 (2013).
    [Crossref]
  47. Y. Koninck, G. Roelkens, and R. Baets, “Electrically pumped 1550  nm single mode III–V-on-silicon laser with resonant grating cavity mirrors,” Laser Photon. Rev. 9, L6–L10 (2015).
    [Crossref]
  48. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
    [Crossref]
  49. V. Bardinal, T. Camps, B. Reig, S. Abada, E. Daran, and J. Doucet, “Advances in polymer-based optical MEMS fabrication for VCSEL beam shaping,” IEEE J. Sel. Top. Quantum Electron. 21, 41–48 (2015).
    [Crossref]
  50. A. A. Liles, K. Debnath, and L. O’Faolain, “Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector,” Opt. Lett. 41, 894–897 (2016).
    [Crossref]

2017 (1)

2016 (5)

2015 (8)

Y. Koninck, G. Roelkens, and R. Baets, “Electrically pumped 1550  nm single mode III–V-on-silicon laser with resonant grating cavity mirrors,” Laser Photon. Rev. 9, L6–L10 (2015).
[Crossref]

V. Bardinal, T. Camps, B. Reig, S. Abada, E. Daran, and J. Doucet, “Advances in polymer-based optical MEMS fabrication for VCSEL beam shaping,” IEEE J. Sel. Top. Quantum Electron. 21, 41–48 (2015).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. Wright, H. Bhaskaran, and W. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

V. R. Almeida, W. Fegadolli, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photon. 2, 470–474 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

2014 (7)

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and non-local optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

W. Huang, W. Zhang, T. Zhen, F. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photon. Technol. Lett. 26, 1597–1600 (2014).
[Crossref]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

H. Li, W. Zhou, Y. Liu, X. Dong, C. Zhang, C. Miao, M. Zhang, E. Li, and C. Tang, “Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem,” Sci. Rep. 4, 4848 (2014).
[Crossref]

A. Ruocco, V. Thourhout, and W. Bogaerts, “Silicon photonic spectrometer for accurate peak detection using the Vernier effect and time-domain multiplexing,” J. Lightwave Technol. 32, 3351–3357 (2014).
[Crossref]

M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, M. K. Smit, and G. Roelkens, “Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring,” Opt. Express 22, 27300–27308 (2014).
[Crossref]

2013 (6)

S. Keyvaninia and M. Muneeb, “Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3, 35–46 (2013).
[Crossref]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300  nm,” Opt. Express 21, 6101–6108 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

B. Redding, F. Seng, R. Sarma, and C. Hui, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

2012 (4)

D. Dai, J. Bauters, and E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “200-GHz spacing, 8ch, high-speed wavelength selective arrayed-waveguide grating using buried PLZT waveguides,” IEICE Electron Express 9, 712–717 (2012).
[Crossref]

H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
[Crossref]

J. Koch, M. Angelmahr, and W. Schade, “Arrayed waveguide grating interrogator for fiber Bragg grating sensors: measurement and simulation,” Appl. Opt. 51, 7718–7723 (2012).
[Crossref]

2010 (4)

J. Kee, D. Poenar, P. Neužil, L. Yobaş, and Y. Chen, “Design and fabrication of poly(dimethylsiloxane) arrayed waveguide grating,” Opt. Express 18, 21732–21742 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

L. S. Yan, A. Yi, W. Pan, and B. Luo, “A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser,” IEEE Photon. Technol. Lett. 22, 1391–1393 (2010).
[Crossref]

J. Zhao, X. Liu, Q. Huang, P. Liu, L. Wang, and X. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. 268, 2923–2925 (2010).
[Crossref]

2007 (1)

2006 (2)

K. Askin and A. Atilla, “Polymeric waveguide Bragg grating filter using soft lithography,” Opt. Express 14, 10228–10232 (2006).
[Crossref]

F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photon. Technol. Lett. 18, 421–423 (2006).
[Crossref]

2005 (2)

2003 (1)

2001 (1)

M. D. Todd, G. A. Johnson, and B. L. Althouse, “A novel Bragg grating sensor interrogation system utilizing a scanning filter, a Mach–Zehnder interferometer and a 3 × 3 coupler,” Meas. Sci. Technol. 12, 771–777 (2001).
[Crossref]

1998 (1)

D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
[Crossref]

1997 (3)

A. L. Ribeiro, L. Ferreira, J. Santos, and D. Jackson, “Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme,” Appl. Opt. 36, 934–939 (1997).
[Crossref]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

L. Ferreira, J. Santos, and F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[Crossref]

1993 (1)

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Abada, S.

V. Bardinal, T. Camps, B. Reig, S. Abada, E. Daran, and J. Doucet, “Advances in polymer-based optical MEMS fabrication for VCSEL beam shaping,” IEEE J. Sel. Top. Quantum Electron. 21, 41–48 (2015).
[Crossref]

Alan, K.

Alloatti, L.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Almeida, V. R.

V. R. Almeida, W. Fegadolli, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photon. 2, 470–474 (2015).
[Crossref]

Althouse, B. L.

M. D. Todd, G. A. Johnson, and B. L. Althouse, “A novel Bragg grating sensor interrogation system utilizing a scanning filter, a Mach–Zehnder interferometer and a 3 × 3 coupler,” Meas. Sci. Technol. 12, 771–777 (2001).
[Crossref]

Amthor, M.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Angelmahr, M.

Asakura, H.

H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “200-GHz spacing, 8ch, high-speed wavelength selective arrayed-waveguide grating using buried PLZT waveguides,” IEICE Electron Express 9, 712–717 (2012).
[Crossref]

H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
[Crossref]

Asano, T.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Asanovic, K.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Askin, K.

Atabaki, A.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Atilla, A.

Avizienis, R.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Baets, R.

Bardinal, V.

V. Bardinal, T. Camps, B. Reig, S. Abada, E. Daran, and J. Doucet, “Advances in polymer-based optical MEMS fabrication for VCSEL beam shaping,” IEEE J. Sel. Top. Quantum Electron. 21, 41–48 (2015).
[Crossref]

Bauters, J.

D. Dai, J. Bauters, and E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

Berkoff, T. A.

Bhaskaran, H.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. Wright, H. Bhaskaran, and W. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Bogaerts, W.

Bolten, J.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Bowers, E.

D. Dai, J. Bauters, and E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Camps, T.

V. Bardinal, T. Camps, B. Reig, S. Abada, E. Daran, and J. Doucet, “Advances in polymer-based optical MEMS fabrication for VCSEL beam shaping,” IEEE J. Sel. Top. Quantum Electron. 21, 41–48 (2015).
[Crossref]

Cerutti, L.

Cheben, P.

Chen, L.

F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photon. Technol. Lett. 18, 421–423 (2006).
[Crossref]

Chen, X.

Chen, Y.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

J. Kee, D. Poenar, P. Neužil, L. Yobaş, and Y. Chen, “Design and fabrication of poly(dimethylsiloxane) arrayed waveguide grating,” Opt. Express 18, 21732–21742 (2010).
[Crossref]

Cheng, R.

Chi, X.

Chihara, M.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Chmielak, B.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Chris, E.

Christian, S.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Coldren, L.

W. Liu, M. Li, R. Guzzon, E. Norberg, J. Parker, M. Lu, L. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

Cook, H.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Dai, D.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and non-local optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

D. Dai, J. Bauters, and E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

Daran, E.

V. Bardinal, T. Camps, B. Reig, S. Abada, E. Daran, and J. Doucet, “Advances in polymer-based optical MEMS fabrication for VCSEL beam shaping,” IEEE J. Sel. Top. Quantum Electron. 21, 41–48 (2015).
[Crossref]

Debnath, K.

Delage, A.

Densmore, A.

Dobrusin, V.

V. Dobrusin and S. Ruschin, “Design of a fast tunable wavelength filter based on an arrayed waveguide grating,” Opt. Eng. 44, 044001 (2005).
[Crossref]

Dong, X.

H. Li, W. Zhou, Y. Liu, X. Dong, C. Zhang, C. Miao, M. Zhang, E. Li, and C. Tang, “Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem,” Sci. Rep. 4, 4848 (2014).
[Crossref]

Doucet, J.

V. Bardinal, T. Camps, B. Reig, S. Abada, E. Daran, and J. Doucet, “Advances in polymer-based optical MEMS fabrication for VCSEL beam shaping,” IEEE J. Sel. Top. Quantum Electron. 21, 41–48 (2015).
[Crossref]

Douglas, G.

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Farahi, F.

L. Ferreira, J. Santos, and F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[Crossref]

Fegadolli, W.

V. R. Almeida, W. Fegadolli, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photon. 2, 470–474 (2015).
[Crossref]

Ferreira, L.

L. Ferreira, J. Santos, and F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[Crossref]

A. L. Ribeiro, L. Ferreira, J. Santos, and D. Jackson, “Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme,” Appl. Opt. 36, 934–939 (1997).
[Crossref]

Fischer, J.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Forchel, A.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Gassenq, A.

Georgas, M.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Giesecke, A. L.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Guzzon, R.

W. Liu, M. Li, R. Guzzon, E. Norberg, J. Parker, M. Lu, L. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

Hashimoto, M.

H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “200-GHz spacing, 8ch, high-speed wavelength selective arrayed-waveguide grating using buried PLZT waveguides,” IEICE Electron Express 9, 712–717 (2012).
[Crossref]

H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
[Crossref]

Hattasan, N.

He, S.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and non-local optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Höfling, S.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Hosseini, P.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. Wright, H. Bhaskaran, and W. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Hu, S.

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

Huang, Q.

J. Zhao, X. Liu, Q. Huang, P. Liu, L. Wang, and X. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. 268, 2923–2925 (2010).
[Crossref]

Huang, W.

W. Huang, W. Zhang, T. Zhen, F. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photon. Technol. Lett. 26, 1597–1600 (2014).
[Crossref]

Hui, C.

B. Redding, F. Seng, R. Sarma, and C. Hui, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Inui, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Jackson, D.

Jake, K.

Janz, S.

Jason, O.

Jeremy, O.

Jiang, X.

F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photon. Technol. Lett. 18, 421–423 (2006).
[Crossref]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Johnson, G. A.

M. D. Todd, G. A. Johnson, and B. L. Althouse, “A novel Bragg grating sensor interrogation system utilizing a scanning filter, a Mach–Zehnder interferometer and a 3 × 3 coupler,” Meas. Sci. Technol. 12, 771–777 (2001).
[Crossref]

Jonathan, P.

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Junginger, B.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Kameron, R.

Kamp, M.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Kee, J.

Kersey, A. D.

Keyvaninia, S.

Kim, N.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Kleijn, E.

D. Pustakhod, E. Kleijn, K. Williams, and X. Leijtens, “High-resolution AWG-based fiber Bragg grating interrogator,” IEEE Photon. Technol. Lett. 28, 2203–2206 (2016).
[Crossref]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Koch, J.

Koninck, Y.

Y. Koninck, G. Roelkens, and R. Baets, “Electrically pumped 1550  nm single mode III–V-on-silicon laser with resonant grating cavity mirrors,” Laser Photon. Rev. 9, L6–L10 (2015).
[Crossref]

Kravchenko, I. I.

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

Kudzuma, D.

H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “200-GHz spacing, 8ch, high-speed wavelength selective arrayed-waveguide grating using buried PLZT waveguides,” IEICE Electron Express 9, 712–717 (2012).
[Crossref]

H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
[Crossref]

Kuebart, W.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Kulakovskii, V.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Kumar, R.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Kurz, H.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Kuyken, B.

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Lamontagne, B.

Lapointe, J.

Lee, Y.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Leijtens, X.

D. Pustakhod, E. Kleijn, K. Williams, and X. Leijtens, “High-resolution AWG-based fiber Bragg grating interrogator,” IEEE Photon. Technol. Lett. 28, 2203–2206 (2016).
[Crossref]

Lepage, G.

Lermer, M.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Leu, J.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Levy, D. S.

D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
[Crossref]

Li, E.

H. Li, W. Zhou, Y. Liu, X. Dong, C. Zhang, C. Miao, M. Zhang, E. Li, and C. Tang, “Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem,” Sci. Rep. 4, 4848 (2014).
[Crossref]

Li, F.

W. Huang, W. Zhang, T. Zhen, F. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photon. Technol. Lett. 26, 1597–1600 (2014).
[Crossref]

Li, H.

H. Li, W. Zhou, Y. Liu, X. Dong, C. Zhang, C. Miao, M. Zhang, E. Li, and C. Tang, “Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem,” Sci. Rep. 4, 4848 (2014).
[Crossref]

Li, M.

W. Liu, M. Li, R. Guzzon, E. Norberg, J. Parker, M. Lu, L. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

Li, Y. M.

D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
[Crossref]

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Liles, A. A.

Lin, S.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Liu, P.

J. Zhao, X. Liu, Q. Huang, P. Liu, L. Wang, and X. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. 268, 2923–2925 (2010).
[Crossref]

Liu, W.

W. Liu, M. Li, R. Guzzon, E. Norberg, J. Parker, M. Lu, L. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

Liu, X.

J. Zhao, X. Liu, Q. Huang, P. Liu, L. Wang, and X. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. 268, 2923–2925 (2010).
[Crossref]

Liu, Y.

H. Li, W. Zhou, Y. Liu, X. Dong, C. Zhang, C. Miao, M. Zhang, E. Li, and C. Tang, “Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem,” Sci. Rep. 4, 4848 (2014).
[Crossref]

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Lu, M.

W. Liu, M. Li, R. Guzzon, E. Norberg, J. Parker, M. Lu, L. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

Luo, B.

L. S. Yan, A. Yi, W. Pan, and B. Luo, “A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser,” IEEE Photon. Technol. Lett. 22, 1391–1393 (2010).
[Crossref]

Malik, A.

Marin, Y.

Y. Marin, T. Nannipieri, C. Oton, and F. Pasquale, “Integrated FBG sensors interrogation using active phase demodulation on a silicon photonic platform,” in Optical Fiber Sensors II (FF3B) (Frontiers in Optics, 2016), p. 1.

Mashanovich, G. Z.

Matheisen, C.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Miao, C.

H. Li, W. Zhou, Y. Liu, X. Dong, C. Zhang, C. Miao, M. Zhang, E. Li, and C. Tang, “Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem,” Sci. Rep. 4, 4848 (2014).
[Crossref]

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Mohsin, M.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Morey, W. W.

Moss, B.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Muneeb, M.

Nannipieri, T.

Y. Marin, T. Nannipieri, C. Oton, and F. Pasquale, “Integrated FBG sensors interrogation using active phase demodulation on a silicon photonic platform,” in Optical Fiber Sensors II (FF3B) (Frontiers in Optics, 2016), p. 1.

Nashimoto, K.

H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “200-GHz spacing, 8ch, high-speed wavelength selective arrayed-waveguide grating using buried PLZT waveguides,” IEICE Electron Express 9, 712–717 (2012).
[Crossref]

H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
[Crossref]

Nasser, P.

Nasuhi, Y.

Nedeljkovic, M.

Neumaier, D.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Neužil, P.

Noda, S.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Norberg, E.

W. Liu, M. Li, R. Guzzon, E. Norberg, J. Parker, M. Lu, L. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

O’Faolain, L.

Orcutt, J.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Osgood, R. M.

D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
[Crossref]

Oton, C.

Y. Marin, T. Nannipieri, C. Oton, and F. Pasquale, “Integrated FBG sensors interrogation using active phase demodulation on a silicon photonic platform,” in Optical Fiber Sensors II (FF3B) (Frontiers in Optics, 2016), p. 1.

Ou, A.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Pan, W.

L. S. Yan, A. Yi, W. Pan, and B. Luo, “A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser,” IEEE Photon. Technol. Lett. 22, 1391–1393 (2010).
[Crossref]

Panepucci, R. R.

X. Wang, G. R. Vargas, and R. R. Panepucci, “FBG interrogation system on a silicon chip,” in Latin America Optics and Photonics Conference, OSA Technical Digest (Optical Society of America, 2010), paper ThF3.

Parker, J.

W. Liu, M. Li, R. Guzzon, E. Norberg, J. Parker, M. Lu, L. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

Pasquale, F.

Y. Marin, T. Nannipieri, C. Oton, and F. Pasquale, “Integrated FBG sensors interrogation using active phase demodulation on a silicon photonic platform,” in Optical Fiber Sensors II (FF3B) (Frontiers in Optics, 2016), p. 1.

Pathak, S.

Pavanello, F.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Pernice, W.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. Wright, H. Bhaskaran, and W. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Philip, S.

Piggott, A. Y.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Poenar, D.

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Popovic, M.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Porschatis, C.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Post, E.

Prinzen, A.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Pustakhod, D.

D. Pustakhod, E. Kleijn, K. Williams, and X. Leijtens, “High-resolution AWG-based fiber Bragg grating interrogator,” IEEE Photon. Technol. Lett. 28, 2203–2206 (2016).
[Crossref]

Qin, K.

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

Rahimi-Iman, A.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Ram, R.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Redding, B.

B. Redding, F. Seng, R. Sarma, and C. Hui, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Reig, B.

V. Bardinal, T. Camps, B. Reig, S. Abada, E. Daran, and J. Doucet, “Advances in polymer-based optical MEMS fabrication for VCSEL beam shaping,” IEEE J. Sel. Top. Quantum Electron. 21, 41–48 (2015).
[Crossref]

Reitzenstein, S.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Retterer, S. T.

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

Ribeiro, A. L.

Ríos, C.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. Wright, H. Bhaskaran, and W. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Rodriguez, J. B.

Roelkens, G.

Rohollahnejad, J.

Ruocco, A.

Ruschin, S.

V. Dobrusin and S. Ruschin, “Design of a fast tunable wavelength filter based on an arrayed waveguide grating,” Opt. Eng. 44, 044001 (2005).
[Crossref]

Ryckeboer, E.

Sanchez, D.

Sano, Y.

Santos, J.

A. L. Ribeiro, L. Ferreira, J. Santos, and D. Jackson, “Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme,” Appl. Opt. 36, 934–939 (1997).
[Crossref]

L. Ferreira, J. Santos, and F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[Crossref]

Sarma, R.

B. Redding, F. Seng, R. Sarma, and C. Hui, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Savenko, I.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Scarmozzino, R.

D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
[Crossref]

Schade, W.

Schall, D.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Scherer, A.

V. R. Almeida, W. Fegadolli, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photon. 2, 470–474 (2015).
[Crossref]

Scherer, T.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. Wright, H. Bhaskaran, and W. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Schmid, J.

Seng, F.

B. Redding, F. Seng, R. Sarma, and C. Hui, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Shainline, J.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Shelykh, I.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Smit, M. K.

Stasja, S.

Stegmaier, M.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. Wright, H. Bhaskaran, and W. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Stojanovic, V.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Sun, C.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Takahashi, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Tang, C.

H. Li, W. Zhou, Y. Liu, X. Dong, C. Zhang, C. Miao, M. Zhang, E. Li, and C. Tang, “Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem,” Sci. Rep. 4, 4848 (2014).
[Crossref]

Templ, W.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Terawaki, R.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Thompson, M. G.

Thourhout, V.

Todd, M. D.

M. D. Todd, G. A. Johnson, and B. L. Althouse, “A novel Bragg grating sensor interrogation system utilizing a scanning filter, a Mach–Zehnder interferometer and a 3 × 3 coupler,” Meas. Sci. Technol. 12, 771–777 (2001).
[Crossref]

Tournié, E.

Tsuda, H.

H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
[Crossref]

H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “200-GHz spacing, 8ch, high-speed wavelength selective arrayed-waveguide grating using buried PLZT waveguides,” IEICE Electron Express 9, 712–717 (2012).
[Crossref]

Van Campenhout, J.

Vargas, G. R.

X. Wang, G. R. Vargas, and R. R. Panepucci, “FBG interrogation system on a silicon chip,” in Latin America Optics and Photonics Conference, OSA Technical Digest (Optical Society of America, 2010), paper ThF3.

Verheyen, P.

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Wade, M.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Waldron, P.

Wang, D.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. Wright, H. Bhaskaran, and W. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Wang, F.

F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photon. Technol. Lett. 18, 421–423 (2006).
[Crossref]

Wang, L.

J. Zhao, X. Liu, Q. Huang, P. Liu, L. Wang, and X. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. 268, 2923–2925 (2010).
[Crossref]

Wang, M.

F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photon. Technol. Lett. 18, 421–423 (2006).
[Crossref]

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Wang, X.

J. Zhao, X. Liu, Q. Huang, P. Liu, L. Wang, and X. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. 268, 2923–2925 (2010).
[Crossref]

X. Wang, G. R. Vargas, and R. R. Panepucci, “FBG interrogation system on a silicon chip,” in Latin America Optics and Photonics Conference, OSA Technical Digest (Optical Society of America, 2010), paper ThF3.

Waterman, A.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Weiss, S. M.

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

Wen, Y.

Wilfried, H.

William, G.

Williams, K.

D. Pustakhod, E. Kleijn, K. Williams, and X. Leijtens, “High-resolution AWG-based fiber Bragg grating interrogator,” IEEE Photon. Technol. Lett. 28, 2203–2206 (2016).
[Crossref]

Wolf, A.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Worschech, L.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Wright, C.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. Wright, H. Bhaskaran, and W. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Xia, L.

Xu, D.

Xu, Y.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and non-local optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

Yamamoto, Y.

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Yan, L. S.

L. S. Yan, A. Yi, W. Pan, and B. Luo, “A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser,” IEEE Photon. Technol. Lett. 22, 1391–1393 (2010).
[Crossref]

Yang, J.

F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photon. Technol. Lett. 18, 421–423 (2006).
[Crossref]

Yao, J.

W. Liu, M. Li, R. Guzzon, E. Norberg, J. Parker, M. Lu, L. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

Yi, A.

L. S. Yan, A. Yi, W. Pan, and B. Luo, “A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser,” IEEE Photon. Technol. Lett. 22, 1391–1393 (2010).
[Crossref]

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Yobas, L.

Yoshino, T.

Yu, L.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and non-local optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

Zhang, C.

H. Li, W. Zhou, Y. Liu, X. Dong, C. Zhang, C. Miao, M. Zhang, E. Li, and C. Tang, “Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem,” Sci. Rep. 4, 4848 (2014).
[Crossref]

Zhang, F.

W. Huang, W. Zhang, T. Zhen, F. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photon. Technol. Lett. 26, 1597–1600 (2014).
[Crossref]

Zhang, M.

H. Li, W. Zhou, Y. Liu, X. Dong, C. Zhang, C. Miao, M. Zhang, E. Li, and C. Tang, “Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem,” Sci. Rep. 4, 4848 (2014).
[Crossref]

Zhang, W.

W. Huang, W. Zhang, T. Zhen, F. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photon. Technol. Lett. 26, 1597–1600 (2014).
[Crossref]

Zhao, J.

J. Zhao, X. Liu, Q. Huang, P. Liu, L. Wang, and X. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. 268, 2923–2925 (2010).
[Crossref]

Zhao, Y.

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

Zhen, T.

W. Huang, W. Zhang, T. Zhen, F. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photon. Technol. Lett. 26, 1597–1600 (2014).
[Crossref]

Zheng, J.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and non-local optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

Zhou, J.

Zhou, W.

H. Li, W. Zhou, Y. Liu, X. Dong, C. Zhang, C. Miao, M. Zhang, E. Li, and C. Tang, “Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem,” Sci. Rep. 4, 4848 (2014).
[Crossref]

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

ACS Nano (1)

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and non-local optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

ACS Photon. (3)

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

V. R. Almeida, W. Fegadolli, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photon. 2, 470–474 (2015).
[Crossref]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Electron. Lett. (1)

H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Bardinal, T. Camps, B. Reig, S. Abada, E. Daran, and J. Doucet, “Advances in polymer-based optical MEMS fabrication for VCSEL beam shaping,” IEEE J. Sel. Top. Quantum Electron. 21, 41–48 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (6)

D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photon. Technol. Lett. 10, 96–98 (1998).
[Crossref]

L. Ferreira, J. Santos, and F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[Crossref]

W. Huang, W. Zhang, T. Zhen, F. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photon. Technol. Lett. 26, 1597–1600 (2014).
[Crossref]

L. S. Yan, A. Yi, W. Pan, and B. Luo, “A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser,” IEEE Photon. Technol. Lett. 22, 1391–1393 (2010).
[Crossref]

D. Pustakhod, E. Kleijn, K. Williams, and X. Leijtens, “High-resolution AWG-based fiber Bragg grating interrogator,” IEEE Photon. Technol. Lett. 28, 2203–2206 (2016).
[Crossref]

F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photon. Technol. Lett. 18, 421–423 (2006).
[Crossref]

IEICE Electron Express (1)

H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “200-GHz spacing, 8ch, high-speed wavelength selective arrayed-waveguide grating using buried PLZT waveguides,” IEICE Electron Express 9, 712–717 (2012).
[Crossref]

J. Lightwave Technol. (3)

Laser Photon. Rev. (2)

Y. Koninck, G. Roelkens, and R. Baets, “Electrically pumped 1550  nm single mode III–V-on-silicon laser with resonant grating cavity mirrors,” Laser Photon. Rev. 9, L6–L10 (2015).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Light Sci. Appl. (2)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

D. Dai, J. Bauters, and E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

Meas. Sci. Technol. (1)

M. D. Todd, G. A. Johnson, and B. L. Althouse, “A novel Bragg grating sensor interrogation system utilizing a scanning filter, a Mach–Zehnder interferometer and a 3 × 3 coupler,” Meas. Sci. Technol. 12, 771–777 (2001).
[Crossref]

Nat. Photonics (5)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

W. Liu, M. Li, R. Guzzon, E. Norberg, J. Parker, M. Lu, L. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10, 190–195 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. Wright, H. Bhaskaran, and W. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

B. Redding, F. Seng, R. Sarma, and C. Hui, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Nature (3)

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

S. Christian, A. Rahimi-Iman, N. Kim, J. Fischer, I. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. Kulakovskii, I. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Nucl. Instrum. Methods Phys. Res. (1)

J. Zhao, X. Liu, Q. Huang, P. Liu, L. Wang, and X. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. 268, 2923–2925 (2010).
[Crossref]

Opt. Eng. (1)

V. Dobrusin and S. Ruschin, “Design of a fast tunable wavelength filter based on an arrayed waveguide grating,” Opt. Eng. 44, 044001 (2005).
[Crossref]

Opt. Express (7)

J. Kee, D. Poenar, P. Neužil, L. Yobaş, and Y. Chen, “Design and fabrication of poly(dimethylsiloxane) arrayed waveguide grating,” Opt. Express 18, 21732–21742 (2010).
[Crossref]

K. Askin and A. Atilla, “Polymeric waveguide Bragg grating filter using soft lithography,” Opt. Express 14, 10228–10232 (2006).
[Crossref]

Y. Nasuhi, R. Kameron, K. Alan, and P. Nasser, “Design and fabrication of a broadband polarization and temperature insensitive arrayed waveguide grating on InP,” Opt. Express 13, 5535–5541 (2005).
[Crossref]

M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, M. K. Smit, and G. Roelkens, “Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring,” Opt. Express 22, 27300–27308 (2014).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300  nm,” Opt. Express 21, 6101–6108 (2013).
[Crossref]

D. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delage, S. Janz, P. Cheben, J. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15, 3149–3155 (2007).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (2)

Sci. Rep. (1)

H. Li, W. Zhou, Y. Liu, X. Dong, C. Zhang, C. Miao, M. Zhang, E. Li, and C. Tang, “Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem,” Sci. Rep. 4, 4848 (2014).
[Crossref]

Other (2)

Y. Marin, T. Nannipieri, C. Oton, and F. Pasquale, “Integrated FBG sensors interrogation using active phase demodulation on a silicon photonic platform,” in Optical Fiber Sensors II (FF3B) (Frontiers in Optics, 2016), p. 1.

X. Wang, G. R. Vargas, and R. R. Panepucci, “FBG interrogation system on a silicon chip,” in Latin America Optics and Photonics Conference, OSA Technical Digest (Optical Society of America, 2010), paper ThF3.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (3293 KB)      Supplemental Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of the proposed AWG interrogation system and hybrid silicon photonic chip structure. (a) Schematic of the AWG interrogation of FBG sensors. (b) Hybrid silicon photonic chip structure based on III–V/SOI photonic integration for the AWG interrogation of FBG sensors.
Fig. 2.
Fig. 2. Optical element simulation results of the hybrid silicon photonic chip for the AWG interrogator. (a) Optical field and output power of the MMI coupler with a tapered input/output waveguide. L-1 represents the light power of the input waveguide of the MMI coupler; L-2 represents the light power of the left output waveguide of the MMI coupler; and L-3 represents the light power of the right output waveguide of the MMI coupler. (b) Simulated optical response of the SOI AWG centered at approximately 1550 nm with eight output channels. Different colors denote different channels. (c) Input grating coupling efficiency with respect to wavelength. (Inset) Simulated output optical fields of the input grating coupler and VCSEL. (d) Schematic of the proposed combiners using the bent waveguides. The bend radius and angle are 51 μm and 90°, respectively. The width of each bent waveguide is 0.65 μm. (e) Output grating coupling efficiency with respect to wavelength. (Inset) Simulated output optical field of the output grating coupler.
Fig. 3.
Fig. 3. (a) Micrograph of the final fabricated 5mm×3mm proof-of-concept silicon photonic chip. (b) SEM image of the input grating coupler with a footprint of 17μm×20μm. (c) SEM image of the 2×1 MMI coupler with a footprint of 20μm×6μm and the bent waveguides with a diameter of 51 μm. (d) SEM image of the output grating coupler with a footprint of 25μm×10μm. (e) SEM image of the 1×8 AWG with a footprint of 300μm×570μm. (f) SEM image of the 2×2 MMI coupler with a footprint of 57μm×6μm. (g) Micrograph of the 1×4 multi-wavelength VCSEL array with a footprint of 0.45mm×1mm (light-emitting area with a diameter of 10 μm in the back). (h) Micrograph of the 1×8 PD array with a footprint of 0.3mm×2.4mm (sensitive area with a diameter of 55 μm).
Fig. 4.
Fig. 4. (a) Schematic of the III–V-to-SOI adhesive bonding process flow. (b) SEM cross section of the SOI/BCB/VCSEL structure after bonding. (c) SEM cross section of the SOI/BCB/PD structure after bonding.
Fig. 5.
Fig. 5. Optical experimental results of the AWG and input/output grating coupler. (a) Experimentally measured input grating coupling efficiency with respect to wavelength. (b) Experimentally measured optical response of the SOI AWG centered around 1550 nm with eight output channels. Different colors denote different channels. (c) Experimentally measured output grating coupling efficiency with respect to wavelength.
Fig. 6.
Fig. 6. Comparison of (a) the V–I curve and (b) the L–I curve of the VCSEL before and after bonding with the hybrid silicon photonic chip for AWG interrogation.
Fig. 7.
Fig. 7. (a) Interrogation experiments and measurements of the optical response results. The Bragg wavelength shift against temperature change in the wavelength range is about 10 pm/°C. AP, amplification and conditioning circuit; A/D, ADS8345; PC, computer.
Fig. 8.
Fig. 8. Interrogation results of the temperature experiments. (a) FBG1, (b) FBG2, (c) FBG3, and (d) FBG4.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Pi=(1Li)0S(λ)˙RFBG(λ)˙TAWG(i,λ)dλ,
Pi+1=(1Li+1)0S(λ)˙RFBG(λ)˙TAWG(i+1,λ)dλ.
ln(pi+1pi)=8(ln2)ΔλΔλi2+ΔλFBG2λFBG4(ln2)(λi+12λi2)Δλi2+ΔλFBG2,

Metrics