Abstract

Fiber lasers that generate ultrashort light pulses can offer practical advantages over solid-state lasers for some applications. However, the achievement of high peak power with environmentally stable designs remains a major challenge for fiber oscillators. We demonstrate that an environmentally stable source based on cascaded Mamyshev regeneration can reach peak power at least an order of magnitude higher than that of previous lasers with similar fiber mode area. By designing the oscillator to support parabolic pulse formation and exploiting the step-like saturable absorber characteristic of Mamyshev regeneration, unprecedented nonlinear phase shifts can be managed. Numerical simulations reveal key aspects of the pulse evolution and realistically suggest that (after external linear compression) peak powers approaching 10 MW are possible from an ordinary single-mode fiber. Experiments with a ring-cavity oscillator based on ytterbium-doped fibers are limited by available pump power, but they still yield 50-nJ and 40-fs pulses for 1MW peak power. The combination of environmental stability, established previously, with the performance described here should make the Mamyshev oscillator extremely attractive for applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators

Stéphane Pitois, Christophe Finot, Lionel Provost, and David J. Richardson
J. Opt. Soc. Am. B 25(9) 1537-1547 (2008)

Megawatt peak power level sub-100 fs Yb:KGW oscillators

Haitao Zhao and Arkady Major
Opt. Express 22(25) 30425-30431 (2014)

All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes

Jianfeng Li, Zuxing Zhang, Zhongyuan Sun, Hongyu Luo, Yong Liu, Zhijun Yan, Chengbo Mou, Lin Zhang, and Sergei K. Turitsyn
Opt. Express 22(7) 7875-7882 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
    [Crossref]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  3. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
    [Crossref]
  4. A. Chong, J. Buckley, W. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [Crossref]
  5. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20  nJ,” Opt. Lett. 32, 2408–2410 (2007).
    [Crossref]
  6. B. Nie, D. Pestov, F. W. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express 19, 12074–12080 (2011).
    [Crossref]
  7. A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78, 113901 (2015).
    [Crossref]
  8. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984).
    [Crossref]
  9. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
    [Crossref]
  10. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [Crossref]
  11. A. Chong, W. H. Renninger, and F. W. Wise, “Environmentally stable all-normal-dispersion femtosecond fiber laser,” Opt. Lett. 33, 1071–1073 (2008).
    [Crossref]
  12. C. Aguergaray, N. G. R. Broderick, M. Erkintalo, J. S. Y. Chen, and V. Kruglov, “Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror,” Opt. Express 20, 10545–10551 (2012).
    [Crossref]
  13. C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120  fs, 4.2  nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103, 121111 (2013).
    [Crossref]
  14. J. Szczepanek, T. M. Kardaś, M. Michalska, C. Radzewicz, and Y. Stepanenko, “Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror,” Opt. Lett. 40, 3500–3503 (2015).
    [Crossref]
  15. U. Keller, T. H. Chiu, and J. F. Ferguson, “Self-starting femtosecond mode-locked Nd:glass laser that uses intracavity saturable absorbers,” Opt. Lett. 18, 1077–1079 (1993).
  16. M. Piche, “Mode locking through nonlinear frequency broadening and spectral filtering,” Proc. SPIE, 2041, 358–365 (1994).
  17. S. Pitois, C. Finot, L. Provost, and D. J. Richardson, “Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators,” J. Opt. Soc. Am. B 25, 1537–1547 (2008).
    [Crossref]
  18. K. Sun, M. Rochette, and L. R. Chen, “Output characterization of a self-pulsating and aperiodic optical fiber source based on cascaded regeneration,” Opt. Express 17, 10419–10432 (2009).
    [Crossref]
  19. T. North and M. Rochette, “Regenerative self-pulsating sources of large bandwidths,” Opt. Lett. 39, 174–177 (2014).
    [Crossref]
  20. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication, Madrid, Spain (IEEE, 1998), pp. 475–476.
  21. L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15, 5100–5113 (2007).
    [Crossref]
  22. K. Regelskis, J. Zeludevicius, K. Viskontas, and G. Raciukaitis, “Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering,” Opt. Lett. 40, 5255–5258 (2015).
    [Crossref]
  23. K. Regelskis and G. Raciukaitis, “Method and generator for generating ultra-short light pulses,” European patentWO2016020188 A1, February11, 2016.
  24. I. Samartsev, A. Bordenyuk, and V. Gapontsev, “Environmentally stable seed source for high power ultrafast laser,” Proc. SPIE 10085, 100850S (2017).
    [Crossref]
  25. W. H. Renniger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
    [Crossref]
  26. C. Finot, S. Pitois, and G. Millot, “Regenerative 40 Gbit/s wavelength converter based on similariton generation,” Opt. Lett. 30, 1776–1778 (2005).
    [Crossref]
  27. T. Northa and C. S. Bres, “Regenerative similariton laser,” APL Photon. 1, 021302 (2016).
    [Crossref]
  28. A. M. Perogo, N. Tarasov, D. V. Churkin, S. K. Turisyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
    [Crossref]
  29. N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
    [Crossref]
  30. J. Zeludevicius, Center for Physical Sciences & Technology (CPST) Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania (personal communication, 2015).
  31. W. H. Renninger and F. W. Wise, “Fundamental limits to mode-locked lasers: toward terawatt peak powers,” IEEE J. Sel. Top. Quantum Electron. 21, 1100208 (2015).
    [Crossref]
  32. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to highpower femtosecond pulses without external amplification,” Opt. Lett. 29, 1366–1368 (2004).
    [Crossref]
  33. V. G. Bucklew, W. H. Renninger, P. S. Edwards, and Z. Liu, “Iteratively seeded mode-locking,” Opt. Express 25, 13481–13493 (2017).
  34. C. Finot, J. Dudley, B. Kibler, D. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009).
    [Crossref]
  35. F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4, 471–476 (2010).
    [Crossref]
  36. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
    [Crossref]
  37. Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
    [Crossref]
  38. S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett. 38, 1790–1792 (2013).
    [Crossref]

2017 (2)

I. Samartsev, A. Bordenyuk, and V. Gapontsev, “Environmentally stable seed source for high power ultrafast laser,” Proc. SPIE 10085, 100850S (2017).
[Crossref]

V. G. Bucklew, W. H. Renninger, P. S. Edwards, and Z. Liu, “Iteratively seeded mode-locking,” Opt. Express 25, 13481–13493 (2017).

2016 (3)

T. Northa and C. S. Bres, “Regenerative similariton laser,” APL Photon. 1, 021302 (2016).
[Crossref]

A. M. Perogo, N. Tarasov, D. V. Churkin, S. K. Turisyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
[Crossref]

N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
[Crossref]

2015 (4)

W. H. Renninger and F. W. Wise, “Fundamental limits to mode-locked lasers: toward terawatt peak powers,” IEEE J. Sel. Top. Quantum Electron. 21, 1100208 (2015).
[Crossref]

K. Regelskis, J. Zeludevicius, K. Viskontas, and G. Raciukaitis, “Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering,” Opt. Lett. 40, 5255–5258 (2015).
[Crossref]

A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78, 113901 (2015).
[Crossref]

J. Szczepanek, T. M. Kardaś, M. Michalska, C. Radzewicz, and Y. Stepanenko, “Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror,” Opt. Lett. 40, 3500–3503 (2015).
[Crossref]

2014 (2)

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

T. North and M. Rochette, “Regenerative self-pulsating sources of large bandwidths,” Opt. Lett. 39, 174–177 (2014).
[Crossref]

2013 (3)

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
[Crossref]

S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett. 38, 1790–1792 (2013).
[Crossref]

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120  fs, 4.2  nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103, 121111 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (2)

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4, 471–476 (2010).
[Crossref]

W. H. Renniger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[Crossref]

2009 (2)

C. Finot, J. Dudley, B. Kibler, D. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009).
[Crossref]

K. Sun, M. Rochette, and L. R. Chen, “Output characterization of a self-pulsating and aperiodic optical fiber source based on cascaded regeneration,” Opt. Express 17, 10419–10432 (2009).
[Crossref]

2008 (3)

2007 (2)

2006 (1)

2005 (1)

2004 (2)

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

1994 (1)

M. Piche, “Mode locking through nonlinear frequency broadening and spectral filtering,” Proc. SPIE, 2041, 358–365 (1994).

1993 (2)

1984 (1)

Aguergaray, C.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120  fs, 4.2  nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103, 121111 (2013).
[Crossref]

C. Aguergaray, N. G. R. Broderick, M. Erkintalo, J. S. Y. Chen, and V. Kruglov, “Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror,” Opt. Express 20, 10545–10551 (2012).
[Crossref]

Apolonski, A.

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Bordenyuk, A.

I. Samartsev, A. Bordenyuk, and V. Gapontsev, “Environmentally stable seed source for high power ultrafast laser,” Proc. SPIE 10085, 100850S (2017).
[Crossref]

Brasch, V.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Bres, C. S.

T. Northa and C. S. Bres, “Regenerative similariton laser,” APL Photon. 1, 021302 (2016).
[Crossref]

Broderick, N. G. R.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120  fs, 4.2  nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103, 121111 (2013).
[Crossref]

C. Aguergaray, N. G. R. Broderick, M. Erkintalo, J. S. Y. Chen, and V. Kruglov, “Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror,” Opt. Express 20, 10545–10551 (2012).
[Crossref]

Bucklew, V. G.

Buckley, J.

Buckley, J. R.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Chembo, Y. K.

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
[Crossref]

Chen, J. S. Y.

Chen, L. R.

Chiu, T. H.

Chong, A.

Churkin, D. V.

N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
[Crossref]

A. M. Perogo, N. Tarasov, D. V. Churkin, S. K. Turisyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
[Crossref]

Clark, W. G.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Coen, S.

S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett. 38, 1790–1792 (2013).
[Crossref]

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4, 471–476 (2010).
[Crossref]

Dantus, M.

Dudley, J.

C. Finot, J. Dudley, B. Kibler, D. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009).
[Crossref]

Edwards, P. S.

Emplit, P.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4, 471–476 (2010).
[Crossref]

Erkintalo, M.

Ferguson, J. F.

Fernandez, A.

Finot, C.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Fuji, T.

Fürbach, A.

Gapontsev, V.

I. Samartsev, A. Bordenyuk, and V. Gapontsev, “Environmentally stable seed source for high power ultrafast laser,” Proc. SPIE 10085, 100850S (2017).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Gorodetsky, M. L.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Gorza, S.-P.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4, 471–476 (2010).
[Crossref]

Haelterman, M.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4, 471–476 (2010).
[Crossref]

Haus, H. A.

Hawker, R.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120  fs, 4.2  nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103, 121111 (2013).
[Crossref]

Herr, T.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Ilday, F. O.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Ippen, E. P.

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kardas, T. M.

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Keller, U.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

U. Keller, T. H. Chiu, and J. F. Ferguson, “Self-starting femtosecond mode-locked Nd:glass laser that uses intracavity saturable absorbers,” Opt. Lett. 18, 1077–1079 (1993).

Kibler, B.

C. Finot, J. Dudley, B. Kibler, D. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009).
[Crossref]

Kippenberg, T. J.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Kockaert, P.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4, 471–476 (2010).
[Crossref]

Kondratiev, N. M.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Krausz, F.

Kruglov, V.

Leo, F.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4, 471–476 (2010).
[Crossref]

Liu, Z.

Mamyshev, P. V.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication, Madrid, Spain (IEEE, 1998), pp. 475–476.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Menyuk, C. R.

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
[Crossref]

Michalska, M.

Millot, G.

C. Finot, J. Dudley, B. Kibler, D. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009).
[Crossref]

C. Finot, S. Pitois, and G. Millot, “Regenerative 40 Gbit/s wavelength converter based on similariton generation,” Opt. Lett. 30, 1776–1778 (2005).
[Crossref]

Mollenauer, L. F.

Mukasa, K.

Nelson, L. E.

Nie, B.

North, T.

Northa, T.

T. Northa and C. S. Bres, “Regenerative similariton laser,” APL Photon. 1, 021302 (2016).
[Crossref]

Perego, A. M.

N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
[Crossref]

Perogo, A. M.

A. M. Perogo, N. Tarasov, D. V. Churkin, S. K. Turisyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
[Crossref]

Pestov, D.

Petropoulos, P.

Piche, M.

M. Piche, “Mode locking through nonlinear frequency broadening and spectral filtering,” Proc. SPIE, 2041, 358–365 (1994).

Pitois, S.

Poppe, A.

Provost, L.

Raciukaitis, G.

Radzewicz, C.

Regelskis, K.

Renniger, W. H.

W. H. Renniger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[Crossref]

Renninger, W.

Renninger, W. H.

Richardson, D.

C. Finot, J. Dudley, B. Kibler, D. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009).
[Crossref]

Richardson, D. J.

Rochette, M.

Runge, A. F. J.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120  fs, 4.2  nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103, 121111 (2013).
[Crossref]

Samartsev, I.

I. Samartsev, A. Bordenyuk, and V. Gapontsev, “Environmentally stable seed source for high power ultrafast laser,” Proc. SPIE 10085, 100850S (2017).
[Crossref]

Staliunas, K.

N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
[Crossref]

A. M. Perogo, N. Tarasov, D. V. Churkin, S. K. Turisyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
[Crossref]

Stepanenko, Y.

Stolen, R. H.

Sun, K.

Szczepanek, J.

Tamura, K.

Tarasov, N.

N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
[Crossref]

A. M. Perogo, N. Tarasov, D. V. Churkin, S. K. Turisyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
[Crossref]

Turisyn, S. K.

A. M. Perogo, N. Tarasov, D. V. Churkin, S. K. Turisyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
[Crossref]

Turitsyn, S. K.

N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
[Crossref]

Viskontas, K.

Wang, C. Y.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref]

Wise, F. W.

A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78, 113901 (2015).
[Crossref]

W. H. Renninger and F. W. Wise, “Fundamental limits to mode-locked lasers: toward terawatt peak powers,” IEEE J. Sel. Top. Quantum Electron. 21, 1100208 (2015).
[Crossref]

B. Nie, D. Pestov, F. W. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express 19, 12074–12080 (2011).
[Crossref]

W. H. Renniger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “Environmentally stable all-normal-dispersion femtosecond fiber laser,” Opt. Lett. 33, 1071–1073 (2008).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20  nJ,” Opt. Lett. 32, 2408–2410 (2007).
[Crossref]

A. Chong, J. Buckley, W. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[Crossref]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Wright, L. G.

A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78, 113901 (2015).
[Crossref]

Zeludevicius, J.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref]

APL Photon. (1)

T. Northa and C. S. Bres, “Regenerative similariton laser,” APL Photon. 1, 021302 (2016).
[Crossref]

Appl. Phys. Lett. (1)

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120  fs, 4.2  nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103, 121111 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Finot, J. Dudley, B. Kibler, D. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

W. H. Renninger and F. W. Wise, “Fundamental limits to mode-locked lasers: toward terawatt peak powers,” IEEE J. Sel. Top. Quantum Electron. 21, 1100208 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref]

Nat. Commun. (1)

N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
[Crossref]

Nat. Photonics (3)

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4, 471–476 (2010).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (11)

S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett. 38, 1790–1792 (2013).
[Crossref]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to highpower femtosecond pulses without external amplification,” Opt. Lett. 29, 1366–1368 (2004).
[Crossref]

C. Finot, S. Pitois, and G. Millot, “Regenerative 40 Gbit/s wavelength converter based on similariton generation,” Opt. Lett. 30, 1776–1778 (2005).
[Crossref]

K. Regelskis, J. Zeludevicius, K. Viskontas, and G. Raciukaitis, “Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering,” Opt. Lett. 40, 5255–5258 (2015).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “Environmentally stable all-normal-dispersion femtosecond fiber laser,” Opt. Lett. 33, 1071–1073 (2008).
[Crossref]

T. North and M. Rochette, “Regenerative self-pulsating sources of large bandwidths,” Opt. Lett. 39, 174–177 (2014).
[Crossref]

J. Szczepanek, T. M. Kardaś, M. Michalska, C. Radzewicz, and Y. Stepanenko, “Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror,” Opt. Lett. 40, 3500–3503 (2015).
[Crossref]

U. Keller, T. H. Chiu, and J. F. Ferguson, “Self-starting femtosecond mode-locked Nd:glass laser that uses intracavity saturable absorbers,” Opt. Lett. 18, 1077–1079 (1993).

L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20  nJ,” Opt. Lett. 32, 2408–2410 (2007).
[Crossref]

Phys. Rev. A (2)

W. H. Renniger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[Crossref]

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
[Crossref]

Phys. Rev. Lett. (2)

A. M. Perogo, N. Tarasov, D. V. Churkin, S. K. Turisyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
[Crossref]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Proc. SPIE (2)

M. Piche, “Mode locking through nonlinear frequency broadening and spectral filtering,” Proc. SPIE, 2041, 358–365 (1994).

I. Samartsev, A. Bordenyuk, and V. Gapontsev, “Environmentally stable seed source for high power ultrafast laser,” Proc. SPIE 10085, 100850S (2017).
[Crossref]

Rep. Prog. Phys. (1)

A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78, 113901 (2015).
[Crossref]

Other (3)

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication, Madrid, Spain (IEEE, 1998), pp. 475–476.

K. Regelskis and G. Raciukaitis, “Method and generator for generating ultra-short light pulses,” European patentWO2016020188 A1, February11, 2016.

J. Zeludevicius, Center for Physical Sciences & Technology (CPST) Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania (personal communication, 2015).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1586 KB)      Supplement 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the ring Mamyshev oscillator. Filter: The black curve shows the gain spectrum and the red curve indicates the passband of the filter; PBS: polarizing beam splitter.

Fig. 2.
Fig. 2.

Numerical simulation results for 50nJ output pulses. (a) Evolution of pulse duration (blue) and RMS bandwidth (red); P: passive fiber; G: gain fiber; and F: filter. (b) Evolution of misfit parameter M defined by M2=(IIfit)2dt/I2dt, which indicates the difference between the pulse shape (I) and the best-fit parabolic profile Ifit. (c) Temporal profile (black) with fitted parabolic curve (red) and instantaneous frequency across the chirped pulse (blue) and (d) simulated spectrum.

Fig. 3.
Fig. 3.

Measurements of pulses from the ring Mamyshev oscillator. (a) Measured output spectra and (b) autocorrelations for the indicated output energies.

Fig. 4.
Fig. 4.

Pulse quality check. (a) Measured root-mean-square bandwidth after propagation through 2-m of SMF (black) compared to simulation (red). (b) Radio frequency spectrum with a resolution bandwidth of 30 Hz and a span range of 20 kHz. Noise floor is shown in red.

Tables (1)

Tables Icon

Table 1. Performance Summary of SMF-Based Ytterbium-Doped Fiber Oscillators for Different Pulse Evolutions