Abstract

The persistent growth of interest in the middle infrared (MIR) is stimulating the development of sources and components. Novel waveguides and fibers for the efficient use of nonlinear effects in the MIR are being intensively studied. Highly nonlinear silica fibers have enabled record performances of highly versatile parametric processes in the telecommunication band. However, no waveguiding platforms (to our knowledge) have yet solved the trade-off among high nonlinearity, low propagation losses and dispersion in the MIR. As single waveguide designs have not yet hit this particular optimal point, only pulsed–pumped demonstrations have been carried out, hindering any application requiring narrow linewidth, continuous-wave (c.w.) operation, or signal modulation. Here, we show MIR c.w. parametric amplification in a Ge10As22Se68 tapered fiber. Leveraging state-of-the-art fabrication techniques, we use a photonic crystal fiber (PCF) geometry combining high nonlinearity and low dispersion, while maintaining single mode and low losses in the short-wave IR and MIR. We experimentally demonstrate 5 dB signal amplification and 3 dB idler conversion efficiency using only 125 mW of pump in the 2 μm wavelength range. Our result is not only the first c.w. parametric amplification measured at 2 μm in any waveguide, but it also establishes GeAsSe PCF tapers as the most promising all-fibered, high-efficiency parametric converter for advanced applications in the MIR.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion

Sida Xing, Davide Grassani, Svyatoslav Kharitonov, Adrien Billat, and Camille-Sophie Brès
Opt. Express 24(9) 9741-9750 (2016)

Design of a new family of narrow-linewidth mid-infrared lasers

Behsan Behzadi, Maryam Aliannezhadi, Mani Hossein-Zadeh, and Ravinder K. Jain
J. Opt. Soc. Am. B 34(12) 2501-2513 (2017)

Compact Brillouin devices through hybrid integration on silicon

Blair Morrison, Alvaro Casas-Bedoya, Guanghui Ren, Khu Vu, Yang Liu, Atiyeh Zarifi, Thach G. Nguyen, Duk-Yong Choi, David Marpaung, Stephen J. Madden, Arnan Mitchell, and Benjamin J. Eggleton
Optica 4(8) 847-854 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
    [Crossref]
  2. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36, 1263–1265 (2011).
    [Crossref]
  3. X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
    [Crossref]
  4. G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
    [Crossref]
  5. E. Luzhansky, F.-S. Choa, S. Merritt, A. Yu, and M. Krainak, “Mid-IR free-space optical communication with quantum cascade lasers,” Proc. SPIE 9465, 946512 (2015).
    [Crossref]
  6. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6  μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
    [Crossref]
  7. N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21, 28415–28422 (2013).
    [Crossref]
  8. J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925  nm and 2200  nm,” Opt. Express 22, 5387–5399 (2014).
    [Crossref]
  9. S. Kharitonov, A. Billat, and C.-S. Brès, “Kerr nonlinearity and dispersion characterization of core-pumped thulium-doped fiber at 2  μm,” Opt. Lett. 41, 3173–3176 (2016).
    [Crossref]
  10. D. Milam and M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
    [Crossref]
  11. A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2  μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett. 35, 3198–3200 (2010).
    [Crossref]
  12. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
    [Crossref]
  13. M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381 (2008).
    [Crossref]
  14. N. Abdukerim, L. Li, and M. Rochette, “Chalcogenide-based optical parametric oscillator at 2  μm,” Opt. Lett. 41, 4364–4367 (2016).
    [Crossref]
  15. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000).
    [Crossref]
  16. T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 μm,” Opt. Express 23, 4125–4134 (2015).
    [Crossref]
  17. S. Xing, D. Grassani, S. Kharitonov, A. Billat, and C.-S. Brès, “Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion,” Opt. Express 24, 9741–9750 (2016).
    [Crossref]
  18. M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser Photon. Rev. 9, 50–74 (2015).
    [Crossref]
  19. R. Ahmad and M. Rochette, “High efficiency and ultra broadband optical parametric four-wave mixing in chalcogenide-PMMA hybrid microwires,” Opt. Express 20, 9572–9580 (2012).
    [Crossref]
  20. S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19, B653–B660 (2011).
    [Crossref]
  21. I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
    [Crossref]
  22. O. Mouawad, F. Amrani, B. Kibler, J. Picot-Clémente, C. Strutynski, J. Fatome, F. Désévédavy, G. Gadret, J. C. Jules, O. Heintz, E. Lesniewska, and F. Smektala, “Impact of optical and structural aging in As2S3 microstructured optical fibers on mid-infrared supercontinuum generation,” Opt. Express 22, 23912–23919 (2014).
    [Crossref]
  23. C. Baker and M. Rochette, “High nonlinearity and single-mode transmission in tapered multimode As2Se3-PMMA fibers,” IEEE Photon. J. 4, 960–969 (2012).
    [Crossref]
  24. S. D. Le, M. Gay, L. Bramerie, M. Costa e Silva, K. Lenglé, T. Chartier, M. Thual, J.-C. Simon, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Wavelength conversion in a highly nonlinear chalcogenide microstructured fiber,” Opt. Lett. 37, 4576–4578 (2012).
    [Crossref]
  25. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [Crossref]
  26. P. Toupin, L. Brilland, J. Trolès, and J.-L. Adam, “Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses,” Opt. Mater. Express 2, 1359–1366 (2012).
    [Crossref]
  27. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010).
    [Crossref]
  28. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  29. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001).
    [Crossref]
  30. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256, 6–16 (1999).
    [Crossref]
  31. G. M. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
    [Crossref]
  32. R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40, 5074–5077 (2015).
    [Crossref]
  33. P. Toupin, L. Brilland, D. Méchin, J.-L. Adam, and J. Troles, “Optical aging of chalcogenide microstructured optical fibers,” J. Lightwave Technol. 32, 2428–2432 (2014).
    [Crossref]

2016 (3)

2015 (5)

2014 (3)

2013 (1)

2012 (6)

2011 (2)

2010 (4)

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010).
[Crossref]

A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2  μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett. 35, 3198–3200 (2010).
[Crossref]

2009 (1)

2008 (2)

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381 (2008).
[Crossref]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[Crossref]

2001 (1)

2000 (1)

1999 (1)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256, 6–16 (1999).
[Crossref]

1976 (1)

D. Milam and M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
[Crossref]

Abdukerim, N.

Abouraddy, A. F.

Adam, J.-L.

Aggarwal, I. D.

Ahmad, R.

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Amrani, F.

Andrekson, P. A.

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser Photon. Rev. 9, 50–74 (2015).
[Crossref]

Badding, J. V.

Baets, R.

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

Baker, C.

C. Baker and M. Rochette, “High nonlinearity and single-mode transmission in tapered multimode As2Se3-PMMA fibers,” IEEE Photon. J. 4, 960–969 (2012).
[Crossref]

Ballato, J.

Billat, A.

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Bony, P. Y.

Botten, L. C.

Bour, D.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

Bramerie, L.

Brès, C.-S.

Brilland, L.

Capasso, F.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

Carter, A.

Chartier, T.

Cheng, T.

Cheong, S. W.

Chin, G.

Choa, F.-S.

E. Luzhansky, F.-S. Choa, S. Merritt, A. Yu, and M. Krainak, “Mid-IR free-space optical communication with quantum cascade lasers,” Proc. SPIE 9465, 946512 (2015).
[Crossref]

Choi, D.-Y.

Clarkson, W. A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Corzine, S.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

Costa e Silva, M.

Coulombier, Q.

Curl, R. F.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

Danto, S.

de Sterke, C. M.

Deng, D.

Désévédavy, F.

Diehl, L.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Ebendorff-Heidepriem, H.

Eggleton, B. J.

Eisenstein, G.

Faist, J.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

Fatome, J.

Fink, Y.

Foster, M. A.

Gadret, G.

Gaeta, A. L.

Gai, X.

Gao, W.

Gattass, R. R.

Gay, M.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Gershikov, A.

Gibson, D.

Giovannini, M.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

Grassani, D.

Green, W. M. J.

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Haub, J.

Heintz, O.

Hemming, A.

Hirano, Y.

Hofler, G.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

Houizot, P.

Hwang, H. Y.

Imaki, M.

Jazayerifar, M.

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser Photon. Rev. 9, 50–74 (2015).
[Crossref]

Jules, J. C.

Kameyama, S.

Katsufuji, T.

Kawakami, S.

Kawashima, H.

Kharitonov, S.

Kibler, B.

Kim, W.

Kohoutek, T.

Krainak, M.

E. Luzhansky, F.-S. Choa, S. Merritt, A. Yu, and M. Krainak, “Mid-IR free-space optical communication with quantum cascade lasers,” Proc. SPIE 9465, 946512 (2015).
[Crossref]

Kuyken, B.

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

Lamont, M. R. E.

Lau, R. K. W.

Le, S. D.

Lenglé, K.

Lenz, G.

Lesniewska, E.

Lewicki, R.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

Li, J.

Li, L.

Lines, M. E.

Lipson, M.

Liu, X.

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Liu, Y.

Luo, H.

Luther-Davies, B.

Luzhansky, E.

E. Luzhansky, F.-S. Choa, S. Merritt, A. Yu, and M. Krainak, “Mid-IR free-space optical communication with quantum cascade lasers,” Proc. SPIE 9465, 946512 (2015).
[Crossref]

Madden, S.

Marhic, M. E.

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser Photon. Rev. 9, 50–74 (2015).
[Crossref]

Maulini, R.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

McPhedran, R. C.

Méchin, D.

Ménard, M.

Merritt, S.

E. Luzhansky, F.-S. Choa, S. Merritt, A. Yu, and M. Krainak, “Mid-IR free-space optical communication with quantum cascade lasers,” Proc. SPIE 9465, 946512 (2015).
[Crossref]

Milam, D.

D. Milam and M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
[Crossref]

Monteville, A.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Mouawad, O.

N’Guyen, T. N.

Nakajima, M.

Nguyen, D. M.

Nguyen, V.

Ohishi, Y.

Okawachi, Y.

Orain, H.

Osgood, R. M.

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Pain, T.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Petropoulos, P.

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser Photon. Rev. 9, 50–74 (2015).
[Crossref]

Peucheret, C.

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser Photon. Rev. 9, 50–74 (2015).
[Crossref]

Picot-Clémente, J.

Radic, S.

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser Photon. Rev. 9, 50–74 (2015).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Renversez, G.

Rochette, M.

Roelkens, G.

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

Russell, P. St. J.

Sakaizawa, D.

Salem, R.

Sanghera, J. S.

Sangleboeuf, J.-C.

Savelii, I.

Shaw, L. B.

Shumakher, E.

Simakov, N.

Simon, J.-C.

Slusher, R. E.

Smektala, F.

Spälter, S.

Steel, M. J.

Stolyarov, A. M.

Strutynski, C.

Sun, Z.

Suzuki, T.

Tao, G. M.

Thapa, R.

Thual, M.

Tittel, F. K.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

Toupin, P.

Troccoli, M.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

Troles, J.

Trolès, J.

Turner-Foster, A. C.

Ueno, S.

Vlasov, Y. A.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Weber, M. J.

D. Milam and M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
[Crossref]

White, T. P.

Willinger, A.

Wysocki, G.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

Xing, S.

Xue, X.

Yan, Z.

Yu, A.

E. Luzhansky, F.-S. Choa, S. Merritt, A. Yu, and M. Krainak, “Mid-IR free-space optical communication with quantum cascade lasers,” Proc. SPIE 9465, 946512 (2015).
[Crossref]

Zhang, L.

Zhou, K.

Zimmermann, J.

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. B (1)

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[Crossref]

IEEE Photon. J. (1)

C. Baker and M. Rochette, “High nonlinearity and single-mode transmission in tapered multimode As2Se3-PMMA fibers,” IEEE Photon. J. 4, 960–969 (2012).
[Crossref]

J. Appl. Phys. (1)

D. Milam and M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
[Crossref]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (1)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256, 6–16 (1999).
[Crossref]

Laser Photon. Rev. (1)

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser Photon. Rev. 9, 50–74 (2015).
[Crossref]

Nat. Photonics (3)

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Opt. Express (10)

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381 (2008).
[Crossref]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010).
[Crossref]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19, B653–B660 (2011).
[Crossref]

R. Ahmad and M. Rochette, “High efficiency and ultra broadband optical parametric four-wave mixing in chalcogenide-PMMA hybrid microwires,” Opt. Express 20, 9572–9580 (2012).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
[Crossref]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21, 28415–28422 (2013).
[Crossref]

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925  nm and 2200  nm,” Opt. Express 22, 5387–5399 (2014).
[Crossref]

O. Mouawad, F. Amrani, B. Kibler, J. Picot-Clémente, C. Strutynski, J. Fatome, F. Désévédavy, G. Gadret, J. C. Jules, O. Heintz, E. Lesniewska, and F. Smektala, “Impact of optical and structural aging in As2S3 microstructured optical fibers on mid-infrared supercontinuum generation,” Opt. Express 22, 23912–23919 (2014).
[Crossref]

T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 μm,” Opt. Express 23, 4125–4134 (2015).
[Crossref]

S. Xing, D. Grassani, S. Kharitonov, A. Billat, and C.-S. Brès, “Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion,” Opt. Express 24, 9741–9750 (2016).
[Crossref]

Opt. Lett. (9)

S. Kharitonov, A. Billat, and C.-S. Brès, “Kerr nonlinearity and dispersion characterization of core-pumped thulium-doped fiber at 2  μm,” Opt. Lett. 41, 3173–3176 (2016).
[Crossref]

N. Abdukerim, L. Li, and M. Rochette, “Chalcogenide-based optical parametric oscillator at 2  μm,” Opt. Lett. 41, 4364–4367 (2016).
[Crossref]

R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40, 5074–5077 (2015).
[Crossref]

S. D. Le, M. Gay, L. Bramerie, M. Costa e Silva, K. Lenglé, T. Chartier, M. Thual, J.-C. Simon, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Wavelength conversion in a highly nonlinear chalcogenide microstructured fiber,” Opt. Lett. 37, 4576–4578 (2012).
[Crossref]

A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2  μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett. 35, 3198–3200 (2010).
[Crossref]

R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36, 1263–1265 (2011).
[Crossref]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6  μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
[Crossref]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000).
[Crossref]

M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (1)

E. Luzhansky, F.-S. Choa, S. Merritt, A. Yu, and M. Krainak, “Mid-IR free-space optical communication with quantum cascade lasers,” Proc. SPIE 9465, 946512 (2015).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (2509 KB)      supplemental

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Dispersion engineered GeAsSe tapered PCF. (a) Schematic of the GeAsSe fiber, (b) optical microscope image of the microstructured fiber before tapering, and (c) scanning electron microscope image after tapering, within the waist. The structure appears well preserved.

Fig. 2.
Fig. 2.

Experimental setup. TDFL, thulium-doped fiber laser; OT, optical terminator; PD, photodiode; PM LF, polarization-maintaining lensed fiber; OSA, optical spectrum analyzer.

Fig. 3.
Fig. 3.

Engineered GeAsSe microstructured taper characteristics. (a) Dispersion of the untapered and tapered fiber obtained from simulations (solid lines). Measured dispersion on the fabricated fibers obtained from interferometric measurements (int.) and four-wave mixing data (FWM) are also plotted. (b) Example of FWM spectra at the output of the tapered fiber for a c.w. pump positioned at 2040 nm with 13 mW coupled power. The data are in excellent agreement with the theoretical fitting. (c) Fitting of the experimental CE points for a 78 cm long tapered fiber at 2040 nm pump; rotating the input lensed fiber revealed its birefringence.

Fig. 4.
Fig. 4.

Experimental characterization of a 1.2 m long taper for 1950 nm pump. (a) Output spectra for 65, 90, and 110 mW coupled pump powers, and 125 mW with a 1 mW signal. Cascaded FWM is observed. (b) CE as a function of idler wavelength for 125 mW pump power at 1950 nm, (c) ON/OFF signal amplification for four coupled pump powers. Inset: experimentally measured and simulated positions of the CE’s first dip as a function of coupled pump power.

Fig. 5.
Fig. 5.

Mid-IR parametric amplifier performance and repeatability. (a) CE as a function of coupled pump power for a 1950 nm pump and a 1952 nm signal. Output pump power as a function of coupled pump power is also plotted. (b) CE as a function of wavelength for a 3 mW pump before and after high power (125 mW) testing, (c) normalized CE in decibels per length squared (dB/m2) as a function of coupled pump power for three different tapers obtained from the same fiber. Note that taper 1 was tested at 1980 nm instead of 1950 nm.

Tables (1)

Tables Icon

Table 1. Figure of Merit of Various Nonlinear Platforms Used for Parametric Processes at 2  μm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

izA(z,t)+iα2Aβ222At2+γ|A|2A=0.

Metrics