Abstract

Femtosecond laser-induced periodic subwavelength and deep-subwavelength structures (SWS; DSWS) have attracted attention due to their subdiffraction resolution of surface and inner volume patterning. Understanding of the richness of laser–matter interaction during formation of SWS and DSWS is another quest which can help to find control for nanoscale fabrication. Lack of control over SWS and DSWS formation has impacted their wider use and calls for a deeper insight into the relationship between them. Herein we present a systematic study defining a criterion for imprinting either SWS or DSWS, which is based on a competition and their mutual incompatibility discriminated by the laser fluence and pulse accumulation. Structure evolution of SWS and DSWS is highly dependent on the localized effective laser fluence, which determines the instantaneous optical permittivity by the laser-excited electrons creating an active plasma layer. The proposed universal SWS and DSWS competition mechanism involving the laser-induced plasma wave at the plasma–substrate interface ties together many previous observations and unifies the discussed mechanisms of surface nanoripple formation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Subwavelength topological structures resulting from surface two-plasmon resonance by femtosecond laser exposure solid surface

Hai-Ying Song, Shi-Bing Liu, H. Y. Liu, Yang Wang, Tao Chen, and Xiang-Ming Dong
Opt. Express 24(11) 12151-12165 (2016)

Laser ablation of silicon in water with nanosecond and femtosecond pulses

Jun Ren, Michael Kelly, and Lambertus Hesselink
Opt. Lett. 30(13) 1740-1742 (2005)

Nanosecond laser pulse induced concentric surface structures on SiO2 layer

Wei Sun, Hongji Qi, Zhou Fang, Zhenkun Yu, Yi Liu, Kui Yi, and Jianda Shao
Opt. Express 22(3) 2948-2954 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Birnbaum, “Semiconductor surface damage produced by Ruby laser,” J. Appl. Phys. 36, 3688–3689 (1965).
    [Crossref]
  2. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I: theory,” Phys. Rev. B 27, 1141–1154 (1983).
    [Crossref]
  3. J. Bonse and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2010).
    [Crossref]
  4. R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38, 119–156 (2014).
    [Crossref]
  5. D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
    [Crossref]
  6. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
    [Crossref]
  7. S. Hohm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
    [Crossref]
  8. J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150  nm gratings and squares on ZnO crystal in water by using 800  nm femtosecond laser,” Opt. Express 22, 32361–32370 (2014).
    [Crossref]
  9. S. Wang, G. Feng, and S. Zhou, “Microsized structures assisted nanostructure formation on ZnSe wafer by femtosecond laser irradiation,” Appl. Phys. Lett. 105, 253110 (2014).
    [Crossref]
  10. L. Wang, Q. D. Chen, R. Yang, B. B. Xu, H. Y. Wang, H. Yang, C. S. Huo, H. B. Sun, and H. L. Tu, “Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring,” Appl. Phys. Lett. 104, 031904 (2014).
    [Crossref]
  11. Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, and Y. Cheng, “High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation,” Optica 2, 329–334 (2015).
    [Crossref]
  12. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106, 104910 (2009).
    [Crossref]
  13. J. Bonse, A. Rosenfeld, and J. Krüger, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2011).
    [Crossref]
  14. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structure,” J. Laser Appl. 24, 042006 (2012).
    [Crossref]
  15. G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86, 115316 (2012).
    [Crossref]
  16. L. Jiang, W. Han, X. Li, Q. Wang, F. Meng, and Y. Lu, “Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon,” Opt. Lett. 39, 3114–3117 (2014).
    [Crossref]
  17. R. Kuladeep, C. Sahoo, and D. Narayana Rao, “Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser,” Appl. Phys. Lett. 104, 222103 (2014).
    [Crossref]
  18. J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys. A 118, 1119–1125 (2015).
    [Crossref]
  19. W. Han, L. Jiang, X. Li, Y. Liu, and Y. Lu, “Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction,” Appl. Phys. Lett. 107, 251601 (2015).
    [Crossref]
  20. G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92, 041405 (2015).
    [Crossref]
  21. M. Straub, M. Afshar, D. Feili, H. Seidel, and K. Koenig, “Periodic nanostructures on Si(100) surfaces generated by high-repetition rate sub-15  fs pulsed near-infrared laser light,” Opt. Lett. 37, 190–192 (2012).
    [Crossref]
  22. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100  nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13, 6651–6656 (2005).
    [Crossref]
  23. C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 75304 (2010).
    [Crossref]
  24. T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116, 074902 (2014).
    [Crossref]
  25. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
    [Crossref]
  26. S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
    [Crossref]
  27. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
    [Crossref]

2016 (2)

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

2015 (4)

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys. A 118, 1119–1125 (2015).
[Crossref]

W. Han, L. Jiang, X. Li, Y. Liu, and Y. Lu, “Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction,” Appl. Phys. Lett. 107, 251601 (2015).
[Crossref]

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92, 041405 (2015).
[Crossref]

Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, and Y. Cheng, “High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation,” Optica 2, 329–334 (2015).
[Crossref]

2014 (7)

L. Jiang, W. Han, X. Li, Q. Wang, F. Meng, and Y. Lu, “Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon,” Opt. Lett. 39, 3114–3117 (2014).
[Crossref]

R. Kuladeep, C. Sahoo, and D. Narayana Rao, “Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser,” Appl. Phys. Lett. 104, 222103 (2014).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150  nm gratings and squares on ZnO crystal in water by using 800  nm femtosecond laser,” Opt. Express 22, 32361–32370 (2014).
[Crossref]

S. Wang, G. Feng, and S. Zhou, “Microsized structures assisted nanostructure formation on ZnSe wafer by femtosecond laser irradiation,” Appl. Phys. Lett. 105, 253110 (2014).
[Crossref]

L. Wang, Q. D. Chen, R. Yang, B. B. Xu, H. Y. Wang, H. Yang, C. S. Huo, H. B. Sun, and H. L. Tu, “Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring,” Appl. Phys. Lett. 104, 031904 (2014).
[Crossref]

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38, 119–156 (2014).
[Crossref]

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116, 074902 (2014).
[Crossref]

2013 (1)

S. Hohm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[Crossref]

2012 (3)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structure,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86, 115316 (2012).
[Crossref]

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. Koenig, “Periodic nanostructures on Si(100) surfaces generated by high-repetition rate sub-15  fs pulsed near-infrared laser light,” Opt. Lett. 37, 190–192 (2012).
[Crossref]

2011 (1)

J. Bonse, A. Rosenfeld, and J. Krüger, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2011).
[Crossref]

2010 (2)

J. Bonse and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2010).
[Crossref]

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 75304 (2010).
[Crossref]

2009 (2)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[Crossref]

2005 (1)

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

2000 (1)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[Crossref]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I: theory,” Phys. Rev. B 27, 1141–1154 (1983).
[Crossref]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by Ruby laser,” J. Appl. Phys. 36, 3688–3689 (1965).
[Crossref]

Afshar, M.

Anhut, T.

Barberoglou, M.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86, 115316 (2012).
[Crossref]

Bellouard, Y.

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by Ruby laser,” J. Appl. Phys. 36, 3688–3689 (1965).
[Crossref]

Bonse, J.

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116, 074902 (2014).
[Crossref]

S. Hohm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structure,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2011).
[Crossref]

J. Bonse and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2010).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[Crossref]

Buividas, R.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38, 119–156 (2014).
[Crossref]

Chen, Q. D.

L. Wang, Q. D. Chen, R. Yang, B. B. Xu, H. Y. Wang, H. Yang, C. S. Huo, H. B. Sun, and H. L. Tu, “Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring,” Appl. Phys. Lett. 104, 031904 (2014).
[Crossref]

Cheng, Y.

Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, and Y. Cheng, “High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation,” Optica 2, 329–334 (2015).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Dai, Y.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys. A 118, 1119–1125 (2015).
[Crossref]

Derrien, T. J.-Y.

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116, 074902 (2014).
[Crossref]

Feili, D.

Feng, D.

Feng, G.

S. Wang, G. Feng, and S. Zhou, “Microsized structures assisted nanostructure formation on ZnSe wafer by femtosecond laser irradiation,” Appl. Phys. Lett. 105, 253110 (2014).
[Crossref]

Fotakis, C.

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92, 041405 (2015).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86, 115316 (2012).
[Crossref]

Gailevicius, D.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Gamaly, E. G.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Han, W.

W. Han, L. Jiang, X. Li, Y. Liu, and Y. Lu, “Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction,” Appl. Phys. Lett. 107, 251601 (2015).
[Crossref]

L. Jiang, W. Han, X. Li, Q. Wang, F. Meng, and Y. Lu, “Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon,” Opt. Lett. 39, 3114–3117 (2014).
[Crossref]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

Hohm, S.

S. Hohm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[Crossref]

Höhm, S.

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116, 074902 (2014).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structure,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

Huang, M.

Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, and Y. Cheng, “High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation,” Optica 2, 329–334 (2015).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Huo, C. S.

L. Wang, Q. D. Chen, R. Yang, B. B. Xu, H. Y. Wang, H. Yang, C. S. Huo, H. B. Sun, and H. L. Tu, “Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring,” Appl. Phys. Lett. 104, 031904 (2014).
[Crossref]

Huo, H.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 75304 (2010).
[Crossref]

Jia, T.

Jia, X.

Jiang, L.

W. Han, L. Jiang, X. Li, Y. Liu, and Y. Lu, “Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction,” Appl. Phys. Lett. 107, 251601 (2015).
[Crossref]

L. Jiang, W. Han, X. Li, Q. Wang, F. Meng, and Y. Lu, “Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon,” Opt. Lett. 39, 3114–3117 (2014).
[Crossref]

Jiang, Y.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys. A 118, 1119–1125 (2015).
[Crossref]

Johnson, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 75304 (2010).
[Crossref]

Jonavicius, T.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Juodkazis, S.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38, 119–156 (2014).
[Crossref]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

Koenig, K.

König, K.

Koter, R.

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116, 074902 (2014).
[Crossref]

Kruger, J.

S. Hohm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[Crossref]

Krüger, J.

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116, 074902 (2014).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structure,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2011).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[Crossref]

Kuladeep, R.

R. Kuladeep, C. Sahoo, and D. Narayana Rao, “Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser,” Appl. Phys. Lett. 104, 222103 (2014).
[Crossref]

Le Harzic, R.

Li, H.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys. A 118, 1119–1125 (2015).
[Crossref]

Li, X.

W. Han, L. Jiang, X. Li, Y. Liu, and Y. Lu, “Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction,” Appl. Phys. Lett. 107, 251601 (2015).
[Crossref]

L. Jiang, W. Han, X. Li, Q. Wang, F. Meng, and Y. Lu, “Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon,” Opt. Lett. 39, 3114–3117 (2014).
[Crossref]

Liao, Y.

Lin, X.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys. A 118, 1119–1125 (2015).
[Crossref]

Liu, J.

Liu, Y.

W. Han, L. Jiang, X. Li, Y. Liu, and Y. Lu, “Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction,” Appl. Phys. Lett. 107, 251601 (2015).
[Crossref]

Loukakos, P. A.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86, 115316 (2012).
[Crossref]

Lu, Y.

W. Han, L. Jiang, X. Li, Y. Liu, and Y. Lu, “Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction,” Appl. Phys. Lett. 107, 251601 (2015).
[Crossref]

L. Jiang, W. Han, X. Li, Q. Wang, F. Meng, and Y. Lu, “Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon,” Opt. Lett. 39, 3114–3117 (2014).
[Crossref]

Ma, G.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys. A 118, 1119–1125 (2015).
[Crossref]

Malinauskas, M.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Mazur, E.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 75304 (2010).
[Crossref]

Meng, F.

Mikutis, M.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38, 119–156 (2014).
[Crossref]

Mizeikis, V.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Narayana Rao, D.

R. Kuladeep, C. Sahoo, and D. Narayana Rao, “Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser,” Appl. Phys. Lett. 104, 222103 (2014).
[Crossref]

Ni, J.

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I: theory,” Phys. Rev. B 27, 1141–1154 (1983).
[Crossref]

Qiao, L.

Qiu, J.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys. A 118, 1119–1125 (2015).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150  nm gratings and squares on ZnO crystal in water by using 800  nm femtosecond laser,” Opt. Express 22, 32361–32370 (2014).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

Rekštyte, S.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Riemann, I.

Rosenfeld, A.

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116, 074902 (2014).
[Crossref]

S. Hohm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structure,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2011).
[Crossref]

J. Bonse and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2010).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[Crossref]

Sahoo, C.

R. Kuladeep, C. Sahoo, and D. Narayana Rao, “Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser,” Appl. Phys. Lett. 104, 222103 (2014).
[Crossref]

Sauer, D.

Schuck, H.

Seidel, H.

Sharafudeen, K. N.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Shen, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 75304 (2010).
[Crossref]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I: theory,” Phys. Rev. B 27, 1141–1154 (1983).
[Crossref]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[Crossref]

Song, J.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys. A 118, 1119–1125 (2015).
[Crossref]

Stratakis, E.

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92, 041405 (2015).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86, 115316 (2012).
[Crossref]

Straub, M.

Sugioka, K.

Sun, H. B.

L. Wang, Q. D. Chen, R. Yang, B. B. Xu, H. Y. Wang, H. Yang, C. S. Huo, H. B. Sun, and H. L. Tu, “Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring,” Appl. Phys. Lett. 104, 031904 (2014).
[Crossref]

Sun, Z.

Tan, D.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Tsibidis, G. D.

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92, 041405 (2015).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86, 115316 (2012).
[Crossref]

Tu, H. L.

L. Wang, Q. D. Chen, R. Yang, B. B. Xu, H. Y. Wang, H. Yang, C. S. Huo, H. B. Sun, and H. L. Tu, “Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring,” Appl. Phys. Lett. 104, 031904 (2014).
[Crossref]

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I: theory,” Phys. Rev. B 27, 1141–1154 (1983).
[Crossref]

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[Crossref]

Wang, C.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 75304 (2010).
[Crossref]

Wang, H. Y.

L. Wang, Q. D. Chen, R. Yang, B. B. Xu, H. Y. Wang, H. Yang, C. S. Huo, H. B. Sun, and H. L. Tu, “Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring,” Appl. Phys. Lett. 104, 031904 (2014).
[Crossref]

Wang, L.

L. Wang, Q. D. Chen, R. Yang, B. B. Xu, H. Y. Wang, H. Yang, C. S. Huo, H. B. Sun, and H. L. Tu, “Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring,” Appl. Phys. Lett. 104, 031904 (2014).
[Crossref]

Wang, Q.

Wang, S.

S. Wang, G. Feng, and S. Zhou, “Microsized structures assisted nanostructure formation on ZnSe wafer by femtosecond laser irradiation,” Appl. Phys. Lett. 105, 253110 (2014).
[Crossref]

Xu, B. B.

L. Wang, Q. D. Chen, R. Yang, B. B. Xu, H. Y. Wang, H. Yang, C. S. Huo, H. B. Sun, and H. L. Tu, “Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring,” Appl. Phys. Lett. 104, 031904 (2014).
[Crossref]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Yang, H.

L. Wang, Q. D. Chen, R. Yang, B. B. Xu, H. Y. Wang, H. Yang, C. S. Huo, H. B. Sun, and H. L. Tu, “Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring,” Appl. Phys. Lett. 104, 031904 (2014).
[Crossref]

Yang, R.

L. Wang, Q. D. Chen, R. Yang, B. B. Xu, H. Y. Wang, H. Yang, C. S. Huo, H. B. Sun, and H. L. Tu, “Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring,” Appl. Phys. Lett. 104, 031904 (2014).
[Crossref]

Ye, J.

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys. A 118, 1119–1125 (2015).
[Crossref]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I: theory,” Phys. Rev. B 27, 1141–1154 (1983).
[Crossref]

Yue, Y.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Zhang, H.

Zhang, S.

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Zhou, K.

Zhou, S.

S. Wang, G. Feng, and S. Zhou, “Microsized structures assisted nanostructure formation on ZnSe wafer by femtosecond laser irradiation,” Appl. Phys. Lett. 105, 253110 (2014).
[Crossref]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Adv. Opt. Mater. (1)

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Appl. Phys. A (1)

J. Song, J. Ye, X. Lin, Y. Dai, G. Ma, H. Li, Y. Jiang, and J. Qiu, “Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser,” Appl. Phys. A 118, 1119–1125 (2015).
[Crossref]

Appl. Phys. Lett. (5)

W. Han, L. Jiang, X. Li, Y. Liu, and Y. Lu, “Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction,” Appl. Phys. Lett. 107, 251601 (2015).
[Crossref]

S. Hohm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[Crossref]

S. Wang, G. Feng, and S. Zhou, “Microsized structures assisted nanostructure formation on ZnSe wafer by femtosecond laser irradiation,” Appl. Phys. Lett. 105, 253110 (2014).
[Crossref]

L. Wang, Q. D. Chen, R. Yang, B. B. Xu, H. Y. Wang, H. Yang, C. S. Huo, H. B. Sun, and H. L. Tu, “Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring,” Appl. Phys. Lett. 104, 031904 (2014).
[Crossref]

R. Kuladeep, C. Sahoo, and D. Narayana Rao, “Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser,” Appl. Phys. Lett. 104, 222103 (2014).
[Crossref]

J. Appl. Phys. (3)

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[Crossref]

M. Birnbaum, “Semiconductor surface damage produced by Ruby laser,” J. Appl. Phys. 36, 3688–3689 (1965).
[Crossref]

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116, 074902 (2014).
[Crossref]

J. Laser Appl. (1)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structure,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

Nanotechnology (1)

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 75304 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (1)

Phys. Rev. B (4)

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86, 115316 (2012).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I: theory,” Phys. Rev. B 27, 1141–1154 (1983).
[Crossref]

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92, 041405 (2015).
[Crossref]

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[Crossref]

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

Proc. SPIE (2)

J. Bonse and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2010).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2011).
[Crossref]

Prog. Mater. Sci. (1)

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Prog. Quantum Electron. (1)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38, 119–156 (2014).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1580 KB)      Skin depth; Before etching; oxidation; DSWS period

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Laser-induced plasma conductive active layer supporting waves which imprint SWS and DSWS patterns by ablation; surface plasmon polariton (SPP) is formed at the interfaces between the two layers: air–plasma and plasma–substrate. Reflectivity, R1,2, and thickness of the plasma layer are varying across the Gaussian focal spot.

Fig. 2.
Fig. 2.

Period of SWS versus pulse accumulation at different laser fluences. Representative SEM images at different laser fluences of (a) 436  mJ/cm2, (b) 344  mJ/cm2, and (c) 287  mJ/cm2 shown as inset figures. Numbers in left upside of each inset figure represent the number of laser pulses. All scale bars are 500 nm. Arrow shows the laser polarization.

Fig. 3.
Fig. 3.

SWS (filled markers) and DSWS (open) evolution with pulse accumulation at laser fluence of 258  mJ/cm2. Pulse number is (a) 1, (b) 5, (c) 10, (d) 20, (e) 50, (f) 100, (g) 200, (h) 250, (j) 300, (k) 500, (l) 1000, and (m) 2000. The maximum length and period of DSWS. Scale bar for (a)–(m) denotes 500 nm.

Fig. 4.
Fig. 4.

(a) DSWS formed by 100 pulses at 258  mJ/cm2. (b) Depth of DSWS changed with pulse number. (c) SWS formed by 300 pulses at 258  mJ/cm2. (d) Laser fluence distribution on the same structure before HF etching (SEM image).

Fig. 5.
Fig. 5.

DSWS formed by subthreshold laser fluence. (a1a2) Structures ablated by 103 pulses at fluence of 170  mJ/cm2. (b)–(c) Structures ablated by 152  mJ/cm2 and 76  mJ/cm2 by 105 pulses. Scale bar in the insets is 1 μm.

Fig. 6.
Fig. 6.

Laser fluence determined a structure via formation the plasmonic active layer. (a) Excited electron concentration and reflection versus laser fluence. (b) Induced SWS (x=1) and DSWS (x=1) period and the corresponding effective laser fluence (ELF). (c) SWS and DSWS period with x.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Ith,2,3=I0exp(2rth,2,32/ω2),
I(t)=I0e(t/t0)2,
F=+I(t)dt=I0+e(t/t0)2dt=πt0I0,
F(r)=Fthγ/F0γ1,
Neh=NSPI+NTPI
NSPI=αF01Rw,
NTPI=βF02w(1R)222πt0,
ϵ*=1+(ϵd1)N0NehN0ωp2ω211+i(ωτD)1,
ϵd=(nSi+kSi)2,ωp=Nee2ϵ0m*,
1ϵ=1ϵ*+1ϵs,
ϵs1=f(ϵSiO2,ϵAir)=xϵAir+(1x)ϵSiO2,
ϵs2=f(ϵSi,ϵSiO2)=xϵSi+(1x)ϵSiO2,
ϵ=ϵ*+ϵsϵ*ϵs=(ne+ike)2.
Λ=λ/ne.
ΛDSWS=λsp/2,
λsp=2πksp=2πcωne=λne.
R1=(ne1)2+ke2(ne+1)2+ke2,
R2=(nenSi)2+kSi2(ne+nSi)2+kSi2.
F1=F0(1R1).
F2=F1R2=F0(1R1)R2.