Abstract

On-chip optical resonators have the promise of revolutionizing numerous fields, including metrology and sensing; however, their optical losses have always lagged behind those of their larger discrete resonator counterparts based on crystalline materials and silica microtoroids. Silicon nitride (Si3N4) ring resonators open up capabilities for frequency comb generation, optical clocks, and high-precision sensing on an integrated platform. However, simultaneously achieving a high quality factor (Q) and high confinement in Si3N4 (critical for nonlinear processes, for example) remains a challenge. Here we show that addressing surface roughness enables overcoming the loss limitations and achieving high-confinement on-chip ring resonators with Q of 37 million for a ring of 2.5 μm width and 67 million for a ring of 10 μm width. We show a clear systematic path for achieving these high Qs, and these techniques can also be used to reduce losses in other material platforms independent of geometry. Furthermore, we demonstrate optical parametric oscillation using the 2.5 μm wide ring with sub-milliwatt pump powers and extract the loss limited by the material absorption in our films to be 0.13±0.05  dB/m, which corresponds to an absorption-limited Q of at least 170 million by comparing two resonators with different degrees of confinement. Our work provides a chip-scale platform for applications such as ultralow-power frequency comb generation, laser stabilization, and sideband-resolved optomechanics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation

Yi Xuan, Yang Liu, Leo T. Varghese, Andrew J. Metcalf, Xiaoxiao Xue, Pei-Hsun Wang, Kyunghun Han, Jose A. Jaramillo-Villegas, Abdullah Al Noman, Cong Wang, Sangsik Kim, Min Teng, Yun Jo Lee, Ben Niu, Li Fan, Jian Wang, Daniel E. Leaird, Andrew M. Weiner, and Minghao Qi
Optica 3(11) 1171-1180 (2016)

Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates

Michael Belt, Michael L. Davenport, John E. Bowers, and Daniel J. Blumenthal
Optica 4(5) 532-536 (2017)

Compact silicon microring resonators with ultra-low propagation loss in the C band

Shijun Xiao, Maroof H. Khan, Hao Shen, and Minghao Qi
Opt. Express 15(22) 14467-14475 (2007)

References

  • View by:
  • |
  • |
  • |

  1. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  2. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
    [Crossref]
  3. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  4. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
    [Crossref]
  5. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
    [Crossref]
  6. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
    [Crossref]
  7. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  8. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  9. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [Crossref]
  10. T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
    [Crossref]
  11. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref]
  12. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
    [Crossref]
  13. I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32, 166–168 (2007).
    [Crossref]
  14. J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
    [Crossref]
  15. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
    [Crossref]
  16. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
    [Crossref]
  17. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
    [Crossref]
  18. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
    [Crossref]
  19. Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. A. Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171–1180 (2016).
    [Crossref]
  20. M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
    [Crossref]
  21. W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
    [Crossref]
  22. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
    [Crossref]
  23. Q. Li, A. A. Eftekhar, M. Sodagar, Z. Xia, A. H. Atabaki, and A. Adibi, “Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform,” Opt. Express 21, 18236–18248 (2013).
    [Crossref]
  24. N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014).
    [Crossref]
  25. Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).
    [Crossref]
  26. J. W. Coburn and H. F. Winters, “Plasma etching—a discussion of mechanisms,” J. Vac. Sci. Technol. 16, 391–403 (1979).
    [Crossref]
  27. C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas,” J. Appl. Phys. 49, 3796–3803 (1978).
    [Crossref]
  28. R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
    [Crossref]
  29. X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
    [Crossref]
  30. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
    [Crossref]
  31. M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
    [Crossref]
  32. D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.
  33. M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, “Role of nitrogen in the downstream etching of silicon nitride,” J. Vac. Sci. Technol. A 14, 2151–2157 (1996).
    [Crossref]
  34. Y. Wang and L. Luo, “Ultrahigh-selectivity silicon nitride etch process using an inductively coupled plasma source,” J. Vac. Sci. Technol. A 16, 1582–1587 (1998).
    [Crossref]
  35. B. E. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
    [Crossref]
  36. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
    [Crossref]
  37. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
    [Crossref]
  38. G. W. Reynolds and J. W. Taylor, “Factors contributing to sidewall roughness in a positive-tone, chemically amplified resist exposed by x-ray lithography,” J. Vac. Sci. Technol. B 17, 334–344 (1999).
    [Crossref]
  39. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
    [Crossref]
  40. D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
    [Crossref]
  41. X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
    [Crossref]
  42. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
    [Crossref]
  43. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
    [Crossref]
  44. K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21, 22829–22833 (2013).
    [Crossref]
  45. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003).
    [Crossref]
  46. L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
    [Crossref]
  47. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
    [Crossref]
  48. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002).
    [Crossref]
  49. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
    [Crossref]
  50. A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
    [Crossref]
  51. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008).
    [Crossref]
  52. H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).
    [Crossref]
  53. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
    [Crossref]
  54. M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3, 823–826 (2016).
    [Crossref]
  55. A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
    [Crossref]
  56. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [Crossref]
  57. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
    [Crossref]
  58. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [Crossref]
  59. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005).
    [Crossref]
  60. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
    [Crossref]

2016 (4)

2014 (5)

2013 (3)

2012 (1)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

2011 (4)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
[Crossref]

2010 (4)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
[Crossref]

2009 (1)

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

2008 (2)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008).
[Crossref]

2007 (5)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32, 166–168 (2007).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

2006 (1)

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

2005 (5)

M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
[Crossref]

T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005).
[Crossref]

2004 (3)

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

2003 (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003).
[Crossref]

2002 (2)

2000 (4)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
[Crossref]

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

1999 (2)

G. W. Reynolds and J. W. Taylor, “Factors contributing to sidewall roughness in a positive-tone, chemically amplified resist exposed by x-ray lithography,” J. Vac. Sci. Technol. B 17, 334–344 (1999).
[Crossref]

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

1998 (1)

Y. Wang and L. Luo, “Ultrahigh-selectivity silicon nitride etch process using an inductively coupled plasma source,” J. Vac. Sci. Technol. A 16, 1582–1587 (1998).
[Crossref]

1997 (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

1996 (2)

B. E. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
[Crossref]

M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, “Role of nitrogen in the downstream etching of silicon nitride,” J. Vac. Sci. Technol. A 14, 2151–2157 (1996).
[Crossref]

1995 (1)

1994 (2)

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

1990 (1)

W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
[Crossref]

1988 (1)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

1979 (1)

J. W. Coburn and H. F. Winters, “Plasma etching—a discussion of mechanisms,” J. Vac. Sci. Technol. 16, 391–403 (1979).
[Crossref]

1978 (1)

C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas,” J. Appl. Phys. 49, 3796–3803 (1978).
[Crossref]

Adams, A. C.

C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas,” J. Appl. Phys. 49, 3796–3803 (1978).
[Crossref]

Adibi, A.

Agarwal, A.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Aida, Y.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Alic, N.

Almeida, V. R.

Amemiya, Y.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

André, E.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Atabaki, A. H.

Baehr-Jones, T.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Barclay, P. E.

Barwicz, T.

Bauters, J. F.

Bayot, V.

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

Beery, D.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Beha, K.

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

Bik, W. M. A.

W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
[Crossref]

Blain, M. G.

M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, “Role of nitrogen in the downstream etching of silicon nitride,” J. Vac. Sci. Technol. A 14, 2151–2157 (1996).
[Crossref]

Bojko, R. J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Bowers, J. E.

Brasch, V.

Brault, P.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Cardenas, J.

Chaudhuri, S.

N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014).
[Crossref]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chen, S.

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Chen, Y.-L.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Chu, S. T.

Coburn, J. W.

J. W. Coburn and H. F. Winters, “Plasma etching—a discussion of mechanisms,” J. Vac. Sci. Technol. 16, 391–403 (1979).
[Crossref]

Cook, J. M.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

Dalton, L. R.

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Del’Haye, P.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Diddams, S. A.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Dubois, E.

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Dumas, P.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

Dutt, A.

Eftekhar, A. A.

Fainman, Y.

Fan, L.

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Flamm, D. L.

C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas,” J. Appl. Phys. 49, 3796–3803 (1978).
[Crossref]

Flandre, D.

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

Fong, K. Y.

Foresi, J.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Fukuyama, M.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Fullowan, R.

D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
[Crossref]

Gaeta, A. L.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Geiselmann, M.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Gong, Q.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Gorodetsky, M. L.

Grudinin, I. S.

I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32, 166–168 (2007).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

Guo, J.

M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Habermehl, S.

M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Habraken, F. H. P. M.

W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
[Crossref]

Han, K.

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hare, J.

Haroche, S.

Haus, H. A.

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

He, L.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Heck, M. J. R.

Henry, D.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

Hirowatari, A.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Hochberg, M.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Hofer, J.

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
[Crossref]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Ikeda, K.

Ikeda, T.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Ilchenko, V.

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

Isobe, M.

D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
[Crossref]

Isotalo, T. J.

N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014).
[Crossref]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Jaramillo-Villegas, J. A.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Jost, J. D.

Jung, H.

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

Kelley, J.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Kim, S.

Kimerling, L. C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Kippenberg, T. J.

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Kordts, A.

Kuiper, A. E. T.

W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
[Crossref]

Kuroda, A.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Leaird, D. E.

Lee, H.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Lee, K. K.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Lee, Y. J.

Lefèvre-Seguin, V.

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Li, B.-B.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, Q.

Li, Y.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Lim, D. R.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Linssen, R. N. H.

W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
[Crossref]

Lipson, M.

Little, B. E.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

B. E. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
[Crossref]

Liu, Y.

Liu, Y.-C.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Loncar, M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Luan, H.-C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Luke, K.

Luo, L.

Y. Wang and L. Luo, “Ultrahigh-selectivity silicon nitride etch process using an inductively coupled plasma source,” J. Vac. Sci. Technol. A 16, 1582–1587 (1998).
[Crossref]

Luo, L.-W.

Maasilta, I. J.

N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014).
[Crossref]

Maleki, L.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32, 166–168 (2007).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

Matsko, A.

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

Meisenheimer, T. L.

M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, “Role of nitrogen in the downstream etching of silicon nitride,” J. Vac. Sci. Technol. A 14, 2151–2157 (1996).
[Crossref]

Metcalf, A. J.

Mogab, C. J.

C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas,” J. Appl. Phys. 49, 3796–3803 (1978).
[Crossref]

Mohageg, M.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Moss, D. J.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Nakagawa, Y.

D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
[Crossref]

Niu, B.

Noman, A. A.

Nysten, B.

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

O’Keefe, A.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Oehrlein, G. S.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

Ottaviano, L.

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
[Crossref]

Panepucci, R. R.

Papp, S. B.

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

Pétri, R.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

Pfeiffer, M. H. P.

Poitras, C.

Poitras, C. B.

Pryamikov, A. D.

Pu, M.

Puurtinen, T. A.

N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014).
[Crossref]

Qi, M.

Quinlan, F.

Rabiei, P.

Raimond, J.-M.

Raskin, J. P.

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Reckinger, N.

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

Reinhardt, K.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Reynolds, G. W.

G. W. Reynolds and J. W. Taylor, “Factors contributing to sidewall roughness in a positive-tone, chemically amplified resist exposed by x-ray lithography,” J. Vac. Sci. Technol. B 17, 334–344 (1999).
[Crossref]

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

Rueger, N. R.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

Salvan, F.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

Sandoghdar, V.

Saperstein, R. E.

Savchenkov, A.

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

Schaepkens, M.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

Schliesser, A.

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Sebel, P. G. M.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

Seidel, D.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Semenova, E.

Shaw, M. J.

M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Sivasothy, A.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Smith, P. B.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Sodagar, M.

Solomatine, I.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

Spencer, D. T.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Srinivasan, K.

Standaert, T. E. F. M.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

Steier, W. H.

Stevens, J. E.

M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, “Role of nitrogen in the downstream etching of silicon nitride,” J. Vac. Sci. Technol. A 14, 2151–2157 (1996).
[Crossref]

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

Strekalov, D.

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

Sullivan, C. T.

M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Takemura, H.

D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
[Crossref]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Tang, H. X.

Tang, X.

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

Taniguchi, T.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Taylor, J. W.

G. W. Reynolds and J. W. Taylor, “Factors contributing to sidewall roughness in a positive-tone, chemically amplified resist exposed by x-ray lithography,” J. Vac. Sci. Technol. B 17, 334–344 (1999).
[Crossref]

Teng, M.

Tennant, D. M.

D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
[Crossref]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Vahala, K. J.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

van der Weg, W. F.

W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
[Crossref]

Varghese, L. T.

Vatel, O.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

Vawter, G. A.

M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Venkataraman, V.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Wang, C.

Wang, J.

Wang, P.-H.

Wang, Y.

Y. Wang and L. Luo, “Ultrahigh-selectivity silicon nitride etch process using an inductively coupled plasma source,” J. Vac. Sci. Technol. A 16, 1582–1587 (1998).
[Crossref]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Weiner, A. M.

Weiss, D. S.

Wiederhecker, G. S.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Winters, H. F.

J. W. Coburn and H. F. Winters, “Plasma etching—a discussion of mechanisms,” J. Vac. Sci. Technol. 16, 391–403 (1979).
[Crossref]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Xia, Z.

Xiao, Y.-F.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Xiong, C.

Xuan, Y.

Xue, X.

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Yang, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yi, X.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Yokoyama, S.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Yvind, K.

Zen, N.

N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014).
[Crossref]

Zervas, M.

Zhang, C.

Zhang, X.

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Appl. Phys. Lett. (2)

W. M. A. Bik, R. N. H. Linssen, F. H. P. M. Habraken, W. F. van der Weg, and A. E. T. Kuiper, “Diffusion of hydrogen in low-pressure chemical vapor deposited silicon nitride films,” Appl. Phys. Lett. 56, 2530–2532 (1990).
[Crossref]

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Chem. Phys. Lett. (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

IEEE Trans. Nanotechnol. (1)

X. Tang, V. Bayot, N. Reckinger, D. Flandre, J. P. Raskin, E. Dubois, and B. Nysten, “A simple method for measuring Si–F in sidewall roughness by AFM,” IEEE Trans. Nanotechnol. 8, 611–616 (2009).
[Crossref]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

J. Appl. Phys. (2)

C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and SiO2—the effect of oxygen additions to CF4 plasmas,” J. Appl. Phys. 49, 3796–3803 (1978).
[Crossref]

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. (1)

J. W. Coburn and H. F. Winters, “Plasma etching—a discussion of mechanisms,” J. Vac. Sci. Technol. 16, 391–403 (1979).
[Crossref]

J. Vac. Sci. Technol. A (3)

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol. A 17, 26–37 (1999).
[Crossref]

M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, “Role of nitrogen in the downstream etching of silicon nitride,” J. Vac. Sci. Technol. A 14, 2151–2157 (1996).
[Crossref]

Y. Wang and L. Luo, “Ultrahigh-selectivity silicon nitride etch process using an inductively coupled plasma source,” J. Vac. Sci. Technol. A 16, 1582–1587 (1998).
[Crossref]

J. Vac. Sci. Technol. B (3)

G. W. Reynolds and J. W. Taylor, “Factors contributing to sidewall roughness in a positive-tone, chemically amplified resist exposed by x-ray lithography,” J. Vac. Sci. Technol. B 17, 334–344 (1999).
[Crossref]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

D. M. Tennant, R. Fullowan, H. Takemura, M. Isobe, and Y. Nakagawa, “Evaluation of a 100  kV thermal field emission electron-beam nanolithography system,” J. Vac. Sci. Technol. B 18, 3089–3094 (2000).
[Crossref]

Nat. Commun. (1)

N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering thermal conductance using a two-dimensional phononic crystal,” Nat. Commun. 5, 3435 (2014).
[Crossref]

Nat. Photonics (6)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Nature (4)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Opt. Commun. (1)

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody–antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Optica (6)

Phys. Rev. A (4)

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

Phys. Rev. Lett. (4)

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

Proc. SPIE (1)

M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Other (1)

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1864 KB)      AFM scan, fabrication and threshold comparsions

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Microscope images and mode simulation of the fabricated devices. (a) Top view optical microscope image of a 115 μm radius ring resonator. (b) Scanning electron microscopy image of a fabricated waveguide with smooth surfaces. (c) Mode simulation of a 730 nm tall and 2500 nm wide waveguide showing the mode is highly confined in the geometry we have chosen.

Fig. 2.
Fig. 2.

AFM measurement of the top surface of Si3N4. (a) 3D AFM scan of the top surface of Si3N4 before CMP with RMS roughness of 0.38 nm and correlation length of 29 nm. (b) 2D image of the top surface of Si3N4 before CMP and scaled to 1.4 to 1.4 nm with RMS roughness of 0.38 nm and correlation length of 29 nm. (c) 3D image of the top surface of Si3N4 after CMP with RMS roughness of 0.08 nm and correlation length of 8.76 nm. (d) 2D image of the top surface of Si3N4 after CMP and scaled to 1.4 to 1.4 nm with RMS roughness of 0.08 nm and correlation length of 8.76 nm. Note the different scale bars in (a) and (c).

Fig. 3.
Fig. 3.

Normalized transmission spectra of ring resonators fabricated using different processes. (a) Device fabricated using the standard process reported in Ref. [44] with a measured FWHM of 47 MHz. (b) Device fabricated using the optimized etch process, but without our new surface smoothing technique and multipass lithography with a measured FWHM of 12.8 MHz. (c) Device fabricated using both the optimized etch recipe and surface smoothing techniques, but without multipass lithography with a measured FWHM of 7.6 MHz. (d) Device fabricated using all the techniques including the optimized etch recipe, surface smoothing technique, and multipass lithography with a measured FWHM of 5.6 MHz.

Fig. 4.
Fig. 4.

Oscillation threshold decrease with decrease of losses. (a) Output power in the first generated mode as a function of pump power. In this device, parametric oscillation occurs for pump power of 330±70  μW (indicated by the solid green vertical line). Note that the first band appears more than one FSR away from the pumped resonance. (b) Measured threshold power as a function of the loaded quality factor (QL) for microresonators with different fabrication processes. Threshold powers approximately follow the theoretically predicted trend of being inversely proportional to QL2.

Fig. 5.
Fig. 5.

Mode simulation and normalized transmission spectra for ring resonators with different interaction strengths with sidewalls. (a) TE mode profiles of waveguides that are 2.5 μm and 10 μm wide and 730 nm high using Si3N4 with a refractive index of 1.996 as the core material and SiO2 with a refractive index of 1.446 as the cladding material. (The mode simulations have taken the bending radius into account). (b) Same as (a) but for TM. (c) Measured normalized TE transmission spectra of the ring resonator composed of the 2.5 μm wide waveguide (left) with a measured FWHM of 6.2 MHz and the measured spectra of the ring resonator composed of the 10 μm wide waveguide (right) with a measured FWHM of 3.3 MHz in TE polarization using the optimized fabrication process. (d) TM transmission spectra of the rings with the narrower (left) and the wider (right) waveguides with FWHMs of 6.8 MHz and 5.8 MHz, respectively. (e) Cavity ring-down measurement in TM mode. The measured lifetime extracted from the exponential fit is 25.6±1.3  ns.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Pth1.54(π2)Qc2QL·n2  Vn2λQL2,
αring=αtotal_absorption+αtop_scatter+αbottom_scatter+αsidewalls_scatter,
αwide_ring=η1αtotal_absorption+η2(αtop_scatter+αbottom_scatter)+η3αsidewalls_scatter.

Metrics