Abstract

We demonstrate an optical parametric oscillator (OPO) based on random phase matching in polycrystalline ZnSe. The OPO was pumped by Cr:ZnS laser pulses (2.35 μm, 62 fs, 79 MHz), had a pump threshold of 90 mW, and produced an ultrabroadband spectrum spanning 3–7.5 μm.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

6 June 2017: A typographical correction was made to the author affiliations. A typographical correction was made to paragraph 3 of page 2.


OSA Recommended Articles
Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6–5.6  μm

V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov
Opt. Lett. 40(12) 2906-2908 (2015)

Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 µm

Sergey Vasilyev, Igor Moskalev, Mike Mirov, Sergey Mirov, and Valentin Gapontsev
Opt. Express 24(2) 1616-1623 (2016)

Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann
Opt. Lett. 36(12) 2275-2277 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [Crossref]
  2. V. O. Smolski, H. Yang, S. D. Gorelov, P. G. Schunemann, and K. L. Vodopyanov, Opt. Lett. 41, 1388 (2016).
    [Crossref]
  3. Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
    [Crossref]
  4. E. Yu Morozov and A. S. Chirkin, Quantum Electron. 34, 227 (2004).
    [Crossref]
  5. M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
    [Crossref]
  6. S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
    [Crossref]
  7. K. L. Vodopyanov, S. T. Wong, and R. L. Byer, “Infrared frequency comb methods, arrangements and applications,” U.S. patent8,384,990 (February26, 2013).

2017 (1)

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

2016 (2)

V. O. Smolski, H. Yang, S. D. Gorelov, P. G. Schunemann, and K. L. Vodopyanov, Opt. Lett. 41, 1388 (2016).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

2004 (2)

E. Yu Morozov and A. S. Chirkin, Quantum Electron. 34, 227 (2004).
[Crossref]

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[Crossref]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[Crossref]

Baudrier-Raybaut, M.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[Crossref]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[Crossref]

K. L. Vodopyanov, S. T. Wong, and R. L. Byer, “Infrared frequency comb methods, arrangements and applications,” U.S. patent8,384,990 (February26, 2013).

Chirkin, A. S.

E. Yu Morozov and A. S. Chirkin, Quantum Electron. 34, 227 (2004).
[Crossref]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[Crossref]

Gapontsev, V.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

Gorelov, S. D.

Haïdar, R.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[Crossref]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[Crossref]

Kupecek, P.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[Crossref]

Lee, N.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

Lemasson, P.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[Crossref]

Loparo, Z.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[Crossref]

Mirov, M.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

Mirov, S.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

Moskalev, I.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

Rosencher, E.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[Crossref]

Ru, Q.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

Schunemann, P.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

Schunemann, P. G.

Smolski, V.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

Smolski, V. O.

Vasilyev, S.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

Vodopyanov, K.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

Vodopyanov, K. L.

V. O. Smolski, H. Yang, S. D. Gorelov, P. G. Schunemann, and K. L. Vodopyanov, Opt. Lett. 41, 1388 (2016).
[Crossref]

K. L. Vodopyanov, S. T. Wong, and R. L. Byer, “Infrared frequency comb methods, arrangements and applications,” U.S. patent8,384,990 (February26, 2013).

Wong, S. T.

K. L. Vodopyanov, S. T. Wong, and R. L. Byer, “Infrared frequency comb methods, arrangements and applications,” U.S. patent8,384,990 (February26, 2013).

Yang, H.

Yu Morozov, E.

E. Yu Morozov and A. S. Chirkin, Quantum Electron. 34, 227 (2004).
[Crossref]

Zhong, K.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[Crossref]

Nature (1)

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (2)

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

Quantum Electron. (1)

E. Yu Morozov and A. S. Chirkin, Quantum Electron. 34, 227 (2004).
[Crossref]

Other (1)

K. L. Vodopyanov, S. T. Wong, and R. L. Byer, “Infrared frequency comb methods, arrangements and applications,” U.S. patent8,384,990 (February26, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Normalized SHG signal and (b) a histogram for an L = 1.5    mm ZnSe ceramic sample mapped in x y with 50 μm steps. Inset: 500    μm × 500    μm cross section of a chemically etched ZnSe ceramic sample.

Fig. 2.
Fig. 2.

Schematic of the ring-type OPO. M1, incoupling mirror; M2–M4, gold-coated mirrors; PZT, piezo-actuator; OC, outcoupler wedge. Inset: OPO “engine” including the ZnSe ceramic sample at Brewster’s angle located between two parabolic mirrors.

Fig. 3.
Fig. 3.

(a) OPO output spectrum showing a continuous span of 3–7.5 μm. (b) 2D spectrum where y axis shows cavity length detuning.