Abstract

We demonstrate an optical parametric oscillator (OPO) based on random phase matching in polycrystalline ZnSe. The OPO was pumped by Cr:ZnS laser pulses (2.35 μm, 62 fs, 79 MHz), had a pump threshold of 90 mW, and produced an ultrabroadband spectrum spanning 3–7.5 μm.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

Qitian Ru, Nathaniel Lee, Xuan Chen, Kai Zhong, Georgiy Tsoy, Mike Mirov, Sergey Vasilyev, Sergey B. Mirov, and Konstantin L. Vodopyanov, "Optical parametric oscillation in a random polycrystalline medium: publisher’s note," Optica 4, 813-813 (2017)
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-4-7-813

6 June 2017: A typographical correction was made to the author affiliations. A typographical correction was made to paragraph 3 of page 2.


OSA Recommended Articles
Monolithic ultra-high-Q lithium niobate microring resonator

Mian Zhang, Cheng Wang, Rebecca Cheng, Amirhassan Shams-Ansari, and Marko Lončar
Optica 4(12) 1536-1537 (2017)

Kilowatt average power 100  J-level diode pumped solid state laser

Paul Mason, Martin Divoký, Klaus Ertel, Jan Pilař, Thomas Butcher, Martin Hanuš, Saumyabrata Banerjee, Jonathan Phillips, Jodie Smith, Mariastefania De Vido, Antonio Lucianetti, Cristina Hernandez-Gomez, Chris Edwards, Tomas Mocek, and John Collier
Optica 4(4) 438-439 (2017)

Octave-spanning Cr:ZnS femtosecond laser with intrinsic nonlinear interferometry

Sergey Vasilyev, Igor Moskalev, Viktor Smolski, Jeremy Peppers, Mike Mirov, Vladimir Fedorov, Dmitry Martyshkin, Sergey Mirov, and Valentin Gapontsev
Optica 6(2) 126-127 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [Crossref]
  2. V. O. Smolski, H. Yang, S. D. Gorelov, P. G. Schunemann, and K. L. Vodopyanov, Opt. Lett. 41, 1388 (2016).
    [Crossref]
  3. Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
    [Crossref]
  4. E. Yu Morozov and A. S. Chirkin, Quantum Electron. 34, 227 (2004).
    [Crossref]
  5. M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
    [Crossref]
  6. S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
    [Crossref]
  7. K. L. Vodopyanov, S. T. Wong, and R. L. Byer, “Infrared frequency comb methods, arrangements and applications,” U.S. patent8,384,990 (February26, 2013).

2017 (1)

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

2016 (2)

V. O. Smolski, H. Yang, S. D. Gorelov, P. G. Schunemann, and K. L. Vodopyanov, Opt. Lett. 41, 1388 (2016).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

2004 (2)

E. Yu Morozov and A. S. Chirkin, Quantum Electron. 34, 227 (2004).
[Crossref]

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[Crossref]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[Crossref]

Baudrier-Raybaut, M.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[Crossref]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[Crossref]

K. L. Vodopyanov, S. T. Wong, and R. L. Byer, “Infrared frequency comb methods, arrangements and applications,” U.S. patent8,384,990 (February26, 2013).

Chirkin, A. S.

E. Yu Morozov and A. S. Chirkin, Quantum Electron. 34, 227 (2004).
[Crossref]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[Crossref]

Gapontsev, V.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

Gorelov, S. D.

Haïdar, R.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[Crossref]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[Crossref]

Kupecek, P.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[Crossref]

Lee, N.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

Lemasson, P.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[Crossref]

Loparo, Z.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[Crossref]

Mirov, M.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

Mirov, S.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

Moskalev, I.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

Rosencher, E.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[Crossref]

Ru, Q.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

Schunemann, P.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

Schunemann, P. G.

Smolski, V.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

Smolski, V. O.

Vasilyev, S.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

Vodopyanov, K.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

Vodopyanov, K. L.

V. O. Smolski, H. Yang, S. D. Gorelov, P. G. Schunemann, and K. L. Vodopyanov, Opt. Lett. 41, 1388 (2016).
[Crossref]

K. L. Vodopyanov, S. T. Wong, and R. L. Byer, “Infrared frequency comb methods, arrangements and applications,” U.S. patent8,384,990 (February26, 2013).

Wong, S. T.

K. L. Vodopyanov, S. T. Wong, and R. L. Byer, “Infrared frequency comb methods, arrangements and applications,” U.S. patent8,384,990 (February26, 2013).

Yang, H.

Yu Morozov, E.

E. Yu Morozov and A. S. Chirkin, Quantum Electron. 34, 227 (2004).
[Crossref]

Zhong, K.

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[Crossref]

Nature (1)

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (2)

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, Proc. SPIE 9731, 97310B (2016).
[Crossref]

Q. Ru, K. Zhong, N. Lee, Z. Loparo, P. Schunemann, S. Vasilyev, S. Mirov, and K. Vodopyanov, Proc. SPIE 10088, 1008809 (2017).
[Crossref]

Quantum Electron. (1)

E. Yu Morozov and A. S. Chirkin, Quantum Electron. 34, 227 (2004).
[Crossref]

Other (1)

K. L. Vodopyanov, S. T. Wong, and R. L. Byer, “Infrared frequency comb methods, arrangements and applications,” U.S. patent8,384,990 (February26, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) Normalized SHG signal and (b) a histogram for an L = 1.5    mm ZnSe ceramic sample mapped in x y with 50 μm steps. Inset: 500    μm × 500    μm cross section of a chemically etched ZnSe ceramic sample.
Fig. 2.
Fig. 2. Schematic of the ring-type OPO. M1, incoupling mirror; M2–M4, gold-coated mirrors; PZT, piezo-actuator; OC, outcoupler wedge. Inset: OPO “engine” including the ZnSe ceramic sample at Brewster’s angle located between two parabolic mirrors.
Fig. 3.
Fig. 3. (a) OPO output spectrum showing a continuous span of 3–7.5 μm. (b) 2D spectrum where y axis shows cavity length detuning.

Metrics