Abstract

We develop a nanoscopy method with in-depth resolution for layered photonic devices. Photonics often requires tailored light field distributions for the optical modes used, and an exact knowledge of the geometry of a device is crucial to assess its performance. The presented acousto-optical nanoscopy method is based on the uniqueness of the light field distributions in photonic devices: for a given wavelength, we record the reflectivity modulation during the transit of a picosecond acoustic pulse. The temporal profile obtained can be linked to the internal light field distribution. From this information, a reverse-engineering procedure allows us to reconstruct the light field and the underlying photonic structure very precisely. We apply this method to the slow light mode of an AlAs/GaAs micropillar resonator and show its validity for the tailored experimental conditions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-frequency acousto-optic effects in Bragg reflectors

D. J. Farmer, A. V. Akimov, N. A. Gippius, J. Bailey, J. S. Sharp, and A. J. Kent
Opt. Express 22(12) 15218-15231 (2014)

Acousto-optic coupling in phoxonic crystal nanobeam cavities with plasmonic behavior

Jin-Chen Hsu, Tsung-Yi Lu, and Tzy-Rong Lin
Opt. Express 23(20) 25814-25826 (2015)

Breakdown of the linear acousto-optic interaction regime in phoxonic cavities

Evangelos Almpanis, Nikolaos Papanikolaou, and Nikolaos Stefanou
Opt. Express 22(26) 31595-31607 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116, 133902 (2016).
    [Crossref]
  2. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
    [Crossref]
  3. R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100, 240404 (2008).
    [Crossref]
  4. S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
    [Crossref]
  5. A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Oxford Science, 2007), Chap. 2.
  6. P.-A. Mante, Y.-R. Huang, S.-C. Yang, T.-M. Liu, A. A. Maznev, J.-K. Sheu, and C.-K. Sun, “THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures,” Ultrasonics 56, 52–65 (2015).
    [Crossref]
  7. K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nat. Nanotechnol. 2, 704–708 (2007).
    [Crossref]
  8. T. Dehoux, K. Ishikawa, P. H. Otsuka, M. Tomoda, O. Matsuda, M. Fujiwara, S. Takeuchi, I. A. Veres, V. E. Gusev, and O. B. Wright, “Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object,” Light Sci. Appl. 5, e16082 (2016).
    [Crossref]
  9. S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
    [Crossref]
  10. A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, “Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light,” Phys. Rev. Lett. 110, 037403 (2013).
    [Crossref]
  11. A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama, “Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices,” Phys. Rev. Lett. 73, 740–743 (1994).
    [Crossref]
  12. A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044–1047 (1999).
    [Crossref]
  13. S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. C. Swan, R. S. Hegde, M. Reason, R. S. Goldman, and D. A. Reis, “Generation and propagation of a picosecond acoustic pulse at a buried interface: time-resolved X-ray diffraction measurements,” Phys. Rev. Lett. 95, 246104 (2005).
    [Crossref]
  14. O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B 71, 115330 (2005).
    [Crossref]
  15. H. J. Maris, “Picosecond ultrasonics,” Sci. Am. 278, 86–89 (1998).
    [Crossref]
  16. N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, and B. Jusserand, “Theory of coherent generation and detection of THz acoustic phonons using optical microcavities,” Phys. Rev. B 84, 064307 (2011).
    [Crossref]
  17. V. Villafane, P. Soubelet, A. E. Bruchhausen, N. D. Lanzillotti-Kimura, B. Jusserand, A. Lemaître, and A. Fainstein, “Slow light and slow acoustic phonons in optophononic resonators,” Phys. Rev. B 94, 205308 (2016).
    [Crossref]
  18. O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
    [Crossref]
  19. O. Matsuda, O. B. Wright, D. H. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B 77, 224110 (2008).
    [Crossref]
  20. A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
    [Crossref]
  21. P. J. S. van Capel, E. Péronne, and J. I. Dijkhuis, “Nonlinear ultrafast acoustics at the nano scale,” Ultrasonics 56, 36–51 (2015).
    [Crossref]
  22. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the Brillouin frequency range,” Opt. Commun. 60, 55–58 (1986).
    [Crossref]
  23. P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
    [Crossref]
  24. K. Mizoguchi, T. Hino, M. Nakayama, T. Dekorsy, A. Bartels, H. Kurz, and S. Nakashima, “Umklapp process in observation of coherent folded longitudinal acoustic phonons in a GaAs/AlAs long-period superlattice,” Physica E 21, 646–650 (2004).
    [Crossref]
  25. A. Devos and R. Côte, “Strong oscillations detected by picosecond ultrasonics in silicon: evidence for an electronic-structure effect,” Phys. Rev. B 70, 125208 (2004).
    [Crossref]
  26. G. E. Jellison, “Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 151–160 (1992).
    [Crossref]
  27. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
    [Crossref]
  28. C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
    [Crossref]
  29. W. Chen, H. J. Maris, Z. R. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B 70(3), 687–698 (1994).
    [Crossref]
  30. L. D. Landau, L. P. Pitaevskii, A. M. Kosevich, and E. M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, 1984).
  31. M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
    [Crossref]
  32. S. Tamura, D. C. Hurley, and J. P. Wolfe, “Acoustic-phonon propagation in superlattices,” Phys. Rev. B 38, 1427–1449 (1988).
    [Crossref]

2016 (4)

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116, 133902 (2016).
[Crossref]

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

T. Dehoux, K. Ishikawa, P. H. Otsuka, M. Tomoda, O. Matsuda, M. Fujiwara, S. Takeuchi, I. A. Veres, V. E. Gusev, and O. B. Wright, “Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object,” Light Sci. Appl. 5, e16082 (2016).
[Crossref]

V. Villafane, P. Soubelet, A. E. Bruchhausen, N. D. Lanzillotti-Kimura, B. Jusserand, A. Lemaître, and A. Fainstein, “Slow light and slow acoustic phonons in optophononic resonators,” Phys. Rev. B 94, 205308 (2016).
[Crossref]

2015 (4)

O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

P.-A. Mante, Y.-R. Huang, S.-C. Yang, T.-M. Liu, A. A. Maznev, J.-K. Sheu, and C.-K. Sun, “THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures,” Ultrasonics 56, 52–65 (2015).
[Crossref]

P. J. S. van Capel, E. Péronne, and J. I. Dijkhuis, “Nonlinear ultrafast acoustics at the nano scale,” Ultrasonics 56, 36–51 (2015).
[Crossref]

2013 (1)

A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, “Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light,” Phys. Rev. Lett. 110, 037403 (2013).
[Crossref]

2012 (1)

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

2011 (1)

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, and B. Jusserand, “Theory of coherent generation and detection of THz acoustic phonons using optical microcavities,” Phys. Rev. B 84, 064307 (2011).
[Crossref]

2009 (1)

P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
[Crossref]

2008 (2)

O. Matsuda, O. B. Wright, D. H. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B 77, 224110 (2008).
[Crossref]

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100, 240404 (2008).
[Crossref]

2007 (2)

K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nat. Nanotechnol. 2, 704–708 (2007).
[Crossref]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref]

2005 (2)

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. C. Swan, R. S. Hegde, M. Reason, R. S. Goldman, and D. A. Reis, “Generation and propagation of a picosecond acoustic pulse at a buried interface: time-resolved X-ray diffraction measurements,” Phys. Rev. Lett. 95, 246104 (2005).
[Crossref]

O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B 71, 115330 (2005).
[Crossref]

2004 (2)

K. Mizoguchi, T. Hino, M. Nakayama, T. Dekorsy, A. Bartels, H. Kurz, and S. Nakashima, “Umklapp process in observation of coherent folded longitudinal acoustic phonons in a GaAs/AlAs long-period superlattice,” Physica E 21, 646–650 (2004).
[Crossref]

A. Devos and R. Côte, “Strong oscillations detected by picosecond ultrasonics in silicon: evidence for an electronic-structure effect,” Phys. Rev. B 70, 125208 (2004).
[Crossref]

2003 (1)

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[Crossref]

1999 (1)

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044–1047 (1999).
[Crossref]

1998 (2)

H. J. Maris, “Picosecond ultrasonics,” Sci. Am. 278, 86–89 (1998).
[Crossref]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

1994 (2)

W. Chen, H. J. Maris, Z. R. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B 70(3), 687–698 (1994).
[Crossref]

A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama, “Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices,” Phys. Rev. Lett. 73, 740–743 (1994).
[Crossref]

1992 (1)

G. E. Jellison, “Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 151–160 (1992).
[Crossref]

1988 (1)

S. Tamura, D. C. Hurley, and J. P. Wolfe, “Acoustic-phonon propagation in superlattices,” Phys. Rev. B 38, 1427–1449 (1988).
[Crossref]

1986 (1)

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the Brillouin frequency range,” Opt. Commun. 60, 55–58 (1986).
[Crossref]

1984 (1)

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Bartels, A.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

K. Mizoguchi, T. Hino, M. Nakayama, T. Dekorsy, A. Bartels, H. Kurz, and S. Nakashima, “Umklapp process in observation of coherent folded longitudinal acoustic phonons in a GaAs/AlAs long-period superlattice,” Physica E 21, 646–650 (2004).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044–1047 (1999).
[Crossref]

Baumberg, J.

A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Oxford Science, 2007), Chap. 2.

Baumberg, J. J.

O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B 71, 115330 (2005).
[Crossref]

Beck, M.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Bencheikh, K.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116, 133902 (2016).
[Crossref]

Brodbeck, S.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Bruchhausen, A.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Bruchhausen, A. E.

V. Villafane, P. Soubelet, A. E. Bruchhausen, N. D. Lanzillotti-Kimura, B. Jusserand, A. Lemaître, and A. Fainstein, “Slow light and slow acoustic phonons in optophononic resonators,” Phys. Rev. B 94, 205308 (2016).
[Crossref]

Cavalieri, A. L.

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. C. Swan, R. S. Hegde, M. Reason, R. S. Goldman, and D. A. Reis, “Generation and propagation of a picosecond acoustic pulse at a buried interface: time-resolved X-ray diffraction measurements,” Phys. Rev. Lett. 95, 246104 (2005).
[Crossref]

Chang, C.-F.

K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nat. Nanotechnol. 2, 704–708 (2007).
[Crossref]

Chen, W.

W. Chen, H. J. Maris, Z. R. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B 70(3), 687–698 (1994).
[Crossref]

Chyi, J.-I.

K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nat. Nanotechnol. 2, 704–708 (2007).
[Crossref]

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Côte, R.

A. Devos and R. Côte, “Strong oscillations detected by picosecond ultrasonics in silicon: evidence for an electronic-structure effect,” Phys. Rev. B 70, 125208 (2004).
[Crossref]

Danworaphong, S.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Dehoux, T.

T. Dehoux, K. Ishikawa, P. H. Otsuka, M. Tomoda, O. Matsuda, M. Fujiwara, S. Takeuchi, I. A. Veres, V. E. Gusev, and O. B. Wright, “Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object,” Light Sci. Appl. 5, e16082 (2016).
[Crossref]

Dekorsy, T.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

K. Mizoguchi, T. Hino, M. Nakayama, T. Dekorsy, A. Bartels, H. Kurz, and S. Nakashima, “Umklapp process in observation of coherent folded longitudinal acoustic phonons in a GaAs/AlAs long-period superlattice,” Physica E 21, 646–650 (2004).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044–1047 (1999).
[Crossref]

Deng, H.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Devos, A.

A. Devos and R. Côte, “Strong oscillations detected by picosecond ultrasonics in silicon: evidence for an electronic-structure effect,” Phys. Rev. B 70, 125208 (2004).
[Crossref]

Dijkhuis, J. I.

P. J. S. van Capel, E. Péronne, and J. I. Dijkhuis, “Nonlinear ultrafast acoustics at the nano scale,” Ultrasonics 56, 36–51 (2015).
[Crossref]

Dumeige, Y.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116, 133902 (2016).
[Crossref]

Fainstein, A.

V. Villafane, P. Soubelet, A. E. Bruchhausen, N. D. Lanzillotti-Kimura, B. Jusserand, A. Lemaître, and A. Fainstein, “Slow light and slow acoustic phonons in optophononic resonators,” Phys. Rev. B 94, 205308 (2016).
[Crossref]

A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, “Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light,” Phys. Rev. Lett. 110, 037403 (2013).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, and B. Jusserand, “Theory of coherent generation and detection of THz acoustic phonons using optical microcavities,” Phys. Rev. B 84, 064307 (2011).
[Crossref]

P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
[Crossref]

Faist, J.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Féron, P.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116, 133902 (2016).
[Crossref]

Fischer, J.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Fischer, M.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Forchel, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref]

Fritz, D. M.

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. C. Swan, R. S. Hegde, M. Reason, R. S. Goldman, and D. A. Reis, “Generation and propagation of a picosecond acoustic pulse at a buried interface: time-resolved X-ray diffraction measurements,” Phys. Rev. Lett. 95, 246104 (2005).
[Crossref]

Fujiwara, M.

T. Dehoux, K. Ishikawa, P. H. Otsuka, M. Tomoda, O. Matsuda, M. Fujiwara, S. Takeuchi, I. A. Veres, V. E. Gusev, and O. B. Wright, “Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object,” Light Sci. Appl. 5, e16082 (2016).
[Crossref]

Fukui, T.

O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B 71, 115330 (2005).
[Crossref]

Gallo, P.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Gayral, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Gebs, R.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Gérard, J. M.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Gippius, N. A.

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100, 240404 (2008).
[Crossref]

Gohara, K.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Goldman, R. S.

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. C. Swan, R. S. Hegde, M. Reason, R. S. Goldman, and D. A. Reis, “Generation and propagation of a picosecond acoustic pulse at a buried interface: time-resolved X-ray diffraction measurements,” Phys. Rev. Lett. 95, 246104 (2005).
[Crossref]

Götzinger, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref]

Grahn, H. T.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the Brillouin frequency range,” Opt. Commun. 60, 55–58 (1986).
[Crossref]

Grossmann, M.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Guillemé, P.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116, 133902 (2016).
[Crossref]

Gusev, V.

O. Matsuda, O. B. Wright, D. H. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B 77, 224110 (2008).
[Crossref]

Gusev, V. E.

T. Dehoux, K. Ishikawa, P. H. Otsuka, M. Tomoda, O. Matsuda, M. Fujiwara, S. Takeuchi, I. A. Veres, V. E. Gusev, and O. B. Wright, “Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object,” Light Sci. Appl. 5, e16082 (2016).
[Crossref]

Hartland, G. V.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[Crossref]

Hauser, J. J.

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Hegde, R. S.

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. C. Swan, R. S. Hegde, M. Reason, R. S. Goldman, and D. A. Reis, “Generation and propagation of a picosecond acoustic pulse at a buried interface: time-resolved X-ray diffraction measurements,” Phys. Rev. Lett. 95, 246104 (2005).
[Crossref]

Hettich, M.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Hino, T.

K. Mizoguchi, T. Hino, M. Nakayama, T. Dekorsy, A. Bartels, H. Kurz, and S. Nakashima, “Umklapp process in observation of coherent folded longitudinal acoustic phonons in a GaAs/AlAs long-period superlattice,” Physica E 21, 646–650 (2004).
[Crossref]

Höfling, S.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Hofmann, C.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref]

Hu, M.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[Crossref]

Huang, Y.-R.

P.-A. Mante, Y.-R. Huang, S.-C. Yang, T.-M. Liu, A. A. Maznev, J.-K. Sheu, and C.-K. Sun, “THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures,” Ultrasonics 56, 52–65 (2015).
[Crossref]

Huet, V.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116, 133902 (2016).
[Crossref]

Hurley, D. C.

S. Tamura, D. C. Hurley, and J. P. Wolfe, “Acoustic-phonon propagation in superlattices,” Phys. Rev. B 38, 1427–1449 (1988).
[Crossref]

Hurley, D. H.

O. Matsuda, O. B. Wright, D. H. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B 77, 224110 (2008).
[Crossref]

Ishikawa, K.

T. Dehoux, K. Ishikawa, P. H. Otsuka, M. Tomoda, O. Matsuda, M. Fujiwara, S. Takeuchi, I. A. Veres, V. E. Gusev, and O. B. Wright, “Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object,” Light Sci. Appl. 5, e16082 (2016).
[Crossref]

Jellison, G. E.

G. E. Jellison, “Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 151–160 (1992).
[Crossref]

Johne, R.

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100, 240404 (2008).
[Crossref]

Jusserand, B.

V. Villafane, P. Soubelet, A. E. Bruchhausen, N. D. Lanzillotti-Kimura, B. Jusserand, A. Lemaître, and A. Fainstein, “Slow light and slow acoustic phonons in optophononic resonators,” Phys. Rev. B 94, 205308 (2016).
[Crossref]

A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, “Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light,” Phys. Rev. Lett. 110, 037403 (2013).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, and B. Jusserand, “Theory of coherent generation and detection of THz acoustic phonons using optical microcavities,” Phys. Rev. B 84, 064307 (2011).
[Crossref]

P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
[Crossref]

Juste, J. P.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[Crossref]

Kamp, M.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref]

Kapon, E.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Kavokin, A.

A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Oxford Science, 2007), Chap. 2.

Kim, S.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Köhler, K.

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044–1047 (1999).
[Crossref]

Kosevich, A. M.

L. D. Landau, L. P. Pitaevskii, A. M. Kosevich, and E. M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, 1984).

Kurz, H.

K. Mizoguchi, T. Hino, M. Nakayama, T. Dekorsy, A. Bartels, H. Kurz, and S. Nakashima, “Umklapp process in observation of coherent folded longitudinal acoustic phonons in a GaAs/AlAs long-period superlattice,” Physica E 21, 646–650 (2004).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044–1047 (1999).
[Crossref]

Lai, C.-M.

K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nat. Nanotechnol. 2, 704–708 (2007).
[Crossref]

Landau, L. D.

L. D. Landau, L. P. Pitaevskii, A. M. Kosevich, and E. M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, 1984).

Lanzillotti-Kimura, N. D.

V. Villafane, P. Soubelet, A. E. Bruchhausen, N. D. Lanzillotti-Kimura, B. Jusserand, A. Lemaître, and A. Fainstein, “Slow light and slow acoustic phonons in optophononic resonators,” Phys. Rev. B 94, 205308 (2016).
[Crossref]

A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, “Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light,” Phys. Rev. Lett. 110, 037403 (2013).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, and B. Jusserand, “Theory of coherent generation and detection of THz acoustic phonons using optical microcavities,” Phys. Rev. B 84, 064307 (2011).
[Crossref]

Larciprete, M. C.

O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

Laussy, F.

A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Oxford Science, 2007), Chap. 2.

Lee, S. H.

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. C. Swan, R. S. Hegde, M. Reason, R. S. Goldman, and D. A. Reis, “Generation and propagation of a picosecond acoustic pulse at a buried interface: time-resolved X-ray diffraction measurements,” Phys. Rev. Lett. 95, 246104 (2005).
[Crossref]

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Lemaître, A.

V. Villafane, P. Soubelet, A. E. Bruchhausen, N. D. Lanzillotti-Kimura, B. Jusserand, A. Lemaître, and A. Fainstein, “Slow light and slow acoustic phonons in optophononic resonators,” Phys. Rev. B 94, 205308 (2016).
[Crossref]

P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
[Crossref]

Levenson, A.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116, 133902 (2016).
[Crossref]

Lifshitz, E. M.

L. D. Landau, L. P. Pitaevskii, A. M. Kosevich, and E. M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, 1984).

Lin, K.-H.

K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nat. Nanotechnol. 2, 704–708 (2007).
[Crossref]

Liu, T.-M.

P.-A. Mante, Y.-R. Huang, S.-C. Yang, T.-M. Liu, A. A. Maznev, J.-K. Sheu, and C.-K. Sun, “THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures,” Ultrasonics 56, 52–65 (2015).
[Crossref]

Lloyd-Hughes, J.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Löffler, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref]

Malpuech, G.

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100, 240404 (2008).
[Crossref]

A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Oxford Science, 2007), Chap. 2.

Mante, P.-A.

P.-A. Mante, Y.-R. Huang, S.-C. Yang, T.-M. Liu, A. A. Maznev, J.-K. Sheu, and C.-K. Sun, “THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures,” Ultrasonics 56, 52–65 (2015).
[Crossref]

Maris, H. J.

H. J. Maris, “Picosecond ultrasonics,” Sci. Am. 278, 86–89 (1998).
[Crossref]

W. Chen, H. J. Maris, Z. R. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B 70(3), 687–698 (1994).
[Crossref]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the Brillouin frequency range,” Opt. Commun. 60, 55–58 (1986).
[Crossref]

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Masumoto, Y.

A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama, “Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices,” Phys. Rev. Lett. 73, 740–743 (1994).
[Crossref]

Matsuda, O.

T. Dehoux, K. Ishikawa, P. H. Otsuka, M. Tomoda, O. Matsuda, M. Fujiwara, S. Takeuchi, I. A. Veres, V. E. Gusev, and O. B. Wright, “Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object,” Light Sci. Appl. 5, e16082 (2016).
[Crossref]

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

O. Matsuda, O. B. Wright, D. H. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B 77, 224110 (2008).
[Crossref]

O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B 71, 115330 (2005).
[Crossref]

Matsumoto, Y.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Maznev, A. A.

P.-A. Mante, Y.-R. Huang, S.-C. Yang, T.-M. Liu, A. A. Maznev, J.-K. Sheu, and C.-K. Sun, “THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures,” Ultrasonics 56, 52–65 (2015).
[Crossref]

Mishina, T.

A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama, “Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices,” Phys. Rev. Lett. 73, 740–743 (1994).
[Crossref]

Mizoguchi, K.

K. Mizoguchi, T. Hino, M. Nakayama, T. Dekorsy, A. Bartels, H. Kurz, and S. Nakashima, “Umklapp process in observation of coherent folded longitudinal acoustic phonons in a GaAs/AlAs long-period superlattice,” Physica E 21, 646–650 (2004).
[Crossref]

Mortier, M.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116, 133902 (2016).
[Crossref]

Mulvaney, P.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[Crossref]

Nagayama, M.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Nakashima, S.

K. Mizoguchi, T. Hino, M. Nakayama, T. Dekorsy, A. Bartels, H. Kurz, and S. Nakashima, “Umklapp process in observation of coherent folded longitudinal acoustic phonons in a GaAs/AlAs long-period superlattice,” Physica E 21, 646–650 (2004).
[Crossref]

Nakayama, M.

K. Mizoguchi, T. Hino, M. Nakayama, T. Dekorsy, A. Bartels, H. Kurz, and S. Nakashima, “Umklapp process in observation of coherent folded longitudinal acoustic phonons in a GaAs/AlAs long-period superlattice,” Physica E 21, 646–650 (2004).
[Crossref]

A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama, “Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices,” Phys. Rev. Lett. 73, 740–743 (1994).
[Crossref]

Ohashi, T.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Otsuka, P. H.

T. Dehoux, K. Ishikawa, P. H. Otsuka, M. Tomoda, O. Matsuda, M. Fujiwara, S. Takeuchi, I. A. Veres, V. E. Gusev, and O. B. Wright, “Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object,” Light Sci. Appl. 5, e16082 (2016).
[Crossref]

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Pan, C.-C.

K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nat. Nanotechnol. 2, 704–708 (2007).
[Crossref]

Pavlovic, G.

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100, 240404 (2008).
[Crossref]

Péronne, E.

P. J. S. van Capel, E. Péronne, and J. I. Dijkhuis, “Nonlinear ultrafast acoustics at the nano scale,” Ultrasonics 56, 36–51 (2015).
[Crossref]

Perrin, B.

A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, “Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light,” Phys. Rev. Lett. 110, 037403 (2013).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, and B. Jusserand, “Theory of coherent generation and detection of THz acoustic phonons using optical microcavities,” Phys. Rev. B 84, 064307 (2011).
[Crossref]

P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
[Crossref]

Pitaevskii, L. P.

L. D. Landau, L. P. Pitaevskii, A. M. Kosevich, and E. M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, 1984).

Press, D.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref]

Rasoloniaina, A.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116, 133902 (2016).
[Crossref]

Reason, M.

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. C. Swan, R. S. Hegde, M. Reason, R. S. Goldman, and D. A. Reis, “Generation and propagation of a picosecond acoustic pulse at a buried interface: time-resolved X-ray diffraction measurements,” Phys. Rev. Lett. 95, 246104 (2005).
[Crossref]

Reis, D. A.

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. C. Swan, R. S. Hegde, M. Reason, R. S. Goldman, and D. A. Reis, “Generation and propagation of a picosecond acoustic pulse at a buried interface: time-resolved X-ray diffraction measurements,” Phys. Rev. Lett. 95, 246104 (2005).
[Crossref]

Reitzenstein, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref]

Ristow, O.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Rochard, P.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116, 133902 (2016).
[Crossref]

Rudra, A.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Sader, J. E.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[Crossref]

Scalari, G.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Schneider, C.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Shelykh, I. A.

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100, 240404 (2008).
[Crossref]

Sheu, J.-K.

P.-A. Mante, Y.-R. Huang, S.-C. Yang, T.-M. Liu, A. A. Maznev, J.-K. Sheu, and C.-K. Sun, “THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures,” Ultrasonics 56, 52–65 (2015).
[Crossref]

Shi, J.-W.

K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nat. Nanotechnol. 2, 704–708 (2007).
[Crossref]

Shimizu, K.

O. Matsuda, O. B. Wright, D. H. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B 77, 224110 (2008).
[Crossref]

Solnyshkov, D. D.

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100, 240404 (2008).
[Crossref]

Soubelet, P.

V. Villafane, P. Soubelet, A. E. Bruchhausen, N. D. Lanzillotti-Kimura, B. Jusserand, A. Lemaître, and A. Fainstein, “Slow light and slow acoustic phonons in optophononic resonators,” Phys. Rev. B 94, 205308 (2016).
[Crossref]

Strait, J.

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Sun, C.-K.

P.-A. Mante, Y.-R. Huang, S.-C. Yang, T.-M. Liu, A. A. Maznev, J.-K. Sheu, and C.-K. Sun, “THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures,” Ultrasonics 56, 52–65 (2015).
[Crossref]

K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nat. Nanotechnol. 2, 704–708 (2007).
[Crossref]

Sun, S.-Z.

K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nat. Nanotechnol. 2, 704–708 (2007).
[Crossref]

Swan, M. C.

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. C. Swan, R. S. Hegde, M. Reason, R. S. Goldman, and D. A. Reis, “Generation and propagation of a picosecond acoustic pulse at a buried interface: time-resolved X-ray diffraction measurements,” Phys. Rev. Lett. 95, 246104 (2005).
[Crossref]

Tachizaki, T.

O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B 71, 115330 (2005).
[Crossref]

Takeuchi, S.

T. Dehoux, K. Ishikawa, P. H. Otsuka, M. Tomoda, O. Matsuda, M. Fujiwara, S. Takeuchi, I. A. Veres, V. E. Gusev, and O. B. Wright, “Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object,” Light Sci. Appl. 5, e16082 (2016).
[Crossref]

Tamura, S.

S. Tamura, D. C. Hurley, and J. P. Wolfe, “Acoustic-phonon propagation in superlattices,” Phys. Rev. B 38, 1427–1449 (1988).
[Crossref]

Tamura, S.-I.

W. Chen, H. J. Maris, Z. R. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B 70(3), 687–698 (1994).
[Crossref]

Tauc, J.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the Brillouin frequency range,” Opt. Commun. 60, 55–58 (1986).
[Crossref]

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Thierry-Mieg, V.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Thomsen, C.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the Brillouin frequency range,” Opt. Commun. 60, 55–58 (1986).
[Crossref]

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Tomoda, M.

T. Dehoux, K. Ishikawa, P. H. Otsuka, M. Tomoda, O. Matsuda, M. Fujiwara, S. Takeuchi, I. A. Veres, V. E. Gusev, and O. B. Wright, “Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object,” Light Sci. Appl. 5, e16082 (2016).
[Crossref]

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

van Capel, P. J. S.

P. J. S. van Capel, E. Péronne, and J. I. Dijkhuis, “Nonlinear ultrafast acoustics at the nano scale,” Ultrasonics 56, 36–51 (2015).
[Crossref]

Vardeny, Z.

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Veres, I. A.

T. Dehoux, K. Ishikawa, P. H. Otsuka, M. Tomoda, O. Matsuda, M. Fujiwara, S. Takeuchi, I. A. Veres, V. E. Gusev, and O. B. Wright, “Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object,” Light Sci. Appl. 5, e16082 (2016).
[Crossref]

Villafane, V.

V. Villafane, P. Soubelet, A. E. Bruchhausen, N. D. Lanzillotti-Kimura, B. Jusserand, A. Lemaître, and A. Fainstein, “Slow light and slow acoustic phonons in optophononic resonators,” Phys. Rev. B 94, 205308 (2016).
[Crossref]

Voti, R. L.

O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

Wang, X.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[Crossref]

Wang, Z.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Wasilewski, Z. R.

W. Chen, H. J. Maris, Z. R. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B 70(3), 687–698 (1994).
[Crossref]

Watanabe, H.

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

Winter, P.

P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
[Crossref]

Wolfe, J. P.

S. Tamura, D. C. Hurley, and J. P. Wolfe, “Acoustic-phonon propagation in superlattices,” Phys. Rev. B 38, 1427–1449 (1988).
[Crossref]

Wright, O. B.

T. Dehoux, K. Ishikawa, P. H. Otsuka, M. Tomoda, O. Matsuda, M. Fujiwara, S. Takeuchi, I. A. Veres, V. E. Gusev, and O. B. Wright, “Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object,” Light Sci. Appl. 5, e16082 (2016).
[Crossref]

O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

O. Matsuda, O. B. Wright, D. H. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B 77, 224110 (2008).
[Crossref]

O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B 71, 115330 (2005).
[Crossref]

Yacomotti, A.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116, 133902 (2016).
[Crossref]

Yamamoto, A.

A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama, “Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices,” Phys. Rev. Lett. 73, 740–743 (1994).
[Crossref]

Yamamoto, Y.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref]

Yang, S.-C.

P.-A. Mante, Y.-R. Huang, S.-C. Yang, T.-M. Liu, A. A. Maznev, J.-K. Sheu, and C.-K. Sun, “THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures,” Ultrasonics 56, 52–65 (2015).
[Crossref]

Zhang, B.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Appl. Phys. Lett. (2)

S. Danworaphong, M. Tomoda, Y. Matsumoto, O. Matsuda, T. Ohashi, H. Watanabe, M. Nagayama, K. Gohara, P. H. Otsuka, and O. B. Wright, “Three-dimensional imaging of biological cells with picosecond ultrasonics,” Appl. Phys. Lett. 106, 163701 (2015).
[Crossref]

P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
[Crossref]

J. Am. Chem. Soc. (1)

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[Crossref]

J. Appl. Phys. (1)

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Light Sci. Appl. (1)

T. Dehoux, K. Ishikawa, P. H. Otsuka, M. Tomoda, O. Matsuda, M. Fujiwara, S. Takeuchi, I. A. Veres, V. E. Gusev, and O. B. Wright, “Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object,” Light Sci. Appl. 5, e16082 (2016).
[Crossref]

Nat. Nanotechnol. (1)

K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nat. Nanotechnol. 2, 704–708 (2007).
[Crossref]

Opt. Commun. (1)

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the Brillouin frequency range,” Opt. Commun. 60, 55–58 (1986).
[Crossref]

Opt. Mater. (1)

G. E. Jellison, “Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 151–160 (1992).
[Crossref]

Philos. Mag. B (1)

W. Chen, H. J. Maris, Z. R. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B 70(3), 687–698 (1994).
[Crossref]

Phys. Rev. B (6)

S. Tamura, D. C. Hurley, and J. P. Wolfe, “Acoustic-phonon propagation in superlattices,” Phys. Rev. B 38, 1427–1449 (1988).
[Crossref]

A. Devos and R. Côte, “Strong oscillations detected by picosecond ultrasonics in silicon: evidence for an electronic-structure effect,” Phys. Rev. B 70, 125208 (2004).
[Crossref]

O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B 71, 115330 (2005).
[Crossref]

O. Matsuda, O. B. Wright, D. H. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B 77, 224110 (2008).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, and B. Jusserand, “Theory of coherent generation and detection of THz acoustic phonons using optical microcavities,” Phys. Rev. B 84, 064307 (2011).
[Crossref]

V. Villafane, P. Soubelet, A. E. Bruchhausen, N. D. Lanzillotti-Kimura, B. Jusserand, A. Lemaître, and A. Fainstein, “Slow light and slow acoustic phonons in optophononic resonators,” Phys. Rev. B 94, 205308 (2016).
[Crossref]

Phys. Rev. Lett. (9)

A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, “Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light,” Phys. Rev. Lett. 110, 037403 (2013).
[Crossref]

A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama, “Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices,” Phys. Rev. Lett. 73, 740–743 (1994).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044–1047 (1999).
[Crossref]

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. C. Swan, R. S. Hegde, M. Reason, R. S. Goldman, and D. A. Reis, “Generation and propagation of a picosecond acoustic pulse at a buried interface: time-resolved X-ray diffraction measurements,” Phys. Rev. Lett. 95, 246104 (2005).
[Crossref]

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116, 133902 (2016).
[Crossref]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref]

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100, 240404 (2008).
[Crossref]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984).
[Crossref]

Phys. Rev. X (1)

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Physica E (1)

K. Mizoguchi, T. Hino, M. Nakayama, T. Dekorsy, A. Bartels, H. Kurz, and S. Nakashima, “Umklapp process in observation of coherent folded longitudinal acoustic phonons in a GaAs/AlAs long-period superlattice,” Physica E 21, 646–650 (2004).
[Crossref]

Sci. Am. (1)

H. J. Maris, “Picosecond ultrasonics,” Sci. Am. 278, 86–89 (1998).
[Crossref]

Ultrasonics (3)

P.-A. Mante, Y.-R. Huang, S.-C. Yang, T.-M. Liu, A. A. Maznev, J.-K. Sheu, and C.-K. Sun, “THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures,” Ultrasonics 56, 52–65 (2015).
[Crossref]

O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, “Fundamentals of picosecond laser ultrasonics,” Ultrasonics 56, 3–20 (2015).
[Crossref]

P. J. S. van Capel, E. Péronne, and J. I. Dijkhuis, “Nonlinear ultrafast acoustics at the nano scale,” Ultrasonics 56, 36–51 (2015).
[Crossref]

Other (2)

L. D. Landau, L. P. Pitaevskii, A. M. Kosevich, and E. M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, 1984).

A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Oxford Science, 2007), Chap. 2.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (816 KB)      Supplemental Content

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Sketch of the technique. (a) A laser beam builds up a unique light field distribution (red) inside the structure, while an acoustic pulse simultaneously propagates along the z axis. The acoustic pulse locally changes the optical properties of the photonic device, which is observable in the reflected intensity of the laser beam. (b) Sketch of an acoustic pulse, showing the acoustic displacement (solid line) and the mechanical strain (dashed line).

Fig. 2.
Fig. 2.

Simulations of two differently scaled planar microcavities with x=0.03 (blue curves) and x=+0.03 (red curves). (a) Calculated reflectivity spectra; the arrow marks the wavelength studied in the following parts. The modeled structure and the influence of x are illustrated in the inset. (b) Light field distributions |E(z)|2 in the two cavities for the wavelength indicated in (a); (c) temporal reflectivity change during the transit of a Gaussian displacement pulse with a FWHM of 90 ps through the device.

Fig. 3.
Fig. 3.

Experimental measurement of the reflectivity change in an AlAs/GaAs micropillar resonator with a radius of 7.5 μm. (a) Calculated reflectivity spectrum of the micropillar resonator (black) and probe laser spectrum (red area). The inset shows a SEM image of a similar, but thinner, micropillar. (b) Measured reflectivity modulation (black) and simulated curve (red). The arrows mark the specific delays at which the acoustic pulse leaves and enters the DBRs. (c) Light field distribution |E|2 for the central laser wavelength of 800 nm and for the wavelengths shifted by half the FWHM at 795 and 805 nm.

Fig. 4.
Fig. 4.

Error and validity of the method. (a) Simulations for the AlAs/GaAs micropillar for different cavity layer thicknesses. The experimental curve (black line) is vertically shifted for clarity. (b) Experimental measurement of the reflectivity change in a thin AlAs/GaAs micropillar with a radius of 1.5 μm (top) and beside a micropillar (bottom). Next to the micropillar clear coherent Brillouin oscillations are observed in the fast Fourier transform (FFT) (inset).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δn=nEGEGηη.
ω=vqz,
q=2|k±mG|.
ΔR(t)R0=k0Im[iδε(zi)E2(zi)ru(zi,t)],

Metrics