Abstract

The study of internal molecular energy transfer is important for a variety of nonequilibrium and nonthermal environments, including plasma-based manufacturing and materials treatment, medical device treatment applications, and plasma-assisted combustion. In the current work, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering spectroscopy is demonstrated for simultaneous, single-shot measurement of pure-rotational and rovibrational energy distributions in the highly nonequilibrium environment of a dielectric barrier discharge plasma. Detailed spatial distributions and shot-to-shot fluctuations of rotational temperatures spanning 325–450 K and corresponding vibrational temperatures of 1200–5000 K are recorded across the plasma and surrounding flow with high precision and accuracy. This approach allows concise measurements of vibrational/rotational energy distributions in nonequilibrium environments at kilohertz rates that are free of nonresonant background and minimize interference from molecular collisions.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502 (2006).
    [Crossref]
  2. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
    [Crossref]
  3. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432 (2010).
    [Crossref]
  4. C. E. Dedic, J. D. Miller, and T. R. Meyer, “Dual-pump vibrational/rotational femtosecond/picosecond coherent anti-Stokes Raman scattering temperature and species measurements,” Opt. Lett. 39, 6608–6611 (2014).
    [Crossref]
  5. J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express 20, 5003–5010 (2012).
    [Crossref]
  6. W. Lee and W. R. Lempert, “Spectrally filtered Raman/Thomson scattering using a rubidium vapor filter,” AIAA J. 40, 2504–2510 (2002).
    [Crossref]
  7. A. P. Yalin, Y. Z. Ionikh, and R. B. Miles, “Gas temperature measurements in weakly ionized glow discharges with filtered Rayleigh scattering,” Appl. Opt. 41, 3753–3762 (2002).
    [Crossref]
  8. N. G. Glumac, G. S. Elliott, and M. Boguszko, “Temporal and spatial evolution of a laser spark in air,” AIAA J. 43, 1984–1994 (2005).
    [Crossref]
  9. N. Masoud, K. Martus, M. Figus, and K. Becker, “Rotational and vibrational temperature measurements in a high-pressure cylindrical dielectric barrier discharge (C-DBD),” Contrib. Plasma Phys. 45, 32–39 (2005).
    [Crossref]
  10. C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12, 125–138 (2003).
    [Crossref]
  11. G. D. Stancu, M. Janda, F. Kaddouri, D. A. Lacoste, and C. O. Laux, “Time-resolved CRDS measurements of the N2(A) density produced by nanosecond discharges in atmospheric pressure nitrogen and air,” J. Phys. Chem. A 114, 201–208 (2010).
    [Crossref]
  12. A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50, 1367–1376 (2012).
    [Crossref]
  13. S. Filimonov and J. Borysow, “Vibrational and rotational excitation within the X1Σ state of N2 during the pulsed electric discharge and in the afterglow,” J. Phys. D 40, 2810–2817 (2007).
    [Crossref]
  14. A. A. Devyatov, S. A. Dolenko, A. T. Rakhimov, T. V. Rakhimova, N. N. Roi, and N. V. Suetin, “Investigation of kinetic processes in molecular nitrogen,” Sov. Phys. J. Exp. Theor. Phys. 63, 246–250 (1986).
  15. W. R. Lempert and I. V. Adamovich, “Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows,” J. Phys. D 47, 433001 (2014).
    [Crossref]
  16. D. Messina, B. Attal-Trétout, and F. Grisch, “Study of a non-equilibrium pulsed nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering,” Proc. Combust. Inst. 31, 825–832 (2007).
    [Crossref]
  17. A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53, 2762–2770 (2015).
    [Crossref]
  18. H. U. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse,” J. Chem. Phys. 140, 024316 (2014).
    [Crossref]
  19. J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19, 15627–15640 (2011).
    [Crossref]
  20. G. Herzberg, Molecular Spectra and Molecular Structure, 2nd ed., Vol. 1 of Spectra of Diatomic Molecules (Van Nostrand Reinhold, 1950).
  21. S. P. Kearney and D. J. Scoglietti, “Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe,” Opt. Lett. 38, 833–835 (2013).
    [Crossref]
  22. E. Panousis, L. Papageorghiou, N. Spyrou, J.-F. Loiseau, B. Held, and F. Clément, “Numerical modeling of an atmospheric pressure dielectric barrier discharge in nitrogen: electrical and kinetic description,” J. Phys. D 40, 4168–4180 (2007).
    [Crossref]
  23. I. V. Adamovich and I. Shkurenkov, “Energy balance in nanosecond pulse discharges in nitrogen and air,” Plasma Sources Sci. Technol. 25, 15021 (2016).
    [Crossref]
  24. W. M. Shaub, J. W. Nibler, and A. B. Harvey, “Direct determination of non-Boltzmann vibrational level populations in electric discharges by CARS,” J. Chem. Phys. 67, 1883–1886 (1977).
    [Crossref]
  25. L. G. Piper and W. J. Marinelli, “Determination of non-Boltzmann vibrational distributions of N2(X) in He/N2 microwave discharge afterglow,” J. Chem. Phys. 89, 2918–2924 (1988).
    [Crossref]
  26. T. Seeger, M. C. Weikl, F. Beyrau, and A. Leipertz, “Identification of spatial averaging effects in vibrational CARS spectra,” J. Raman Spectrosc. 37, 641–646 (2006).
    [Crossref]
  27. G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14, 722–733 (2005).
    [Crossref]

2016 (1)

I. V. Adamovich and I. Shkurenkov, “Energy balance in nanosecond pulse discharges in nitrogen and air,” Plasma Sources Sci. Technol. 25, 15021 (2016).
[Crossref]

2015 (1)

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53, 2762–2770 (2015).
[Crossref]

2014 (3)

H. U. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse,” J. Chem. Phys. 140, 024316 (2014).
[Crossref]

W. R. Lempert and I. V. Adamovich, “Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows,” J. Phys. D 47, 433001 (2014).
[Crossref]

C. E. Dedic, J. D. Miller, and T. R. Meyer, “Dual-pump vibrational/rotational femtosecond/picosecond coherent anti-Stokes Raman scattering temperature and species measurements,” Opt. Lett. 39, 6608–6611 (2014).
[Crossref]

2013 (1)

2012 (2)

J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express 20, 5003–5010 (2012).
[Crossref]

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50, 1367–1376 (2012).
[Crossref]

2011 (1)

2010 (2)

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432 (2010).
[Crossref]

G. D. Stancu, M. Janda, F. Kaddouri, D. A. Lacoste, and C. O. Laux, “Time-resolved CRDS measurements of the N2(A) density produced by nanosecond discharges in atmospheric pressure nitrogen and air,” J. Phys. Chem. A 114, 201–208 (2010).
[Crossref]

2007 (4)

S. Filimonov and J. Borysow, “Vibrational and rotational excitation within the X1Σ state of N2 during the pulsed electric discharge and in the afterglow,” J. Phys. D 40, 2810–2817 (2007).
[Crossref]

D. Messina, B. Attal-Trétout, and F. Grisch, “Study of a non-equilibrium pulsed nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering,” Proc. Combust. Inst. 31, 825–832 (2007).
[Crossref]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref]

E. Panousis, L. Papageorghiou, N. Spyrou, J.-F. Loiseau, B. Held, and F. Clément, “Numerical modeling of an atmospheric pressure dielectric barrier discharge in nitrogen: electrical and kinetic description,” J. Phys. D 40, 4168–4180 (2007).
[Crossref]

2006 (2)

T. Seeger, M. C. Weikl, F. Beyrau, and A. Leipertz, “Identification of spatial averaging effects in vibrational CARS spectra,” J. Raman Spectrosc. 37, 641–646 (2006).
[Crossref]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502 (2006).
[Crossref]

2005 (3)

N. G. Glumac, G. S. Elliott, and M. Boguszko, “Temporal and spatial evolution of a laser spark in air,” AIAA J. 43, 1984–1994 (2005).
[Crossref]

N. Masoud, K. Martus, M. Figus, and K. Becker, “Rotational and vibrational temperature measurements in a high-pressure cylindrical dielectric barrier discharge (C-DBD),” Contrib. Plasma Phys. 45, 32–39 (2005).
[Crossref]

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14, 722–733 (2005).
[Crossref]

2003 (1)

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12, 125–138 (2003).
[Crossref]

2002 (2)

W. Lee and W. R. Lempert, “Spectrally filtered Raman/Thomson scattering using a rubidium vapor filter,” AIAA J. 40, 2504–2510 (2002).
[Crossref]

A. P. Yalin, Y. Z. Ionikh, and R. B. Miles, “Gas temperature measurements in weakly ionized glow discharges with filtered Rayleigh scattering,” Appl. Opt. 41, 3753–3762 (2002).
[Crossref]

1988 (1)

L. G. Piper and W. J. Marinelli, “Determination of non-Boltzmann vibrational distributions of N2(X) in He/N2 microwave discharge afterglow,” J. Chem. Phys. 89, 2918–2924 (1988).
[Crossref]

1986 (1)

A. A. Devyatov, S. A. Dolenko, A. T. Rakhimov, T. V. Rakhimova, N. N. Roi, and N. V. Suetin, “Investigation of kinetic processes in molecular nitrogen,” Sov. Phys. J. Exp. Theor. Phys. 63, 246–250 (1986).

1977 (1)

W. M. Shaub, J. W. Nibler, and A. B. Harvey, “Direct determination of non-Boltzmann vibrational level populations in electric discharges by CARS,” J. Chem. Phys. 67, 1883–1886 (1977).
[Crossref]

Adamovich, I. V.

I. V. Adamovich and I. Shkurenkov, “Energy balance in nanosecond pulse discharges in nitrogen and air,” Plasma Sources Sci. Technol. 25, 15021 (2016).
[Crossref]

W. R. Lempert and I. V. Adamovich, “Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows,” J. Phys. D 47, 433001 (2014).
[Crossref]

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50, 1367–1376 (2012).
[Crossref]

Ariunbold, G. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref]

Attal-Trétout, B.

D. Messina, B. Attal-Trétout, and F. Grisch, “Study of a non-equilibrium pulsed nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering,” Proc. Combust. Inst. 31, 825–832 (2007).
[Crossref]

Baurle, R.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53, 2762–2770 (2015).
[Crossref]

Becker, K.

N. Masoud, K. Martus, M. Figus, and K. Becker, “Rotational and vibrational temperature measurements in a high-pressure cylindrical dielectric barrier discharge (C-DBD),” Contrib. Plasma Phys. 45, 32–39 (2005).
[Crossref]

Beyrau, F.

T. Seeger, M. C. Weikl, F. Beyrau, and A. Leipertz, “Identification of spatial averaging effects in vibrational CARS spectra,” J. Raman Spectrosc. 37, 641–646 (2006).
[Crossref]

Boguszko, M.

N. G. Glumac, G. S. Elliott, and M. Boguszko, “Temporal and spatial evolution of a laser spark in air,” AIAA J. 43, 1984–1994 (2005).
[Crossref]

Borysow, J.

S. Filimonov and J. Borysow, “Vibrational and rotational excitation within the X1Σ state of N2 during the pulsed electric discharge and in the afterglow,” J. Phys. D 40, 2810–2817 (2007).
[Crossref]

Cantu, L. M. L.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53, 2762–2770 (2015).
[Crossref]

Chakraborty, A.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502 (2006).
[Crossref]

Clément, F.

E. Panousis, L. Papageorghiou, N. Spyrou, J.-F. Loiseau, B. Held, and F. Clément, “Numerical modeling of an atmospheric pressure dielectric barrier discharge in nitrogen: electrical and kinetic description,” J. Phys. D 40, 4168–4180 (2007).
[Crossref]

Cutler, A. D.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53, 2762–2770 (2015).
[Crossref]

Danehy, P. M.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53, 2762–2770 (2015).
[Crossref]

Dedic, C. E.

Devyatov, A. A.

A. A. Devyatov, S. A. Dolenko, A. T. Rakhimov, T. V. Rakhimova, N. N. Roi, and N. V. Suetin, “Investigation of kinetic processes in molecular nitrogen,” Sov. Phys. J. Exp. Theor. Phys. 63, 246–250 (1986).

Dogariu, A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref]

Dolenko, S. A.

A. A. Devyatov, S. A. Dolenko, A. T. Rakhimov, T. V. Rakhimova, N. N. Roi, and N. V. Suetin, “Investigation of kinetic processes in molecular nitrogen,” Sov. Phys. J. Exp. Theor. Phys. 63, 246–250 (1986).

Elliott, G. S.

N. G. Glumac, G. S. Elliott, and M. Boguszko, “Temporal and spatial evolution of a laser spark in air,” AIAA J. 43, 1984–1994 (2005).
[Crossref]

Figus, M.

N. Masoud, K. Martus, M. Figus, and K. Becker, “Rotational and vibrational temperature measurements in a high-pressure cylindrical dielectric barrier discharge (C-DBD),” Contrib. Plasma Phys. 45, 32–39 (2005).
[Crossref]

Filimonov, S.

S. Filimonov and J. Borysow, “Vibrational and rotational excitation within the X1Σ state of N2 during the pulsed electric discharge and in the afterglow,” J. Phys. D 40, 2810–2817 (2007).
[Crossref]

Gallo, E. C. A.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53, 2762–2770 (2015).
[Crossref]

Glumac, N. G.

N. G. Glumac, G. S. Elliott, and M. Boguszko, “Temporal and spatial evolution of a laser spark in air,” AIAA J. 43, 1984–1994 (2005).
[Crossref]

Gord, J. R.

Goyne, C.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53, 2762–2770 (2015).
[Crossref]

Grisch, F.

D. Messina, B. Attal-Trétout, and F. Grisch, “Study of a non-equilibrium pulsed nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering,” Proc. Combust. Inst. 31, 825–832 (2007).
[Crossref]

Hagelaar, G. J. M.

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14, 722–733 (2005).
[Crossref]

Harvey, A. B.

W. M. Shaub, J. W. Nibler, and A. B. Harvey, “Direct determination of non-Boltzmann vibrational level populations in electric discharges by CARS,” J. Chem. Phys. 67, 1883–1886 (1977).
[Crossref]

Held, B.

E. Panousis, L. Papageorghiou, N. Spyrou, J.-F. Loiseau, B. Held, and F. Clément, “Numerical modeling of an atmospheric pressure dielectric barrier discharge in nitrogen: electrical and kinetic description,” J. Phys. D 40, 4168–4180 (2007).
[Crossref]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure, 2nd ed., Vol. 1 of Spectra of Diatomic Molecules (Van Nostrand Reinhold, 1950).

Huang, Y.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref]

Ionikh, Y. Z.

Janda, M.

G. D. Stancu, M. Janda, F. Kaddouri, D. A. Lacoste, and C. O. Laux, “Time-resolved CRDS measurements of the N2(A) density produced by nanosecond discharges in atmospheric pressure nitrogen and air,” J. Phys. Chem. A 114, 201–208 (2010).
[Crossref]

Kaddouri, F.

G. D. Stancu, M. Janda, F. Kaddouri, D. A. Lacoste, and C. O. Laux, “Time-resolved CRDS measurements of the N2(A) density produced by nanosecond discharges in atmospheric pressure nitrogen and air,” J. Phys. Chem. A 114, 201–208 (2010).
[Crossref]

Kearney, S. P.

Kruger, C. H.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12, 125–138 (2003).
[Crossref]

Lacoste, D. A.

G. D. Stancu, M. Janda, F. Kaddouri, D. A. Lacoste, and C. O. Laux, “Time-resolved CRDS measurements of the N2(A) density produced by nanosecond discharges in atmospheric pressure nitrogen and air,” J. Phys. Chem. A 114, 201–208 (2010).
[Crossref]

Laux, C. O.

G. D. Stancu, M. Janda, F. Kaddouri, D. A. Lacoste, and C. O. Laux, “Time-resolved CRDS measurements of the N2(A) density produced by nanosecond discharges in atmospheric pressure nitrogen and air,” J. Phys. Chem. A 114, 201–208 (2010).
[Crossref]

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12, 125–138 (2003).
[Crossref]

Lee, W.

W. Lee and W. R. Lempert, “Spectrally filtered Raman/Thomson scattering using a rubidium vapor filter,” AIAA J. 40, 2504–2510 (2002).
[Crossref]

Leipertz, A.

T. Seeger, M. C. Weikl, F. Beyrau, and A. Leipertz, “Identification of spatial averaging effects in vibrational CARS spectra,” J. Raman Spectrosc. 37, 641–646 (2006).
[Crossref]

Lempert, W. R.

W. R. Lempert and I. V. Adamovich, “Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows,” J. Phys. D 47, 433001 (2014).
[Crossref]

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50, 1367–1376 (2012).
[Crossref]

W. Lee and W. R. Lempert, “Spectrally filtered Raman/Thomson scattering using a rubidium vapor filter,” AIAA J. 40, 2504–2510 (2002).
[Crossref]

Loiseau, J.-F.

E. Panousis, L. Papageorghiou, N. Spyrou, J.-F. Loiseau, B. Held, and F. Clément, “Numerical modeling of an atmospheric pressure dielectric barrier discharge in nitrogen: electrical and kinetic description,” J. Phys. D 40, 4168–4180 (2007).
[Crossref]

Marinelli, W. J.

L. G. Piper and W. J. Marinelli, “Determination of non-Boltzmann vibrational distributions of N2(X) in He/N2 microwave discharge afterglow,” J. Chem. Phys. 89, 2918–2924 (1988).
[Crossref]

Martus, K.

N. Masoud, K. Martus, M. Figus, and K. Becker, “Rotational and vibrational temperature measurements in a high-pressure cylindrical dielectric barrier discharge (C-DBD),” Contrib. Plasma Phys. 45, 32–39 (2005).
[Crossref]

Masoud, N.

N. Masoud, K. Martus, M. Figus, and K. Becker, “Rotational and vibrational temperature measurements in a high-pressure cylindrical dielectric barrier discharge (C-DBD),” Contrib. Plasma Phys. 45, 32–39 (2005).
[Crossref]

McDaniel, J.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53, 2762–2770 (2015).
[Crossref]

Messina, D.

D. Messina, B. Attal-Trétout, and F. Grisch, “Study of a non-equilibrium pulsed nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering,” Proc. Combust. Inst. 31, 825–832 (2007).
[Crossref]

Meyer, T. R.

Miles, R. B.

Miller, J. D.

Montello, A.

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50, 1367–1376 (2012).
[Crossref]

Murawski, R. K.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref]

Nibler, J. W.

W. M. Shaub, J. W. Nibler, and A. B. Harvey, “Direct determination of non-Boltzmann vibrational level populations in electric discharges by CARS,” J. Chem. Phys. 67, 1883–1886 (1977).
[Crossref]

Nishihara, M.

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50, 1367–1376 (2012).
[Crossref]

Panousis, E.

E. Panousis, L. Papageorghiou, N. Spyrou, J.-F. Loiseau, B. Held, and F. Clément, “Numerical modeling of an atmospheric pressure dielectric barrier discharge in nitrogen: electrical and kinetic description,” J. Phys. D 40, 4168–4180 (2007).
[Crossref]

Papageorghiou, L.

E. Panousis, L. Papageorghiou, N. Spyrou, J.-F. Loiseau, B. Held, and F. Clément, “Numerical modeling of an atmospheric pressure dielectric barrier discharge in nitrogen: electrical and kinetic description,” J. Phys. D 40, 4168–4180 (2007).
[Crossref]

Pestov, D.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref]

Piper, L. G.

L. G. Piper and W. J. Marinelli, “Determination of non-Boltzmann vibrational distributions of N2(X) in He/N2 microwave discharge afterglow,” J. Chem. Phys. 89, 2918–2924 (1988).
[Crossref]

Pitchford, L. C.

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14, 722–733 (2005).
[Crossref]

Prince, B. D.

H. U. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse,” J. Chem. Phys. 140, 024316 (2014).
[Crossref]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502 (2006).
[Crossref]

Prince, B. M.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502 (2006).
[Crossref]

Rakhimov, A. T.

A. A. Devyatov, S. A. Dolenko, A. T. Rakhimov, T. V. Rakhimova, N. N. Roi, and N. V. Suetin, “Investigation of kinetic processes in molecular nitrogen,” Sov. Phys. J. Exp. Theor. Phys. 63, 246–250 (1986).

Rakhimova, T. V.

A. A. Devyatov, S. A. Dolenko, A. T. Rakhimov, T. V. Rakhimova, N. N. Roi, and N. V. Suetin, “Investigation of kinetic processes in molecular nitrogen,” Sov. Phys. J. Exp. Theor. Phys. 63, 246–250 (1986).

Rich, J. W.

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50, 1367–1376 (2012).
[Crossref]

Rockwell, R.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53, 2762–2770 (2015).
[Crossref]

Roi, N. N.

A. A. Devyatov, S. A. Dolenko, A. T. Rakhimov, T. V. Rakhimova, N. N. Roi, and N. V. Suetin, “Investigation of kinetic processes in molecular nitrogen,” Sov. Phys. J. Exp. Theor. Phys. 63, 246–250 (1986).

Rostovtsev, Y. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref]

Roy, S.

Sautenkov, V. A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref]

Scoglietti, D. J.

Scully, M. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref]

Seeger, T.

T. Seeger, M. C. Weikl, F. Beyrau, and A. Leipertz, “Identification of spatial averaging effects in vibrational CARS spectra,” J. Raman Spectrosc. 37, 641–646 (2006).
[Crossref]

Shaub, W. M.

W. M. Shaub, J. W. Nibler, and A. B. Harvey, “Direct determination of non-Boltzmann vibrational level populations in electric discharges by CARS,” J. Chem. Phys. 67, 1883–1886 (1977).
[Crossref]

Shkurenkov, I.

I. V. Adamovich and I. Shkurenkov, “Energy balance in nanosecond pulse discharges in nitrogen and air,” Plasma Sources Sci. Technol. 25, 15021 (2016).
[Crossref]

Slipchenko, M. N.

Sokolov, A. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref]

Spence, T. G.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12, 125–138 (2003).
[Crossref]

Spyrou, N.

E. Panousis, L. Papageorghiou, N. Spyrou, J.-F. Loiseau, B. Held, and F. Clément, “Numerical modeling of an atmospheric pressure dielectric barrier discharge in nitrogen: electrical and kinetic description,” J. Phys. D 40, 4168–4180 (2007).
[Crossref]

Stancu, G. D.

G. D. Stancu, M. Janda, F. Kaddouri, D. A. Lacoste, and C. O. Laux, “Time-resolved CRDS measurements of the N2(A) density produced by nanosecond discharges in atmospheric pressure nitrogen and air,” J. Phys. Chem. A 114, 201–208 (2010).
[Crossref]

Stauffer, H. U.

H. U. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse,” J. Chem. Phys. 140, 024316 (2014).
[Crossref]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432 (2010).
[Crossref]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502 (2006).
[Crossref]

Suetin, N. V.

A. A. Devyatov, S. A. Dolenko, A. T. Rakhimov, T. V. Rakhimova, N. N. Roi, and N. V. Suetin, “Investigation of kinetic processes in molecular nitrogen,” Sov. Phys. J. Exp. Theor. Phys. 63, 246–250 (1986).

Wang, X.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref]

Weikl, M. C.

T. Seeger, M. C. Weikl, F. Beyrau, and A. Leipertz, “Identification of spatial averaging effects in vibrational CARS spectra,” J. Raman Spectrosc. 37, 641–646 (2006).
[Crossref]

Yalin, A. P.

Zare, R. N.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12, 125–138 (2003).
[Crossref]

Zhi, M.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref]

AIAA J. (4)

W. Lee and W. R. Lempert, “Spectrally filtered Raman/Thomson scattering using a rubidium vapor filter,” AIAA J. 40, 2504–2510 (2002).
[Crossref]

N. G. Glumac, G. S. Elliott, and M. Boguszko, “Temporal and spatial evolution of a laser spark in air,” AIAA J. 43, 1984–1994 (2005).
[Crossref]

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50, 1367–1376 (2012).
[Crossref]

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53, 2762–2770 (2015).
[Crossref]

Appl. Opt. (1)

Contrib. Plasma Phys. (1)

N. Masoud, K. Martus, M. Figus, and K. Becker, “Rotational and vibrational temperature measurements in a high-pressure cylindrical dielectric barrier discharge (C-DBD),” Contrib. Plasma Phys. 45, 32–39 (2005).
[Crossref]

J. Chem. Phys. (4)

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502 (2006).
[Crossref]

H. U. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse,” J. Chem. Phys. 140, 024316 (2014).
[Crossref]

W. M. Shaub, J. W. Nibler, and A. B. Harvey, “Direct determination of non-Boltzmann vibrational level populations in electric discharges by CARS,” J. Chem. Phys. 67, 1883–1886 (1977).
[Crossref]

L. G. Piper and W. J. Marinelli, “Determination of non-Boltzmann vibrational distributions of N2(X) in He/N2 microwave discharge afterglow,” J. Chem. Phys. 89, 2918–2924 (1988).
[Crossref]

J. Phys. Chem. A (1)

G. D. Stancu, M. Janda, F. Kaddouri, D. A. Lacoste, and C. O. Laux, “Time-resolved CRDS measurements of the N2(A) density produced by nanosecond discharges in atmospheric pressure nitrogen and air,” J. Phys. Chem. A 114, 201–208 (2010).
[Crossref]

J. Phys. D (3)

S. Filimonov and J. Borysow, “Vibrational and rotational excitation within the X1Σ state of N2 during the pulsed electric discharge and in the afterglow,” J. Phys. D 40, 2810–2817 (2007).
[Crossref]

W. R. Lempert and I. V. Adamovich, “Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows,” J. Phys. D 47, 433001 (2014).
[Crossref]

E. Panousis, L. Papageorghiou, N. Spyrou, J.-F. Loiseau, B. Held, and F. Clément, “Numerical modeling of an atmospheric pressure dielectric barrier discharge in nitrogen: electrical and kinetic description,” J. Phys. D 40, 4168–4180 (2007).
[Crossref]

J. Raman Spectrosc. (1)

T. Seeger, M. C. Weikl, F. Beyrau, and A. Leipertz, “Identification of spatial averaging effects in vibrational CARS spectra,” J. Raman Spectrosc. 37, 641–646 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Plasma Sources Sci. Technol. (3)

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14, 722–733 (2005).
[Crossref]

I. V. Adamovich and I. Shkurenkov, “Energy balance in nanosecond pulse discharges in nitrogen and air,” Plasma Sources Sci. Technol. 25, 15021 (2016).
[Crossref]

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12, 125–138 (2003).
[Crossref]

Proc. Combust. Inst. (1)

D. Messina, B. Attal-Trétout, and F. Grisch, “Study of a non-equilibrium pulsed nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering,” Proc. Combust. Inst. 31, 825–832 (2007).
[Crossref]

Science (1)

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref]

Sov. Phys. J. Exp. Theor. Phys. (1)

A. A. Devyatov, S. A. Dolenko, A. T. Rakhimov, T. V. Rakhimova, N. N. Roi, and N. V. Suetin, “Investigation of kinetic processes in molecular nitrogen,” Sov. Phys. J. Exp. Theor. Phys. 63, 246–250 (1986).

Other (1)

G. Herzberg, Molecular Spectra and Molecular Structure, 2nd ed., Vol. 1 of Spectra of Diatomic Molecules (Van Nostrand Reinhold, 1950).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Frequency and (b) timing diagrams for dual-pump fs/ps vibrational/rotational CARS.

Fig. 2.
Fig. 2.

Simulated (a)  S -branch and (b)  Q -branch spectra showing an equilibrium temperature (green solid line) and a condition where rotational and vibrational temperatures differ (black dashed line). Stick diagrams of (c) pure-rotational and (d) rovibrational Raman transition frequencies and intensities for the nonequilibrium case.

Fig. 3.
Fig. 3.

Simulated S -branch time-response for various probe delays in (a) equilibrium at T eq = 500    K and (b) nonequilibrium at T rot = 500    K and T vib = 3500    K .

Fig. 4.
Fig. 4.

(a) Optical layout for dual-pump fs/ps CARS with the DBD at the probe volume. 1/2 WP, half-waveplate; TFP, thin-film polarizer; BS, beam splitter; G, grating; SHG, second-harmonic generation crystal; DBS, dichroic beam splitter; SHBC, second-harmonic bandwidth-compressor; OPA, optical parametric amplifier. (b) The He / N 2 dielectric barrier discharge is shown.

Fig. 5.
Fig. 5.

(a) Histogram of 400 single-shot vibrational and rotational temperature measurements at the center of the DBD. Two single-shot, simultaneously measured S -branch and Q -branch spectra pairs are shown as green circles with best-fit simulations shown as solid black lines, where the corresponding temperatures are (b), (c)  T rot = 380    K and T vib = 2580    K and (d), (e)  T rot = 390    K and T vib = 3460    K .

Fig. 6.
Fig. 6.

(a) Averaged image of the DBD and CARS measurement locations and (b) corresponding vibrational and rotational temperatures; symbols and bars represent the average and standard deviation of 400 single-shot measurements at each location.

Fig. 7.
Fig. 7.

Experimental (a)  S -branch and (b)  Q -branch spectra shown as red circles with the corresponding best-fit simulations shown as solid black lines at T rot = 450    K and T vib = 4860    K . The Q -branch spectrum simulated using non-Boltzmann vibrational level populations is also shown in (b) as a solid red line. Measured (c) non-Boltzmann vibrational distribution is shown as blue circles compared to the Boltzmann temperature based on Q 0 and Q 1 (blue solid line). For comparison, rate coefficients for excitation from v = 0 to higher vibrational levels from electron collisions are shown (green diamonds).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I CARS ( ω 4 ) | P res ( 3 ) ( ω 4 ) | 2 = | ϵ 0 χ CARS ( 3 ) E 1 ( ω 1 ) E 2 ( ω 2 ) E 3 ( ω 3 ) | 2 ,
χ CARS ( 3 ) ( ω ) = c dG ( ω ) 1 P d ,
ρ m = g m Q ( T vib , T rot ) e E vib , m k B T vib e E rot , m k B T rot ,
F v ( J ) = B v J ( J + 1 ) D v J 2 ( J + 1 ) 2 ,
B v = B e α e ( v + 1 2 ) + γ e ( v + 1 2 ) 2 ,
D v = D e + β e ( v + 1 2 ) .
ω ( J + 2 J , v ) = 2 B v ( 2 J + 3 ) 4 D v ( 2 J + 3 ) ( J 2 + 3 J + 3 ) ,
Δ ω = ω ( J + 3 J + 1 , v ) ω ( J + 2 J , v ) = 4 B v 8 D v ( 3 J 2 + 12 J + 13 ) .
Δ ω = ω ( J + 2 J , v + 1 ) ω ( J + 2 J , v ) = 2 ( 2 J + 3 ) [ α e 2 γ e ( v + 1 ) + 2 β e ( J + 1 ) ( J + 3 ) ] .
T v ( 1 , 0 ) = E 1 E 0 ln N 0 N 1 .

Metrics