Abstract

An increasing number of systems and applications depend on photonics for transmission and signal processing. This includes data centers, communications systems, environmental sensing, radar, lidar, and microwave signal generation. Such systems increasingly rely on monolithic integration of traditionally bulk optical components onto the chip scale to significantly reduce power and cost while simultaneously maintaining the requisite performance specifications at high production volumes. A critical aspect to meeting these challenges is the loss of the waveguide on the integrated optic platform, along with the capability of designing a wide range of passive and active optical elements while providing compatibility with low-cost, highly manufacturable processes, such as those found in CMOS. In this article, we report the demonstration of a record low propagation loss of 3±1  dB/m across the entire telecommunications C-band for a CMOS-compatible Ta2O5-core/SiO2-clad planar waveguide. The waveguide design, fabrication process, and optical frequency domain reflectometry characterization of the waveguide propagation loss and group index are described in detail. The losses and dispersion properties of this platform enable the integration of a wide variety of linear and nonlinear optical components on-chip, as well as integration with active rare-earth components for lasers and amplifiers and additionally silicon photonic integrated devices. This opens up new integration possibilities within the data communications, microwave photonics, high bandwidth electrical RF systems, sensing, and optical signal processing applications and research communities.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure

Chung-Lun Wu, Bo-Tsang Chen, Yuan-Yao Lin, Wei-Chen Tien, Gong-Ru Lin, Yi-Jen Chiu, Yung-Jr Hung, Ann-Kuo Chu, and Chao-Kuei Lee
Opt. Express 23(20) 26268-26275 (2015)

Ultra-low-loss high-aspect-ratio Si3N4 waveguides

Jared F. Bauters, Martijn J. R. Heck, Demis John, Daoxin Dai, Ming-Chun Tien, Jonathon S. Barton, Arne Leinse, René G. Heideman, Daniel J. Blumenthal, and John E. Bowers
Opt. Express 19(4) 3163-3174 (2011)

Visible-range hollow waveguides by guided buckling of Ta2O5/SiO2 multilayers

A. Melnyk, C. A. Potts, T. W. Allen, and R. G. DeCorby
Appl. Opt. 55(13) 3645-3649 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22, 10655–10660 (2014).
    [Crossref]
  2. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
    [Crossref]
  3. M. Belt, J. Bovington, R. Moreira, J. Bauters, M. Heck, J. Barton, J. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21, 1181–1188 (2013).
    [Crossref]
  4. D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Low-loss Si3N4arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides,” Opt. Express 19, 14130–14136 (2011).
    [Crossref]
  5. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
    [Crossref]
  6. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. Rezaul Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
    [Crossref]
  7. R. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
    [Crossref]
  8. S. Gundavarapu, T. Huffman, M. Belt, R. Moreira, J. Bowers, and D. Blumenthal, “Integrated ultra-low-loss silicon nitride waveguide coil for optical gyroscopes,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.5.
  9. R. Moreira, S. Gundavarapu, and D. J. Blumenthal, “Programmable eye-opener lattice filter for multi-channel dispersion compensation using an integrated compact low-loss silicon nitride platform,” Opt. Express 24, 16732–16742 (2016).
    [Crossref]
  10. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  11. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
    [Crossref]
  12. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
    [Crossref]
  13. S. Ezhilvalava and T. Y. Tseng, “Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application—A review,” J. Mater. Sci. 10, 9–31 (1999).
    [Crossref]
  14. C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Ballard, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. 22, 269–322 (1998).
    [Crossref]
  15. C.-Y. Tai, J. S. Wilkinson, N. M. B. Perney, M. Caterina Netti, F. Cattaneo, C. E. Finlayson, and J. J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12, 5110–5116 (2004).
    [Crossref]
  16. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008).
    [Crossref]
  17. J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B 18, 1785–1791 (2000).
    [Crossref]
  18. C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529, 1600358 (2016).
    [Crossref]
  19. C. Lacava, A. Aghajani, P. Hua, D. J. Richardson, P. Petropoulos, and J. Wilkinson, “Nonlinear optical properties of ytterbium-doped tantalum pentoxide rib waveguides on silicon at telecom wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.4.
  20. A. Subramanian, “Tantalum pentoxide waveguide amplifier and laser for planar lightwave circuits,” Ph.D. dissertation (University of Southampton, 2011).
  21. C. Christensen, R. de Reus, and S. Bouwstra, “Tantalum oxide thin films as protective coatings for sensors,” J. Micromech. Microeng. 9, 113–118 (1999).
    [Crossref]
  22. A. Aghajani, G. S. Murugan, N. P. Sessions, V. Apostolopoulos, and J. S. Wilkinson, “Waveguide lasers in ytterbium-doped tantalum pentoxide on silicon,” Opt. Lett. 40, 2549–2552 (2015).
    [Crossref]
  23. A. Z. Subramanian, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium doped waveguide laser in tantalum pentoxide,” IEEE Photon. Technol. Lett. 22, 1571–1573 (2010).
    [Crossref]
  24. C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23, 26268–26275 (2015).
    [Crossref]
  25. M. Itoh, T. Kominato, M. Abe, M. Itoh, and T. Hashimoto, “Low-loss silica-based SiO2-Ta2O5 Waveguides With extremely high δ fabricated using sputtered thin films,” J. Lightwave Technol. 33, 318–323 (2015).
    [Crossref]
  26. M. Zhu, Z. Zhang, and W. Miao, “Intense photoluminescence from amorphous tantalum oxide films,” Appl. Phys. Lett. 89, 021915 (2006).
    [Crossref]
  27. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
    [Crossref]
  28. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21, 544–555 (2013).
    [Crossref]
  29. F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26, 33–46 (2004).
    [Crossref]
  30. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).
    [Crossref]

2016 (2)

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529, 1600358 (2016).
[Crossref]

R. Moreira, S. Gundavarapu, and D. J. Blumenthal, “Programmable eye-opener lattice filter for multi-channel dispersion compensation using an integrated compact low-loss silicon nitride platform,” Opt. Express 24, 16732–16742 (2016).
[Crossref]

2015 (3)

2014 (2)

2013 (4)

R. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21, 544–555 (2013).
[Crossref]

M. Belt, J. Bovington, R. Moreira, J. Bauters, M. Heck, J. Barton, J. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21, 1181–1188 (2013).
[Crossref]

2011 (5)

2010 (2)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

A. Z. Subramanian, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium doped waveguide laser in tantalum pentoxide,” IEEE Photon. Technol. Lett. 22, 1571–1573 (2010).
[Crossref]

2008 (1)

2006 (1)

M. Zhu, Z. Zhang, and W. Miao, “Intense photoluminescence from amorphous tantalum oxide films,” Appl. Phys. Lett. 89, 021915 (2006).
[Crossref]

2005 (1)

2004 (2)

2000 (1)

J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B 18, 1785–1791 (2000).
[Crossref]

1999 (2)

S. Ezhilvalava and T. Y. Tseng, “Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application—A review,” J. Mater. Sci. 10, 9–31 (1999).
[Crossref]

C. Christensen, R. de Reus, and S. Bouwstra, “Tantalum oxide thin films as protective coatings for sensors,” J. Micromech. Microeng. 9, 113–118 (1999).
[Crossref]

1998 (1)

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Ballard, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. 22, 269–322 (1998).
[Crossref]

Abe, M.

Aghajani, A.

A. Aghajani, G. S. Murugan, N. P. Sessions, V. Apostolopoulos, and J. S. Wilkinson, “Waveguide lasers in ytterbium-doped tantalum pentoxide on silicon,” Opt. Lett. 40, 2549–2552 (2015).
[Crossref]

C. Lacava, A. Aghajani, P. Hua, D. J. Richardson, P. Petropoulos, and J. Wilkinson, “Nonlinear optical properties of ytterbium-doped tantalum pentoxide rib waveguides on silicon at telecom wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.4.

Alic, N.

Apostolopoulos, V.

Autran, J. L.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Ballard, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. 22, 269–322 (1998).
[Crossref]

Ay, F.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26, 33–46 (2004).
[Crossref]

Aydinli, A.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26, 33–46 (2004).
[Crossref]

Ballard, B.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Ballard, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. 22, 269–322 (1998).
[Crossref]

Barton, J.

Barton, J. S.

Baumberg, J. J.

Bauters, J.

R. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

M. Belt, J. Bovington, R. Moreira, J. Bauters, M. Heck, J. Barton, J. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21, 1181–1188 (2013).
[Crossref]

Bauters, J. F.

Beeker, W.

Belt, M.

M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22, 10655–10660 (2014).
[Crossref]

M. Belt, J. Bovington, R. Moreira, J. Bauters, M. Heck, J. Barton, J. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21, 1181–1188 (2013).
[Crossref]

S. Gundavarapu, T. Huffman, M. Belt, R. Moreira, J. Bowers, and D. Blumenthal, “Integrated ultra-low-loss silicon nitride waveguide coil for optical gyroscopes,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.5.

Blumenthal, D.

S. Gundavarapu, T. Huffman, M. Belt, R. Moreira, J. Bowers, and D. Blumenthal, “Integrated ultra-low-loss silicon nitride waveguide coil for optical gyroscopes,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.5.

Blumenthal, D. J.

R. Moreira, S. Gundavarapu, and D. J. Blumenthal, “Programmable eye-opener lattice filter for multi-channel dispersion compensation using an integrated compact low-loss silicon nitride platform,” Opt. Express 24, 16732–16742 (2016).
[Crossref]

M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22, 10655–10660 (2014).
[Crossref]

M. Belt, J. Bovington, R. Moreira, J. Bauters, M. Heck, J. Barton, J. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21, 1181–1188 (2013).
[Crossref]

R. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]

D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Low-loss Si3N4arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides,” Opt. Express 19, 14130–14136 (2011).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
[Crossref]

Bouwstra, S.

C. Christensen, R. de Reus, and S. Bouwstra, “Tantalum oxide thin films as protective coatings for sensors,” J. Micromech. Microeng. 9, 113–118 (1999).
[Crossref]

Bovington, J.

Bowers, J.

M. Belt, J. Bovington, R. Moreira, J. Bauters, M. Heck, J. Barton, J. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21, 1181–1188 (2013).
[Crossref]

S. Gundavarapu, T. Huffman, M. Belt, R. Moreira, J. Bowers, and D. Blumenthal, “Integrated ultra-low-loss silicon nitride waveguide coil for optical gyroscopes,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.5.

Bowers, J. E.

Bruinink, C. M.

Burla, M.

Caterina Netti, M.

Cattaneo, F.

Chaneliere, C.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Ballard, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. 22, 269–322 (1998).
[Crossref]

Chen, A.

Chen, B.-T.

Chi, W.-C.

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529, 1600358 (2016).
[Crossref]

Chiu, Y.-J.

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529, 1600358 (2016).
[Crossref]

C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23, 26268–26275 (2015).
[Crossref]

Christensen, C.

C. Christensen, R. de Reus, and S. Bouwstra, “Tantalum oxide thin films as protective coatings for sensors,” J. Micromech. Microeng. 9, 113–118 (1999).
[Crossref]

Chu, A.-K.

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529, 1600358 (2016).
[Crossref]

C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23, 26268–26275 (2015).
[Crossref]

Dai, D.

Davenport, M. L.

de Reus, R.

C. Christensen, R. de Reus, and S. Bouwstra, “Tantalum oxide thin films as protective coatings for sensors,” J. Micromech. Microeng. 9, 113–118 (1999).
[Crossref]

Devine, R. A. B.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Ballard, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. 22, 269–322 (1998).
[Crossref]

Doylend, J. K.

Ezhilvalava, S.

S. Ezhilvalava and T. Y. Tseng, “Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application—A review,” J. Mater. Sci. 10, 9–31 (1999).
[Crossref]

Fainman, Y.

Fang, A. W.

Finlayson, C. E.

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Froggatt, M. E.

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Garcia, J.

R. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Gifford, D. K.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Gundavarapu, S.

R. Moreira, S. Gundavarapu, and D. J. Blumenthal, “Programmable eye-opener lattice filter for multi-channel dispersion compensation using an integrated compact low-loss silicon nitride platform,” Opt. Express 24, 16732–16742 (2016).
[Crossref]

S. Gundavarapu, T. Huffman, M. Belt, R. Moreira, J. Bowers, and D. Blumenthal, “Integrated ultra-low-loss silicon nitride waveguide coil for optical gyroscopes,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.5.

Hashimoto, T.

Heck, M.

Heck, M. J. R.

Heideman, R.

Heideman, R. G.

Hoekman, M.

Hsieh, C.-H.

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529, 1600358 (2016).
[Crossref]

Hua, P.

C. Lacava, A. Aghajani, P. Hua, D. J. Richardson, P. Petropoulos, and J. Wilkinson, “Nonlinear optical properties of ytterbium-doped tantalum pentoxide rib waveguides on silicon at telecom wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.4.

Huffman, T.

S. Gundavarapu, T. Huffman, M. Belt, R. Moreira, J. Bowers, and D. Blumenthal, “Integrated ultra-low-loss silicon nitride waveguide coil for optical gyroscopes,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.5.

Hung, Y.-J.

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529, 1600358 (2016).
[Crossref]

C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23, 26268–26275 (2015).
[Crossref]

Ikeda, K.

Itoh, M.

John, D.

John, D. D.

Kominato, T.

Lacava, C.

C. Lacava, A. Aghajani, P. Hua, D. J. Richardson, P. Petropoulos, and J. Wilkinson, “Nonlinear optical properties of ytterbium-doped tantalum pentoxide rib waveguides on silicon at telecom wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.4.

Lee, C.-K.

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529, 1600358 (2016).
[Crossref]

C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23, 26268–26275 (2015).
[Crossref]

Leinse, A.

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Li, W.

R. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Lin, G.-R.

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529, 1600358 (2016).
[Crossref]

C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23, 26268–26275 (2015).
[Crossref]

Lin, Y.-Y.

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529, 1600358 (2016).
[Crossref]

C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23, 26268–26275 (2015).
[Crossref]

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Marpaung, D.

Miao, W.

M. Zhu, Z. Zhang, and W. Miao, “Intense photoluminescence from amorphous tantalum oxide films,” Appl. Phys. Lett. 89, 021915 (2006).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Moreira, R.

R. Moreira, S. Gundavarapu, and D. J. Blumenthal, “Programmable eye-opener lattice filter for multi-channel dispersion compensation using an integrated compact low-loss silicon nitride platform,” Opt. Express 24, 16732–16742 (2016).
[Crossref]

R. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

M. Belt, J. Bovington, R. Moreira, J. Bauters, M. Heck, J. Barton, J. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21, 1181–1188 (2013).
[Crossref]

S. Gundavarapu, T. Huffman, M. Belt, R. Moreira, J. Bowers, and D. Blumenthal, “Integrated ultra-low-loss silicon nitride waveguide coil for optical gyroscopes,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.5.

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Murugan, G. S.

Oton, C. J.

A. Z. Subramanian, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium doped waveguide laser in tantalum pentoxide,” IEEE Photon. Technol. Lett. 22, 1571–1573 (2010).
[Crossref]

Perney, N. M. B.

Petropoulos, P.

C. Lacava, A. Aghajani, P. Hua, D. J. Richardson, P. Petropoulos, and J. Wilkinson, “Nonlinear optical properties of ytterbium-doped tantalum pentoxide rib waveguides on silicon at telecom wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.4.

Rezaul Khan, M.

Richardson, D. J.

C. Lacava, A. Aghajani, P. Hua, D. J. Richardson, P. Petropoulos, and J. Wilkinson, “Nonlinear optical properties of ytterbium-doped tantalum pentoxide rib waveguides on silicon at telecom wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.4.

Robertson, J.

J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B 18, 1785–1791 (2000).
[Crossref]

Roeloffzen, C.

Saperstein, R. E.

Sessions, N. P.

Shepherd, D. P.

A. Z. Subramanian, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium doped waveguide laser in tantalum pentoxide,” IEEE Photon. Technol. Lett. 22, 1571–1573 (2010).
[Crossref]

Shih, M.-H.

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529, 1600358 (2016).
[Crossref]

Soller, B. J.

Spencer, D. T.

Subramanian, A.

A. Subramanian, “Tantalum pentoxide waveguide amplifier and laser for planar lightwave circuits,” Ph.D. dissertation (University of Southampton, 2011).

Subramanian, A. Z.

A. Z. Subramanian, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium doped waveguide laser in tantalum pentoxide,” IEEE Photon. Technol. Lett. 22, 1571–1573 (2010).
[Crossref]

Tai, C.-Y.

Tien, M.-C.

Tien, W.-C.

Tseng, T. Y.

S. Ezhilvalava and T. Y. Tseng, “Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application—A review,” J. Mater. Sci. 10, 9–31 (1999).
[Crossref]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Wang, Z.

Wilkinson, J.

C. Lacava, A. Aghajani, P. Hua, D. J. Richardson, P. Petropoulos, and J. Wilkinson, “Nonlinear optical properties of ytterbium-doped tantalum pentoxide rib waveguides on silicon at telecom wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.4.

Wilkinson, J. S.

Wolfe, M. S.

Wu, C.-L.

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529, 1600358 (2016).
[Crossref]

C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23, 26268–26275 (2015).
[Crossref]

Zhang, Z.

M. Zhu, Z. Zhang, and W. Miao, “Intense photoluminescence from amorphous tantalum oxide films,” Appl. Phys. Lett. 89, 021915 (2006).
[Crossref]

Zhu, M.

M. Zhu, Z. Zhang, and W. Miao, “Intense photoluminescence from amorphous tantalum oxide films,” Appl. Phys. Lett. 89, 021915 (2006).
[Crossref]

Zhuang, L.

Ann. Phys. (1)

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529, 1600358 (2016).
[Crossref]

Appl. Phys. Lett. (1)

M. Zhu, Z. Zhang, and W. Miao, “Intense photoluminescence from amorphous tantalum oxide films,” Appl. Phys. Lett. 89, 021915 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Z. Subramanian, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium doped waveguide laser in tantalum pentoxide,” IEEE Photon. Technol. Lett. 22, 1571–1573 (2010).
[Crossref]

R. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Sci. (1)

S. Ezhilvalava and T. Y. Tseng, “Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application—A review,” J. Mater. Sci. 10, 9–31 (1999).
[Crossref]

J. Micromech. Microeng. (1)

C. Christensen, R. de Reus, and S. Bouwstra, “Tantalum oxide thin films as protective coatings for sensors,” J. Micromech. Microeng. 9, 113–118 (1999).
[Crossref]

J. Vac. Sci. Technol. B (1)

J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B 18, 1785–1791 (2000).
[Crossref]

Mater. Sci. Eng. (1)

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Ballard, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. 22, 269–322 (1998).
[Crossref]

Nat. Photonics (2)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Opt. Express (13)

C.-Y. Tai, J. S. Wilkinson, N. M. B. Perney, M. Caterina Netti, F. Cattaneo, C. E. Finlayson, and J. J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12, 5110–5116 (2004).
[Crossref]

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).
[Crossref]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
[Crossref]

D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Low-loss Si3N4arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides,” Opt. Express 19, 14130–14136 (2011).
[Crossref]

M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. Rezaul Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[Crossref]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21, 544–555 (2013).
[Crossref]

M. Belt, J. Bovington, R. Moreira, J. Bauters, M. Heck, J. Barton, J. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21, 1181–1188 (2013).
[Crossref]

M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22, 10655–10660 (2014).
[Crossref]

C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23, 26268–26275 (2015).
[Crossref]

R. Moreira, S. Gundavarapu, and D. J. Blumenthal, “Programmable eye-opener lattice filter for multi-channel dispersion compensation using an integrated compact low-loss silicon nitride platform,” Opt. Express 24, 16732–16742 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26, 33–46 (2004).
[Crossref]

Optica (1)

Other (3)

C. Lacava, A. Aghajani, P. Hua, D. J. Richardson, P. Petropoulos, and J. Wilkinson, “Nonlinear optical properties of ytterbium-doped tantalum pentoxide rib waveguides on silicon at telecom wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.4.

A. Subramanian, “Tantalum pentoxide waveguide amplifier and laser for planar lightwave circuits,” Ph.D. dissertation (University of Southampton, 2011).

S. Gundavarapu, T. Huffman, M. Belt, R. Moreira, J. Bowers, and D. Blumenthal, “Integrated ultra-low-loss silicon nitride waveguide coil for optical gyroscopes,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W4E.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Cross-sectional geometry of the final Ta 2 O 5 - core / SiO 2 - clad waveguide. The thermal SiO 2 lower cladding, Ta 2 O 5 core, and sputtered SiO 2 upper claddings layers are 15 μm, 90 nm, and 1.1 μm thick, respectively. The width of the Ta 2 O 5 core is 2.8 μm. (b) Simulated optical mode profile of the fundamental TE waveguide mode at the 1.55 μm wavelength. The calculated modal intensity diameters ( 1 / e 2 ) are 2.7 μm in the horizontal by 1.1 μm in the vertical. These dimensions were confirmed experimentally through facet imaging utilizing an infrared camera. The calculated core confinement factor ( Γ ) is 0.15 and the effective index ( n eff ) is 1.474.

Fig. 2.
Fig. 2.

(a) Schematic representation of a fabricated die featuring the 10 m long Archimedean spiral with a 2 mm minimum bend radius (at the innermost turn-around section). The outermost bend radius was 10 mm. (b) Schematic representation of a fabricated die containing the 0.7 m long spiral delay, with Bézier curves connecting the straight sections. The minimum bend radius of the Bézier curves was 760 μm, while the outermost radius was 1.7 mm. The loop mirror structure can be seen within the spiral center. Both designs in (a) and (b) also feature 21 mm long straight waveguides as auxiliary test structures.

Fig. 3.
Fig. 3.

(a)–(d) Schematic overview of the fabrication process for the waveguides discussed within this paper. All of the processes we employ within this work (including the deposition and etch steps of the Ta 2 O 5 material) are CMOS compatible.

Fig. 4.
Fig. 4.

(a) Three-dimensional AFM image of the CH 3 / CF 4 / O 2 ICP etch of the Ta 2 O 5 core. (b) Lateral AFM data quantifying the depth of etch. The deposited core was 90 nm thick but over-etched into the lower thermal SiO 2 cladding for a total etch depth of 150 nm. (c) Dark-field optical micrograph of the bus and outermost waveguides (yellow in color) of the 10 m long Archimedean spiral.

Fig. 5.
Fig. 5.

OBR data from a 0.7 m long spiral delay. The innermost portion of the delay contains a loop mirror reflector, which is clearly visible as a large reflection on the data trace. The other smaller reflection peaks throughout the propagation length are due to scattering events caused by various fabrication imperfections along the waveguide delay. The dashed red line gives a linear fit of the waveguide backscatter averaged over all measured wavelengths. The magnitude of the propagation loss can be approximated as one-half of the slope of this line. Bend loss was not measurable compared to the propagation loss as experienced over the entirety of propagation through the spiral, as evidenced by the constant slope of the measured backscattered power with respect to distance. Utilizing a series of straight waveguides on this same die, we determined through transmission measurements that the fiber-to-chip coupling loss using a cleaved SMF-28 fiber was 3 dB/facet.

Fig. 6.
Fig. 6.

Propagation loss (mean and standard deviation) versus wavelength for 3 separate die of 10 m long spiral delays. Due to the sputter deposition of the upper cladding, the loss is relatively flat ( < 2    dB / m spread) over the entirety of the C-band. The prior state of the art Ta 2 O 5 measurement result from [25] is shown with a diamond marker. The loss measurement from [27] of an equivalent geometry with a Si 3 N 4 core is shown with a square marker.

Tables (1)

Tables Icon

Table 1. Material Parameters for Ta 2 O 5 , Si 3 N 4 , and SiO 2

Metrics