Abstract

As light cannot be stopped or directly stored in any media, optical delay lines are usually used to temporally trap the optical signals. We report a wide-range continuously tunable optical delay line chip consisting of a ring resonator array and a Mach–Zehnder interferometer (MZI) switch array on the 60-nm-thick silicon waveguide platform. The ring delay line provides continuous delay tuning of more than 10 ps with a push–pull differential tuning method. The MZI switchable delay line provides digitally programmable delay tuning with a resolution of 10 ps upon reconfiguration of the MZI switches to establish different optical routing paths. Dual-stage MZI switches are used to ensure low crosstalk with an improved signal-to-noise ratio. The delay line chip can generate a maximum delay of >1  ns with an on-chip insertion loss of 12.4 dB. Optical pulse time-division multiplexing and quasi-arbitrary waveform generation are realized based on the delay line chip. These results represent a significant step towards the realization of highly reconfigurable optical signal processors enabled by optical delay manipulation with broad applications for optical communications and microwave photonics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Seven-bit reconfigurable optical true time delay line based on silicon integration

Jingya Xie, Linjie Zhou, Zuxiang Li, Jinting Wang, and Jianping Chen
Opt. Express 22(19) 22707-22715 (2014)

Continuously tunable reflective-type optical delay lines using microring resonators

Jingya Xie, Linjie Zhou, Zhi Zou, Jinting Wang, Xinwan Li, and Jianping Chen
Opt. Express 22(1) 817-823 (2014)

Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas

Teresa Tatoli, Donato Conteduca, Francesco Dell’Olio, Caterina Ciminelli, and Mario N. Armenise
Appl. Opt. 55(16) 4342-4349 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005).
    [Crossref]
  2. G. Daniel, “Slow light brings faster communications,” Phys. World 18, 30–32 (2005).
    [Crossref]
  3. L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
    [Crossref]
  4. V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and n/spl times/n awg-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
    [Crossref]
  5. A. Mokhtari, K. Jamshidi, S. Preußler, A. Zadok, and T. Schneider, “Tunable microwave-photonic filter using frequency-to-time mapping-based delay lines,” Opt. Express 21, 21702–21707 (2013).
    [Crossref]
  6. R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
    [Crossref]
  7. R. A. Minasian, “Ultra-wideband and adaptive photonic signal processing of microwave signals,” IEEE J. Quantum Electron. 52, 1–13 (2016).
    [Crossref]
  8. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [Crossref]
  9. D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76, 115110 (2007).
    [Crossref]
  10. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
    [Crossref]
  11. I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20, 11241–11246 (2012).
    [Crossref]
  12. X. Wang, S. Liao, and J. Dong, “Optical true time delay based on contradirectional couplers with single sidewall-modulated Bragg gratings,” Proc. SPIE 10026, 100260C2016.
    [Crossref]
  13. C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. V. Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in IEEE/LEOS Benelux Chapter 2005 Annual Symposium, Mons, Belgium, December 1–2, 2005, pp. 79–82.
  14. J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030–1032 (2008).
    [Crossref]
  15. N. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously tunable optical buffering at 40  gb/s for optical packet switching networks,” J. Lightwave Technol. 26, 3776–3783 (2008).
    [Crossref]
  16. Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79, 013805 (2009).
    [Crossref]
  17. D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2, 76–83 (2015).
    [Crossref]
  18. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
    [Crossref]
  19. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17282 (2007).
    [Crossref]
  20. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  21. J. B. Khurgin, “Dispersion and loss limitations on the performance of optical delay lines based on coupled resonant structures,” Opt. Lett. 32, 133–135 (2007).
    [Crossref]
  22. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18, 26505–26516 (2010).
    [Crossref]
  23. F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: Bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
    [Crossref]
  24. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18, 26525–26534 (2010).
    [Crossref]
  25. J. B. Khurgin and P. A. Morton, “Tunable wideband optical delay line based on balanced coupled resonator structures,” Opt. Lett. 34, 2655–2657 (2009).
    [Crossref]
  26. F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19, 13557–13564 (2011).
    [Crossref]
  27. P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett. 24, 512–514 (2012).
    [Crossref]
  28. J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express 22, 817–823 (2014).
    [Crossref]
  29. K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach–Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14, 2301–2310 (1996).
    [Crossref]
  30. D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35, 5293–5300 (1996).
    [Crossref]
  31. S. Li, X. Li, W. Zou, and J. Chen, “Rangeability extension of fiber-optic low-coherence measurement based on cascaded multistage fiber delay line,” Appl. Opt. 51, 771–775 (2012).
    [Crossref]
  32. M. S. Rasras, J. L. Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines (invited),” in IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 736–737.
  33. J. Xie, L. Zhou, Z. Li, J. Wang, and J. Chen, “Seven-bit reconfigurable optical true time delay line based on silicon integration,” Opt. Express 22, 22707–22715 (2014).
    [Crossref]
  34. X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 × 2 polymer waveguide switch array,” Appl. Opt. 46, 379–383 (2007).
    [Crossref]
  35. Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2015).
    [Crossref]
  36. J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
    [Crossref]
  37. A. Canciamilla, C. Ferrari, M. Mattarei, F. Morichetti, S. Grillanda, A. Melloni, M. Strain, M. Sorel, P. Orlandi, and P. Bassi, “A variable delay integrated receiver for differential phase-shift keying optical transmission systems,” in European Conference on Integrated Optics (ECIO) (2012), paper 44676.
  38. Z. Zou, L. Zhou, X. Li, and J. Chen, “60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform,” Opt. Express 23, 20784–20795 (2015).
    [Crossref]
  39. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18, 14474–14479 (2010).
    [Crossref]
  40. Z. Chen, L. Zhou, and J. Chen, “Analysis of a silicon reconfigurable feed-forward optical delay line,” IEEE Photon. J. 6, 1–11 (2014).
    [Crossref]
  41. H. Ito, N. Ishikura, and T. Baba, “Triangular-shaped coupled microrings for robust wavelength multi-/demultiplexing in Si photonics,” J. Lightwave Technol. 33, 304–310 (2015).
    [Crossref]
  42. Z. Han, G. Moille, X. Checoury, J. Bourderionnet, P. Boucaud, A. De Rossi, and S. Combrié, “High-performance and power-efficient 2 × 2 optical switch on silicon-on-insulator,” Opt. Express 23, 24163–24170 (2015).
    [Crossref]
  43. J. V. Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029 (2009).
    [Crossref]
  44. S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2 × 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers,” Opt. Lett. 41, 836–839 (2016).
    [Crossref]
  45. J. Xing, Z. Li, Y. Yu, and J. Yu, “Low cross-talk 2 × 2 silicon electro-optic switch matrix with a double-gate configuration,” Opt. Lett. 38, 4774–4776 (2013).
    [Crossref]
  46. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17, 22271–22280 (2009).
    [Crossref]
  47. A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
    [Crossref]
  48. P. A. Govind, Fiber-Optic Communication Systems (Wiley, 2002).
  49. A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33, 2389–2391 (2008).
    [Crossref]
  50. N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
    [Crossref]
  51. M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
    [Crossref]
  52. W. Shi, V. Veerasubramanian, D. Patel, and D. V. Plant, “Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings,” Opt. Lett. 39, 701–703 (2014).
    [Crossref]
  53. J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
    [Crossref]
  54. Y. Jin, M. C. M. Lee, D. Leuenberger, and M. C. Wu, “Wavelength-and bandwidth-tunable filters based on MEMS-actuated microdisk resonators,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), pp. 1–3.
  55. M. Li, G. Wu, P. Guo, X. Li, and J. Chen, “Analysis and compensation of dispersion-induced bit loss in a photonic a/d converter using time-wavelength interweaved sampling clock,” Opt. Express 17, 17764–17771 (2009).
    [Crossref]
  56. G. Wu, S. Li, X. Li, and J. Chen, “18 wavelengths 83.9  gs/s optical sampling clock for photonic a/d converters,” Opt. Express 18, 21162–21168 (2010).
    [Crossref]
  57. H. Gevorgyan, K. Al Qubaisi, M. S. Dahlem, and A. Khilo, “Silicon photonic time-wavelength pulse interleaver for photonic analog-to-digital converters,” Opt. Express 24, 13489–13499 (2016).
    [Crossref]
  58. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
    [Crossref]
  59. S. Liao, Y. Ding, J. Dong, T. Yang, X. Chen, D. Gao, and X. Zhang, “Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper,” Opt. Express 23, 12161–12173 (2015).
    [Crossref]
  60. J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
    [Crossref]

2016 (6)

R. A. Minasian, “Ultra-wideband and adaptive photonic signal processing of microwave signals,” IEEE J. Quantum Electron. 52, 1–13 (2016).
[Crossref]

X. Wang, S. Liao, and J. Dong, “Optical true time delay based on contradirectional couplers with single sidewall-modulated Bragg gratings,” Proc. SPIE 10026, 100260C2016.
[Crossref]

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
[Crossref]

S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2 × 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers,” Opt. Lett. 41, 836–839 (2016).
[Crossref]

H. Gevorgyan, K. Al Qubaisi, M. S. Dahlem, and A. Khilo, “Silicon photonic time-wavelength pulse interleaver for photonic analog-to-digital converters,” Opt. Express 24, 13489–13499 (2016).
[Crossref]

2015 (7)

D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2, 76–83 (2015).
[Crossref]

H. Ito, N. Ishikura, and T. Baba, “Triangular-shaped coupled microrings for robust wavelength multi-/demultiplexing in Si photonics,” J. Lightwave Technol. 33, 304–310 (2015).
[Crossref]

S. Liao, Y. Ding, J. Dong, T. Yang, X. Chen, D. Gao, and X. Zhang, “Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper,” Opt. Express 23, 12161–12173 (2015).
[Crossref]

Z. Zou, L. Zhou, X. Li, and J. Chen, “60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform,” Opt. Express 23, 20784–20795 (2015).
[Crossref]

Z. Han, G. Moille, X. Checoury, J. Bourderionnet, P. Boucaud, A. De Rossi, and S. Combrié, “High-performance and power-efficient 2 × 2 optical switch on silicon-on-insulator,” Opt. Express 23, 24163–24170 (2015).
[Crossref]

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
[Crossref]

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2015).
[Crossref]

2014 (4)

2013 (4)

A. Mokhtari, K. Jamshidi, S. Preußler, A. Zadok, and T. Schneider, “Tunable microwave-photonic filter using frequency-to-time mapping-based delay lines,” Opt. Express 21, 21702–21707 (2013).
[Crossref]

J. Xing, Z. Li, Y. Yu, and J. Yu, “Low cross-talk 2 × 2 silicon electro-optic switch matrix with a double-gate configuration,” Opt. Lett. 38, 4774–4776 (2013).
[Crossref]

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

2012 (7)

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett. 24, 512–514 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: Bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
[Crossref]

S. Li, X. Li, W. Zou, and J. Chen, “Rangeability extension of fiber-optic low-coherence measurement based on cascaded multistage fiber delay line,” Appl. Opt. 51, 771–775 (2012).
[Crossref]

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20, 11241–11246 (2012).
[Crossref]

2011 (1)

2010 (5)

2009 (6)

2008 (3)

2007 (5)

2006 (1)

2005 (3)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005).
[Crossref]

G. Daniel, “Slow light brings faster communications,” Phys. World 18, 30–32 (2005).
[Crossref]

2003 (1)

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and n/spl times/n awg-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[Crossref]

1996 (2)

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach–Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14, 2301–2310 (1996).
[Crossref]

D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35, 5293–5300 (1996).
[Crossref]

Adams, R.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

Al Qubaisi, K.

Antoine, J.

Arita, Y.

Asghari, M.

Ashrafi, R.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

Assefa, S.

Baba, T.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Barton, J. S.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Bassi, P.

A. Canciamilla, C. Ferrari, M. Mattarei, F. Morichetti, S. Grillanda, A. Melloni, M. Strain, M. Sorel, P. Orlandi, and P. Bassi, “A variable delay integrated receiver for differential phase-shift keying optical transmission systems,” in European Conference on Integrated Optics (ECIO) (2012), paper 44676.

Bauters, J.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Beeker, W.

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

Ben Yoo, S. J.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Blumenthal, D. J.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Borreman, A.

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. V. Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in IEEE/LEOS Benelux Chapter 2005 Annual Symposium, Mons, Belgium, December 1–2, 2005, pp. 79–82.

Boucaud, P.

Bourderionnet, J.

M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
[Crossref]

Z. Han, G. Moille, X. Checoury, J. Bourderionnet, P. Boucaud, A. De Rossi, and S. Combrié, “High-performance and power-efficient 2 × 2 optical switch on silicon-on-insulator,” Opt. Express 23, 24163–24170 (2015).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Bowers, J. E.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Boyd, R. W.

Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79, 013805 (2009).
[Crossref]

Bramerie, L.

M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
[Crossref]

Breda, A.

Bruns, J.

Campenhout, J. V.

Canciamilla, A.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: Bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17282 (2007).
[Crossref]

A. Canciamilla, C. Ferrari, M. Mattarei, F. Morichetti, S. Grillanda, A. Melloni, M. Strain, M. Sorel, P. Orlandi, and P. Bassi, “A variable delay integrated receiver for differential phase-shift keying optical transmission systems,” in European Conference on Integrated Optics (ECIO) (2012), paper 44676.

Capmany, J.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Cappuzzo, M. A.

M. S. Rasras, J. L. Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines (invited),” in IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 736–737.

Cardenas, J.

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett. 24, 512–514 (2012).
[Crossref]

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18, 26525–26534 (2010).
[Crossref]

Checoury, X.

M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
[Crossref]

Z. Han, G. Moille, X. Checoury, J. Bourderionnet, P. Boucaud, A. De Rossi, and S. Combrié, “High-performance and power-efficient 2 × 2 optical switch on silicon-on-insulator,” Opt. Express 23, 24163–24170 (2015).
[Crossref]

Chen, E.

M. S. Rasras, J. L. Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines (invited),” in IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 736–737.

Chen, H.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Chen, J.

Chen, L. R.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

Chen, M. Y.

Chen, R. T.

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2015).
[Crossref]

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 × 2 polymer waveguide switch array,” Appl. Opt. 46, 379–383 (2007).
[Crossref]

Chen, S.

Chen, W.

N. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously tunable optical buffering at 40  gb/s for optical packet switching networks,” J. Lightwave Technol. 26, 3776–3783 (2008).
[Crossref]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030–1032 (2008).
[Crossref]

Chen, X.

Chen, Z.

Z. Chen, L. Zhou, and J. Chen, “Analysis of a silicon reconfigurable feed-forward optical delay line,” IEEE Photon. J. 6, 1–11 (2014).
[Crossref]

Choi, D.-Y.

Chu, S.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030–1032 (2008).
[Crossref]

N. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously tunable optical buffering at 40  gb/s for optical packet switching networks,” J. Lightwave Technol. 26, 3776–3783 (2008).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Colman, P.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Combrié, S.

M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
[Crossref]

Z. Han, G. Moille, X. Checoury, J. Bourderionnet, P. Boucaud, A. De Rossi, and S. Combrié, “High-performance and power-efficient 2 × 2 optical switch on silicon-on-insulator,” Opt. Express 23, 24163–24170 (2015).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Cooper, M. L.

Corral, J. L.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and n/spl times/n awg-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[Crossref]

Dahlem, M. S.

Dai, D.

Daniel, G.

G. Daniel, “Slow light brings faster communications,” Phys. World 18, 30–32 (2005).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

De Rossi, A.

Z. Han, G. Moille, X. Checoury, J. Bourderionnet, P. Boucaud, A. De Rossi, and S. Combrié, “High-performance and power-efficient 2 × 2 optical switch on silicon-on-insulator,” Opt. Express 23, 24163–24170 (2015).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Ding, Y.

Djordjevic, S. S.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030–1032 (2008).
[Crossref]

Dolfi, D.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35, 5293–5300 (1996).
[Crossref]

Dong, J.

X. Wang, S. Liao, and J. Dong, “Optical true time delay based on contradirectional couplers with single sidewall-modulated Bragg gratings,” Proc. SPIE 10026, 100260C2016.
[Crossref]

S. Liao, Y. Ding, J. Dong, T. Yang, X. Chen, D. Gao, and X. Zhang, “Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper,” Opt. Express 23, 12161–12173 (2015).
[Crossref]

Dong, P.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Eggleton, B. J.

Etten, W. V.

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. V. Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in IEEE/LEOS Benelux Chapter 2005 Annual Symposium, Mons, Belgium, December 1–2, 2005, pp. 79–82.

Fan, L.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
[Crossref]

Feng, D.

Feng, N.-N.

Ferrari, C.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: Bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33, 2389–2391 (2008).
[Crossref]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17282 (2007).
[Crossref]

A. Canciamilla, C. Ferrari, M. Mattarei, F. Morichetti, S. Grillanda, A. Melloni, M. Strain, M. Sorel, P. Orlandi, and P. Bassi, “A variable delay integrated receiver for differential phase-shift keying optical transmission systems,” in European Conference on Integrated Optics (ECIO) (2012), paper 44676.

Fong, J.

Fontaine, N.

Fontaine, N. K.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030–1032 (2008).
[Crossref]

Foster, M. A.

Gaeta, A. L.

Gan, F.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
[Crossref]

Gao, D.

Garcia, J.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Gasulla, I.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Gay, M.

M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
[Crossref]

Gevorgyan, H.

Giuntoni, I.

Glesk, I.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

Gomez, L.

M. S. Rasras, J. L. Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines (invited),” in IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 736–737.

Gomez-Iglesias, A.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76, 115110 (2007).
[Crossref]

Govind, P. A.

P. A. Govind, Fiber-Optic Communication Systems (Wiley, 2002).

Grange, J. L.

M. S. Rasras, J. L. Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines (invited),” in IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 736–737.

Granger, P.

Green, W. M. J.

Griffin, A.

M. S. Rasras, J. L. Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines (invited),” in IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 736–737.

Grillanda, S.

A. Canciamilla, C. Ferrari, M. Mattarei, F. Morichetti, S. Grillanda, A. Melloni, M. Strain, M. Sorel, P. Orlandi, and P. Bassi, “A variable delay integrated receiver for differential phase-shift keying optical transmission systems,” in European Conference on Integrated Optics (ECIO) (2012), paper 44676.

Guo, L. J.

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2015).
[Crossref]

Guo, P.

Gupta, G.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Han, Z.

M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
[Crossref]

Z. Han, G. Moille, X. Checoury, J. Bourderionnet, P. Boucaud, A. De Rossi, and S. Combrié, “High-performance and power-efficient 2 × 2 optical switch on silicon-on-insulator,” Opt. Express 23, 24163–24170 (2015).
[Crossref]

Hayakawa, R.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
[Crossref]

He, S.

Heck, M. J. R.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Heideman, R.

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

Heideman, R. G.

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. V. Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in IEEE/LEOS Benelux Chapter 2005 Annual Symposium, Mons, Belgium, December 1–2, 2005, pp. 79–82.

Hida, Y.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach–Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14, 2301–2310 (1996).
[Crossref]

Hoekman, M.

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

Hosoi, R.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
[Crossref]

Howley, B.

Huignard, J. P.

Ishikura, N.

Ito, H.

Jamshidi, K.

Jin, Y.

Y. Jin, M. C. M. Lee, D. Leuenberger, and M. C. Wu, “Wavelength-and bandwidth-tunable filters based on MEMS-actuated microdisk resonators,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), pp. 1–3.

Jinguji, K.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach–Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14, 2301–2310 (1996).
[Crossref]

Joffre, P.

Karalar, A. O.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030–1032 (2008).
[Crossref]

Kasper, A.

M. S. Rasras, J. L. Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines (invited),” in IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 736–737.

Kawachi, M.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach–Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14, 2301–2310 (1996).
[Crossref]

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Khilo, A.

Khurgin, J. B.

Kitoh, T.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach–Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14, 2301–2310 (1996).
[Crossref]

Krauss, T. F.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76, 115110 (2007).
[Crossref]

Krishnamoorthy, A. V.

Kroushkov, D. I.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Kung, C.-C.

Laskowski, E. J.

M. S. Rasras, J. L. Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines (invited),” in IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 736–737.

Le, S. D.

M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
[Crossref]

Leaird, D. E.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Lee, M. C. M.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[Crossref]

Y. Jin, M. C. M. Lee, D. Leuenberger, and M. C. Wu, “Wavelength-and bandwidth-tunable filters based on MEMS-actuated microdisk resonators,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), pp. 1–3.

Lehoucq, G.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Leinse, A.

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

Leuenberger, D.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[Crossref]

Y. Jin, M. C. M. Lee, D. Leuenberger, and M. C. Wu, “Wavelength-and bandwidth-tunable filters based on MEMS-actuated microdisk resonators,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), pp. 1–3.

Li, M.

Li, Q.

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2015).
[Crossref]

Li, S.

Li, W.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Li, X.

Li, Z.

Liang, H.

Liao, S.

Lipson, M.

Lira, H. L. R.

Little, B. E.

N. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously tunable optical buffering at 40  gb/s for optical packet switching networks,” J. Lightwave Technol. 26, 3776–3783 (2008).
[Crossref]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030–1032 (2008).
[Crossref]

Lloret, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Luo, X.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Luther-Davies, B.

Madden, S. J.

Madsen, C. K.

M. S. Rasras, J. L. Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines (invited),” in IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 736–737.

Manipatruni, S.

Marpaung, D.

Marti, J.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and n/spl times/n awg-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[Crossref]

Martinelli, M.

Mattarei, M.

A. Canciamilla, C. Ferrari, M. Mattarei, F. Morichetti, S. Grillanda, A. Melloni, M. Strain, M. Sorel, P. Orlandi, and P. Bassi, “A variable delay integrated receiver for differential phase-shift keying optical transmission systems,” in European Conference on Integrated Optics (ECIO) (2012), paper 44676.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Melloni, A.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: Bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33, 2389–2391 (2008).
[Crossref]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17282 (2007).
[Crossref]

A. Canciamilla, C. Ferrari, M. Mattarei, F. Morichetti, S. Grillanda, A. Melloni, M. Strain, M. Sorel, P. Orlandi, and P. Bassi, “A variable delay integrated receiver for differential phase-shift keying optical transmission systems,” in European Conference on Integrated Optics (ECIO) (2012), paper 44676.

Michaeli, A.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76, 115110 (2007).
[Crossref]

Minasian, R. A.

R. A. Minasian, “Ultra-wideband and adaptive photonic signal processing of microwave signals,” IEEE J. Quantum Electron. 52, 1–13 (2016).
[Crossref]

Moille, G.

M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
[Crossref]

Z. Han, G. Moille, X. Checoury, J. Bourderionnet, P. Boucaud, A. De Rossi, and S. Combrié, “High-performance and power-efficient 2 × 2 optical switch on silicon-on-insulator,” Opt. Express 23, 24163–24170 (2015).
[Crossref]

Mok, J. T.

J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005).
[Crossref]

Mokhtari, A.

Mookherjea, S.

Moreira, R. L.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Morichetti, F.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: Bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33, 2389–2391 (2008).
[Crossref]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17282 (2007).
[Crossref]

A. Canciamilla, C. Ferrari, M. Mattarei, F. Morichetti, S. Grillanda, A. Melloni, M. Strain, M. Sorel, P. Orlandi, and P. Bassi, “A variable delay integrated receiver for differential phase-shift keying optical transmission systems,” in European Conference on Integrated Optics (ECIO) (2012), paper 44676.

Morrison, B.

Morton, P.

Morton, P. A.

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett. 24, 512–514 (2012).
[Crossref]

J. B. Khurgin and P. A. Morton, “Tunable wideband optical delay line based on balanced coupled resonator structures,” Opt. Lett. 34, 2655–2657 (2009).
[Crossref]

Neto, L. A.

M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
[Crossref]

Niu, B.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
[Crossref]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

O’Brien, D.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76, 115110 (2007).
[Crossref]

Okawachi, Y.

Orlandi, P.

A. Canciamilla, C. Ferrari, M. Mattarei, F. Morichetti, S. Grillanda, A. Melloni, M. Strain, M. Sorel, P. Orlandi, and P. Bassi, “A variable delay integrated receiver for differential phase-shift keying optical transmission systems,” in European Conference on Integrated Optics (ECIO) (2012), paper 44676.

Pagani, M.

Pan, Z.

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2015).
[Crossref]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030–1032 (2008).
[Crossref]

N. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously tunable optical buffering at 40  gb/s for optical packet switching networks,” J. Lightwave Technol. 26, 3776–3783 (2008).
[Crossref]

Panday, A.

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2015).
[Crossref]

Pant, R.

Patel, D.

Patel, S. S.

M. S. Rasras, J. L. Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines (invited),” in IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 736–737.

Petermann, K.

Peucheret, C.

M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
[Crossref]

Philippet, D.

Plant, D. V.

Poitras, C. B.

Polo, V.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and n/spl times/n awg-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[Crossref]

Poon, A. W.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Preußler, S.

Qi, M.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Qian, W.

Rasras, M. S.

M. S. Rasras, J. L. Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines (invited),” in IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 736–737.

Roeloffzen, C.

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

Roeloffzen, C. G. H.

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. V. Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in IEEE/LEOS Benelux Chapter 2005 Annual Symposium, Mons, Belgium, December 1–2, 2005, pp. 79–82.

Rossi, A. D.

M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
[Crossref]

Sales, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Salib, M.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76, 115110 (2007).
[Crossref]

Sancho, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Schneider, M. A.

Schneider, T.

Settle, M. D.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76, 115110 (2007).
[Crossref]

Shafiiha, R.

Sharping, J. E.

Shen, H.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Sherwood-Droz, N.

Shi, W.

Shi, Y.

Shi, Z.

Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79, 013805 (2009).
[Crossref]

Shinkawa, M.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
[Crossref]

Shinobu, F.

Simon, J. C.

M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
[Crossref]

Sorel, M.

A. Canciamilla, C. Ferrari, M. Mattarei, F. Morichetti, S. Grillanda, A. Melloni, M. Strain, M. Sorel, P. Orlandi, and P. Bassi, “A variable delay integrated receiver for differential phase-shift keying optical transmission systems,” in European Conference on Integrated Optics (ECIO) (2012), paper 44676.

Stolarek, D.

Strain, M.

A. Canciamilla, C. Ferrari, M. Mattarei, F. Morichetti, S. Grillanda, A. Melloni, M. Strain, M. Sorel, P. Orlandi, and P. Bassi, “A variable delay integrated receiver for differential phase-shift keying optical transmission systems,” in European Conference on Integrated Optics (ECIO) (2012), paper 44676.

Subbaraman, H.

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2015).
[Crossref]

Takato, N.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach–Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14, 2301–2310 (1996).
[Crossref]

Tamanuki, T.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
[Crossref]

F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19, 13557–13564 (2011).
[Crossref]

Tillack, B.

van Dijk, P.

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Varghese, L. T.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
[Crossref]

Veerasubramanian, V.

Vidal, B.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and n/spl times/n awg-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[Crossref]

Vlasov, Y. A.

Wang, J.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
[Crossref]

J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express 22, 817–823 (2014).
[Crossref]

J. Xie, L. Zhou, Z. Li, J. Wang, and J. Chen, “Seven-bit reconfigurable optical true time delay line based on silicon integration,” Opt. Express 22, 22707–22715 (2014).
[Crossref]

Wang, X.

X. Wang, S. Liao, and J. Dong, “Optical true time delay based on contradirectional couplers with single sidewall-modulated Bragg gratings,” Proc. SPIE 10026, 100260C2016.
[Crossref]

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
[Crossref]

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 × 2 polymer waveguide switch array,” Appl. Opt. 46, 379–383 (2007).
[Crossref]

Weiner, A. M.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Wong-Foy, A.

M. S. Rasras, J. L. Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines (invited),” in IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 736–737.

Wu, G.

Wu, M. C.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[Crossref]

Y. Jin, M. C. M. Lee, D. Leuenberger, and M. C. Wu, “Wavelength-and bandwidth-tunable filters based on MEMS-actuated microdisk resonators,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), pp. 1–3.

Wu, R.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
[Crossref]

Xavier, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Xia, F.

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Xie, J.

Xing, J.

Xu, F.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Xu, Q.

Xu, X.

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2015).
[Crossref]

Xuan, Y.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Yang, C.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030–1032 (2008).
[Crossref]

Yang, J.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030–1032 (2008).
[Crossref]

N. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously tunable optical buffering at 40  gb/s for optical packet switching networks,” J. Lightwave Technol. 26, 3776–3783 (2008).
[Crossref]

Yang, T.

Yao, J.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[Crossref]

Yoo, S. J. B.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030–1032 (2008).
[Crossref]

Yu, J.

Yu, Y.

Zadok, A.

Zhang, B.

Zhang, C.

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2015).
[Crossref]

Zhang, X.

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2015).
[Crossref]

S. Liao, Y. Ding, J. Dong, T. Yang, X. Chen, D. Gao, and X. Zhang, “Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper,” Opt. Express 23, 12161–12173 (2015).
[Crossref]

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Zhou, L.

Zhuang, L.

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. V. Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in IEEE/LEOS Benelux Chapter 2005 Annual Symposium, Mons, Belgium, December 1–2, 2005, pp. 79–82.

Zimmermann, L.

Zou, W.

Zou, Y.

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2015).
[Crossref]

Zou, Z.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Minasian, “Ultra-wideband and adaptive photonic signal processing of microwave signals,” IEEE J. Quantum Electron. 52, 1–13 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[Crossref]

IEEE Photon. J. (1)

Z. Chen, L. Zhou, and J. Chen, “Analysis of a silicon reconfigurable feed-forward optical delay line,” IEEE Photon. J. 6, 1–11 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (5)

M. Gay, L. Bramerie, L. A. Neto, S. D. Le, J. C. Simon, C. Peucheret, Z. Han, X. Checoury, G. Moille, J. Bourderionnet, A. D. Rossi, and S. Combrié, “Silicon-on-insulator RF filter based on photonic crystal functions for channel equalization,” IEEE Photon. Technol. Lett. 28, 2756–2759 (2016).
[Crossref]

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and n/spl times/n awg-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[Crossref]

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030–1032 (2008).
[Crossref]

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett. 24, 512–514 (2012).
[Crossref]

J. Lightwave Technol. (3)

Laser Photon. Rev. (3)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: Bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

Nat. Commun. (2)

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6, 5957 (2015).
[Crossref]

Nat. Photonics (1)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Nature (2)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005).
[Crossref]

Opt. Express (18)

M. Li, G. Wu, P. Guo, X. Li, and J. Chen, “Analysis and compensation of dispersion-induced bit loss in a photonic a/d converter using time-wavelength interweaved sampling clock,” Opt. Express 17, 17764–17771 (2009).
[Crossref]

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17, 22271–22280 (2009).
[Crossref]

J. V. Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029 (2009).
[Crossref]

P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18, 14474–14479 (2010).
[Crossref]

G. Wu, S. Li, X. Li, and J. Chen, “18 wavelengths 83.9  gs/s optical sampling clock for photonic a/d converters,” Opt. Express 18, 21162–21168 (2010).
[Crossref]

M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18, 26505–26516 (2010).
[Crossref]

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18, 26525–26534 (2010).
[Crossref]

F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19, 13557–13564 (2011).
[Crossref]

H. Gevorgyan, K. Al Qubaisi, M. S. Dahlem, and A. Khilo, “Silicon photonic time-wavelength pulse interleaver for photonic analog-to-digital converters,” Opt. Express 24, 13489–13499 (2016).
[Crossref]

J. Xie, L. Zhou, Z. Li, J. Wang, and J. Chen, “Seven-bit reconfigurable optical true time delay line based on silicon integration,” Opt. Express 22, 22707–22715 (2014).
[Crossref]

S. Liao, Y. Ding, J. Dong, T. Yang, X. Chen, D. Gao, and X. Zhang, “Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper,” Opt. Express 23, 12161–12173 (2015).
[Crossref]

Z. Zou, L. Zhou, X. Li, and J. Chen, “60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform,” Opt. Express 23, 20784–20795 (2015).
[Crossref]

Z. Han, G. Moille, X. Checoury, J. Bourderionnet, P. Boucaud, A. De Rossi, and S. Combrié, “High-performance and power-efficient 2 × 2 optical switch on silicon-on-insulator,” Opt. Express 23, 24163–24170 (2015).
[Crossref]

J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express 22, 817–823 (2014).
[Crossref]

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20, 11241–11246 (2012).
[Crossref]

A. Mokhtari, K. Jamshidi, S. Preußler, A. Zadok, and T. Schneider, “Tunable microwave-photonic filter using frequency-to-time mapping-based delay lines,” Opt. Express 21, 21702–21707 (2013).
[Crossref]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17282 (2007).
[Crossref]

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
[Crossref]

Opt. Lett. (6)

Optica (1)

Phys. Rev. A (1)

Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79, 013805 (2009).
[Crossref]

Phys. Rev. B (1)

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76, 115110 (2007).
[Crossref]

Phys. World (1)

G. Daniel, “Slow light brings faster communications,” Phys. World 18, 30–32 (2005).
[Crossref]

Proc. IEEE (1)

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Proc. SPIE (2)

X. Wang, S. Liao, and J. Dong, “Optical true time delay based on contradirectional couplers with single sidewall-modulated Bragg gratings,” Proc. SPIE 10026, 100260C2016.
[Crossref]

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2015).
[Crossref]

Sci. Rep. (1)

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6, 30235 (2016).
[Crossref]

Other (5)

A. Canciamilla, C. Ferrari, M. Mattarei, F. Morichetti, S. Grillanda, A. Melloni, M. Strain, M. Sorel, P. Orlandi, and P. Bassi, “A variable delay integrated receiver for differential phase-shift keying optical transmission systems,” in European Conference on Integrated Optics (ECIO) (2012), paper 44676.

M. S. Rasras, J. L. Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines (invited),” in IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 736–737.

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. V. Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in IEEE/LEOS Benelux Chapter 2005 Annual Symposium, Mons, Belgium, December 1–2, 2005, pp. 79–82.

P. A. Govind, Fiber-Optic Communication Systems (Wiley, 2002).

Y. Jin, M. C. M. Lee, D. Leuenberger, and M. C. Wu, “Wavelength-and bandwidth-tunable filters based on MEMS-actuated microdisk resonators,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Architecture of the continuously tunable optical delay line structure. (b) Cross-sectional structure of the ultra-thin waveguide with a TiN heater on top. (c) Simulated x-component of the electronic field distribution for the fundamental TE mode.

Fig. 2.
Fig. 2.

(a) Overview of the continuously tunable optical delay line layout. Waveguides, heaters for thermal tuning, and metal pads for electrical connections are visible. The insets provide a closer view of the ring resonators and the dual-stage switch element. (b) Optical microscope image of the fabricated chip. (c) Photo of the packaged chip with fiber array coupling and electrical wire bonding to a PCB.

Fig. 3.
Fig. 3.

(a) Structures of the single- and dual-stage MZI switch elements. (b) Extinction ratio of the single- and dual-stage MZI switch elements. Transmission spectra of the switchable delay line based on (c) the single-stage and (d) the dual-stage MZI switches.

Fig. 4.
Fig. 4.

Time-domain optical response of the switch element. (a) Applied square-wave electrical drive signal. (b) Measured optical waveform.

Fig. 5.
Fig. 5.

(a) Dual-ring slow-light delay line structure. (b) Evolution of the ring delay spectrum upon thermal tuning. (c) Thermal tuning power of the two rings changes as a function of the delay time. (d) Optical pulse waveforms after passing through the ring delay line with various delays. The inset shows the insertion loss variation with the delay time.

Fig. 6.
Fig. 6.

(a) Optical pulse waveforms after passing through the switchable delay line. Black curves: reference pulses; blue curves: delayed pulses. (b) Optical pulse waveforms after passing through the longest optical path with delay fine tuning by the ring resonators. (c) Eye diagrams of a 30 Gbps 271 PRBS signal after various delays.

Fig. 7.
Fig. 7.

Measured group delay and dispersion spectra when the entire delay line provides (a) 0 ps, (b) 10 ps, (c)1270 ps, and (d) 1280 ps delays.

Fig. 8.
Fig. 8.

(a) Dual-channel OTDM waveforms with time interval varying from 10 to 640 ps when one switchable delay line stage is in even splitting. (b)–(e) Multi-channel OTDM waveforms when the last (b) one stage, (c) two stages, (d) three stages, and (e) four stages are set to even splitting.

Fig. 9.
Fig. 9.

Measured waveforms (blue solid line) from the QAWG: (a) square waveform, (b) chirp pulse waveform, (c) sawtooth waveform, (d) reverse sawtooth waveform, (e) staircase waveform, and (f) sinc-function waveform. The red dashed lines outline the envelopes of the ideal waveforms.

Tables (6)

Tables Icon

Table 1. Power Consumption of the Dual-Stage MZI Switches

Tables Icon

Table 2. Comparison of Various 2×2 Switchesa

Tables Icon

Table 3. On-Chip Insertion Loss of the Switchable Delay Line at Various Delays

Tables Icon

Table 4. Comparison of Various Continuously Tunable Delay Lines

Tables Icon

Table 5. Relative Peak Height in the Dual-Channel OTDM

Tables Icon

Table 6. Typical Waveforms and the Corresponding Delay Line Setting Coefficients

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H=T8(i=71DiTi).
sout(t)=sin(t)*i=12Aδ[t(i1)2n1Δt].
A=Arefαn2αn,
Aref=i=18aii=17αi.
sout(t)=sin(t)*i=12nAδ[t(i1)27nΔt].
A=Aref2n+12i=8n7αiαi.
sout(t)=sin(t)*i=18Aiδ[t(i1)16Δt].
{A1=Arefρ5ρ6ρ7s5s6s7s8A2=Arefρ5ρ6ρ7c5c6s7s8A3=Arefρ5ρ6ρ7s5c6c7s8A4=Arefρ5ρ6ρ7c5s6c7s8A5=Arefρ5ρ6ρ7s5s6c7c8A6=Arefρ5ρ6ρ7c5c6c7c8A7=Arefρ5ρ6ρ7s5c6s7c8A8=Arefρ5ρ6ρ7c5s6s7c8.

Metrics