Abstract

Dynamic control of a laser’s output polarization state is desirable for applications in polarization sensitive imaging, spectroscopy, and ellipsometry. Using external elements to control the polarization state is a common approach. Less common and more challenging is directly switching the polarization state of a laser, which, however, has the potential to provide high switching speeds, compactness, and power efficiency. Here, we demonstrate a new approach to achieve direct and electrically controlled polarization switching of a semiconductor laser. This is enabled by integrating a polarization-sensitive metasurface with a semiconductor gain medium to selectively amplify a cavity mode with the designed polarization state, therefore leading to an output in the designed polarization. Here, the demonstration is for a terahertz quantum-cascade laser, which exhibits electrically controlled switching between two linear polarizations separated by 80°, while maintaining an excellent beam with a narrow divergence of 3°×3° and a single-mode operation fixed at 3.4  THz, combined with a peak power as high as 93 mW at a temperature of 77 K. The polarization-sensitive metasurface is composed of two interleaved arrays of surface-emitting antennas, all of which are loaded with quantum-cascade gain materials. Each array is designed to resonantly interact with one specific polarization; when electrical bias is selectively applied to the gain material in one array, selective amplification of one polarization occurs. The amplifying metasurface is used along with an output coupler reflector to build a vertical-external-cavity surface-emitting laser whose output polarization state can be switched solely electrically. This work demonstrates the potential of exploiting amplifying polarization-sensitive metasurfaces to create lasers with desirable polarization states—a concept which is applicable beyond the terahertz and can potentially be applied to shorter wavelengths.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Focusing metasurface quantum-cascade laser with a near diffraction-limited beam

Luyao Xu, Daguan Chen, Tatsuo Itoh, John L. Reno, and Benjamin S. Williams
Opt. Express 24(21) 24117-24128 (2016)

Electrically switchable emission in terahertz quantum cascade lasers

Joshua R. Freeman, Owen P. Marshall, Harvey E. Beere, and David A. Ritchie
Opt. Express 16(24) 19830-19835 (2008)

Electrically switching transverse modes in high power THz quantum cascade lasers

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, A. Delage, Z. R. Wasilewski, A. Bezinger, G. Z. Rafi, S. Safavi-Naeini, D. Ban, and H.C. Liu
Opt. Express 18(10) 10036-10048 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. W. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140  mW output power at 1.6  μm wavelength,” Appl. Phys. Lett. 95, 191111 (2009).
    [Crossref]
  2. O. B. Yu, J. L. Cruz, and M. V. Andres, “Polarization switchable Erbium-doped all-fiber laser,” Laser Phys. Lett. 5, 676–679 (2008).
    [Crossref]
  3. A. Fraser, M. Bernier, J.-D. Deschênes, É. Weynant, J. Genest, and R. Vallée, “Polarization-switchable Q-switched DFB fiber laser,” Opt. Lett. 35, 1046–1049 (2010).
    [Crossref]
  4. K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature-dependence of gain-guided vertical-cavity surface-emitting laser polarization,” Appl. Phys. Lett. 64, 2062–2064 (1994).
    [Crossref]
  5. K. D. Choquette, K. L. Lear, R. P. Schneider, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” in 14th IEEE International Semiconductor Laser Conference (1994), p. 149.
  6. T. H. Russell and T. D. Milster, “Polarization switching control in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 70, 2520 (1997).
    [Crossref]
  7. K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform vertical-cavity laser-diodes,” Appl. Phys. Lett. 64, 2767–2769 (1994).
    [Crossref]
  8. M. Torre, A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. Adams, “Polarization switching in long-wavelength VCSELs subject to orthogonal optical injection,” IEEE J. Quantum Electron. 47, 92–99 (2011).
    [Crossref]
  9. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
    [Crossref]
  10. E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106, 221901 (2015).
    [Crossref]
  11. T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
    [Crossref]
  12. N. F. Yu, Q. J. Wang, C. Pflugl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
    [Crossref]
  13. D. Dhirhe, T. J. Slight, B. M. Holmes, D. C. Hutchings, and C. N. Ironside, “Quantum cascade lasers with an integrated polarization mode converter,” Opt. Express 20, 25711–25717 (2012).
    [Crossref]
  14. P. Rauter, J. Lin, P. Genevet, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, and F. Capasso, “Electrically pumped semiconductor laser with monolithic control of circular polarization,” Proc. Natl. Acad. Sci. USA 111, E5623–E5632 (2014).
    [Crossref]
  15. D. Dhirhe, T. J. Slight, B. M. Holmes, and C. N. Ironside, “Active polarisation control of a quantum cascade laser using tuneable birefringence in waveguides,” Opt. Express 21, 24267–24280 (2013).
    [Crossref]
  16. G. Liang, T. Liu, and Q. J. Wang, “Recent developments of terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–18 (2017).
    [Crossref]
  17. G. S. Jenkins, D. C. Schmadel, and H. D. Drew, “Simultaneous measurement of circular dichroism and Faraday rotation at terahertz frequencies utilizing electric field sensitive detection via polarization modulation,” Rev. Sci. Instrum. 81, 083903 (2010).
    [Crossref]
  18. X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
    [Crossref]
  19. G. D. Metcalfe, M. Wraback, A. Strikwerda, K. Fan, X. Zhang, and R. Averitt, “Terahertz polarimetry based on metamaterial devices,” Proc. SPIE 8363, 83630O (2012).
    [Crossref]
  20. C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31, 1112–1114 (2006).
    [Crossref]
  21. C. S. Yang, T. T. Tang, P. H. Chen, R. P. Pan, P. S. Yu, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39, 2511–2513 (2014).
    [Crossref]
  22. L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107, 221105 (2015).
    [Crossref]
  23. L. Xu, D. Chen, T. Itoh, J. L. Reno, and B. S. Williams, “Focusing metasurface quantum-cascade laser with a near diffraction-limited beam,” Opt. Express 24, 24117–24128 (2016).
    [Crossref]
  24. Y. D. Dong and T. Itoh, “Substrate integrated composite right-/left-handed leaky-wave structure for polarization-flexible antenna application,” IEEE Trans. Antennas Propag. 60, 760–771 (2012).
    [Crossref]
  25. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
    [Crossref]
  26. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164  K in pulsed mode and at 117  K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
    [Crossref]
  27. T. Y. Kao, J. L. Reno, and Q. Hu, “Phase-locked laser arrays through global antenna mutual coupling,” Nat. Photonics 10, 541–546 (2016).
    [Crossref]
  28. P. Doradla, K. Alavi, C. Joseph, and R. Giles, “Single-channel prototype terahertz endoscopic system,” J. Biomed. Opt. 19, 080501 (2014).
    [Crossref]
  29. K. Mochizuki, M. Aoki, S. R. Tripathi, and N. Hiromoto, “Polarization-changeable THz time-domain spectroscopy system with a small incident-angle beam-splitter,” in 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), p. 690.
  30. P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, “Terahertz polarization imaging for colon cancer detection,” Proc. SPIE 8985, 89850K (2014).
    [Crossref]
  31. L. Xu, C. A. Curwen, J. L. Reno, and B. S. Williams, “High performance THz metasurface quantum cascade lasers with an intra-cryostat cavity” (in preparation).

2017 (1)

G. Liang, T. Liu, and Q. J. Wang, “Recent developments of terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–18 (2017).
[Crossref]

2016 (2)

T. Y. Kao, J. L. Reno, and Q. Hu, “Phase-locked laser arrays through global antenna mutual coupling,” Nat. Photonics 10, 541–546 (2016).
[Crossref]

L. Xu, D. Chen, T. Itoh, J. L. Reno, and B. S. Williams, “Focusing metasurface quantum-cascade laser with a near diffraction-limited beam,” Opt. Express 24, 24117–24128 (2016).
[Crossref]

2015 (3)

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107, 221105 (2015).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106, 221901 (2015).
[Crossref]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

2014 (5)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

P. Rauter, J. Lin, P. Genevet, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, and F. Capasso, “Electrically pumped semiconductor laser with monolithic control of circular polarization,” Proc. Natl. Acad. Sci. USA 111, E5623–E5632 (2014).
[Crossref]

C. S. Yang, T. T. Tang, P. H. Chen, R. P. Pan, P. S. Yu, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39, 2511–2513 (2014).
[Crossref]

P. Doradla, K. Alavi, C. Joseph, and R. Giles, “Single-channel prototype terahertz endoscopic system,” J. Biomed. Opt. 19, 080501 (2014).
[Crossref]

P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, “Terahertz polarization imaging for colon cancer detection,” Proc. SPIE 8985, 89850K (2014).
[Crossref]

2013 (1)

2012 (3)

D. Dhirhe, T. J. Slight, B. M. Holmes, D. C. Hutchings, and C. N. Ironside, “Quantum cascade lasers with an integrated polarization mode converter,” Opt. Express 20, 25711–25717 (2012).
[Crossref]

G. D. Metcalfe, M. Wraback, A. Strikwerda, K. Fan, X. Zhang, and R. Averitt, “Terahertz polarimetry based on metamaterial devices,” Proc. SPIE 8363, 83630O (2012).
[Crossref]

Y. D. Dong and T. Itoh, “Substrate integrated composite right-/left-handed leaky-wave structure for polarization-flexible antenna application,” IEEE Trans. Antennas Propag. 60, 760–771 (2012).
[Crossref]

2011 (1)

M. Torre, A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. Adams, “Polarization switching in long-wavelength VCSELs subject to orthogonal optical injection,” IEEE J. Quantum Electron. 47, 92–99 (2011).
[Crossref]

2010 (3)

G. S. Jenkins, D. C. Schmadel, and H. D. Drew, “Simultaneous measurement of circular dichroism and Faraday rotation at terahertz frequencies utilizing electric field sensitive detection via polarization modulation,” Rev. Sci. Instrum. 81, 083903 (2010).
[Crossref]

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

A. Fraser, M. Bernier, J.-D. Deschênes, É. Weynant, J. Genest, and R. Vallée, “Polarization-switchable Q-switched DFB fiber laser,” Opt. Lett. 35, 1046–1049 (2010).
[Crossref]

2009 (2)

N. F. Yu, Q. J. Wang, C. Pflugl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[Crossref]

R. J. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. W. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140  mW output power at 1.6  μm wavelength,” Appl. Phys. Lett. 95, 191111 (2009).
[Crossref]

2008 (1)

O. B. Yu, J. L. Cruz, and M. V. Andres, “Polarization switchable Erbium-doped all-fiber laser,” Laser Phys. Lett. 5, 676–679 (2008).
[Crossref]

2007 (1)

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

2006 (1)

2005 (1)

1997 (1)

T. H. Russell and T. D. Milster, “Polarization switching control in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 70, 2520 (1997).
[Crossref]

1994 (2)

K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform vertical-cavity laser-diodes,” Appl. Phys. Lett. 64, 2767–2769 (1994).
[Crossref]

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature-dependence of gain-guided vertical-cavity surface-emitting laser polarization,” Appl. Phys. Lett. 64, 2062–2064 (1994).
[Crossref]

Adams, M.

M. Torre, A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. Adams, “Polarization switching in long-wavelength VCSELs subject to orthogonal optical injection,” IEEE J. Quantum Electron. 47, 92–99 (2011).
[Crossref]

Alavi, K.

P. Doradla, K. Alavi, C. Joseph, and R. Giles, “Single-channel prototype terahertz endoscopic system,” J. Biomed. Opt. 19, 080501 (2014).
[Crossref]

P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, “Terahertz polarization imaging for colon cancer detection,” Proc. SPIE 8985, 89850K (2014).
[Crossref]

Andres, M. V.

O. B. Yu, J. L. Cruz, and M. V. Andres, “Polarization switchable Erbium-doped all-fiber laser,” Laser Phys. Lett. 5, 676–679 (2008).
[Crossref]

Aoki, M.

K. Mochizuki, M. Aoki, S. R. Tripathi, and N. Hiromoto, “Polarization-changeable THz time-domain spectroscopy system with a small incident-angle beam-splitter,” in 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), p. 690.

Asom, M. T.

K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform vertical-cavity laser-diodes,” Appl. Phys. Lett. 64, 2767–2769 (1994).
[Crossref]

Averitt, R.

G. D. Metcalfe, M. Wraback, A. Strikwerda, K. Fan, X. Zhang, and R. Averitt, “Terahertz polarimetry based on metamaterial devices,” Proc. SPIE 8363, 83630O (2012).
[Crossref]

Averitt, R. D.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Bernier, M.

Brener, I.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Capasso, F.

P. Rauter, J. Lin, P. Genevet, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, and F. Capasso, “Electrically pumped semiconductor laser with monolithic control of circular polarization,” Proc. Natl. Acad. Sci. USA 111, E5623–E5632 (2014).
[Crossref]

N. F. Yu, Q. J. Wang, C. Pflugl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[Crossref]

Chen, D.

Chen, H. L.

Chen, H.-T.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Chen, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Chen, P. H.

Chen, Q.-S.

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107, 221105 (2015).
[Crossref]

Choquette, K. D.

K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform vertical-cavity laser-diodes,” Appl. Phys. Lett. 64, 2767–2769 (1994).
[Crossref]

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature-dependence of gain-guided vertical-cavity surface-emitting laser polarization,” Appl. Phys. Lett. 64, 2062–2064 (1994).
[Crossref]

K. D. Choquette, K. L. Lear, R. P. Schneider, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” in 14th IEEE International Semiconductor Laser Conference (1994), p. 149.

Cich, M. J.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Cruz, J. L.

O. B. Yu, J. L. Cruz, and M. V. Andres, “Polarization switchable Erbium-doped all-fiber laser,” Laser Phys. Lett. 5, 676–679 (2008).
[Crossref]

Curwen, C. A.

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107, 221105 (2015).
[Crossref]

L. Xu, C. A. Curwen, J. L. Reno, and B. S. Williams, “High performance THz metasurface quantum cascade lasers with an intra-cryostat cavity” (in preparation).

Davies, A. G.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

P. Rauter, J. Lin, P. Genevet, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, and F. Capasso, “Electrically pumped semiconductor laser with monolithic control of circular polarization,” Proc. Natl. Acad. Sci. USA 111, E5623–E5632 (2014).
[Crossref]

Dean, P.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Deschênes, J.-D.

Dhirhe, D.

Diehl, L.

N. F. Yu, Q. J. Wang, C. Pflugl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[Crossref]

Dong, Y. D.

Y. D. Dong and T. Itoh, “Substrate integrated composite right-/left-handed leaky-wave structure for polarization-flexible antenna application,” IEEE Trans. Antennas Propag. 60, 760–771 (2012).
[Crossref]

Doradla, P.

P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, “Terahertz polarization imaging for colon cancer detection,” Proc. SPIE 8985, 89850K (2014).
[Crossref]

P. Doradla, K. Alavi, C. Joseph, and R. Giles, “Single-channel prototype terahertz endoscopic system,” J. Biomed. Opt. 19, 080501 (2014).
[Crossref]

Drew, H. D.

G. S. Jenkins, D. C. Schmadel, and H. D. Drew, “Simultaneous measurement of circular dichroism and Faraday rotation at terahertz frequencies utilizing electric field sensitive detection via polarization modulation,” Rev. Sci. Instrum. 81, 083903 (2010).
[Crossref]

Edamura, T.

N. F. Yu, Q. J. Wang, C. Pflugl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[Crossref]

Fan, K.

G. D. Metcalfe, M. Wraback, A. Strikwerda, K. Fan, X. Zhang, and R. Averitt, “Terahertz polarimetry based on metamaterial devices,” Proc. SPIE 8363, 83630O (2012).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

Fraser, A.

Freeman, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Furuta, S.

N. F. Yu, Q. J. Wang, C. Pflugl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[Crossref]

Genest, J.

Genevet, P.

P. Rauter, J. Lin, P. Genevet, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, and F. Capasso, “Electrically pumped semiconductor laser with monolithic control of circular polarization,” Proc. Natl. Acad. Sci. USA 111, E5623–E5632 (2014).
[Crossref]

Giles, R.

P. Doradla, K. Alavi, C. Joseph, and R. Giles, “Single-channel prototype terahertz endoscopic system,” J. Biomed. Opt. 19, 080501 (2014).
[Crossref]

Giles, R. H.

P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, “Terahertz polarization imaging for colon cancer detection,” Proc. SPIE 8985, 89850K (2014).
[Crossref]

Goodhue, W. D.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Haus, J. W.

R. J. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. W. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140  mW output power at 1.6  μm wavelength,” Appl. Phys. Lett. 95, 191111 (2009).
[Crossref]

Hiromoto, N.

K. Mochizuki, M. Aoki, S. R. Tripathi, and N. Hiromoto, “Polarization-changeable THz time-domain spectroscopy system with a small incident-angle beam-splitter,” in 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), p. 690.

Hoffman, A. J.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Holmes, B. M.

Hon, P. W. C.

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107, 221105 (2015).
[Crossref]

Hsieh, C. F.

Hu, Q.

Hurtado, A.

M. Torre, A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. Adams, “Polarization switching in long-wavelength VCSELs subject to orthogonal optical injection,” IEEE J. Quantum Electron. 47, 92–99 (2011).
[Crossref]

Hutchings, D. C.

Ibarra-Escamilla, B.

R. J. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. W. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140  mW output power at 1.6  μm wavelength,” Appl. Phys. Lett. 95, 191111 (2009).
[Crossref]

Ironside, C. N.

Isozaki, A.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Itoh, T.

L. Xu, D. Chen, T. Itoh, J. L. Reno, and B. S. Williams, “Focusing metasurface quantum-cascade laser with a near diffraction-limited beam,” Opt. Express 24, 24117–24128 (2016).
[Crossref]

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107, 221105 (2015).
[Crossref]

Y. D. Dong and T. Itoh, “Substrate integrated composite right-/left-handed leaky-wave structure for polarization-flexible antenna application,” IEEE Trans. Antennas Propag. 60, 760–771 (2012).
[Crossref]

Jenkins, G. S.

G. S. Jenkins, D. C. Schmadel, and H. D. Drew, “Simultaneous measurement of circular dichroism and Faraday rotation at terahertz frequencies utilizing electric field sensitive detection via polarization modulation,” Rev. Sci. Instrum. 81, 083903 (2010).
[Crossref]

Joseph, C.

P. Doradla, K. Alavi, C. Joseph, and R. Giles, “Single-channel prototype terahertz endoscopic system,” J. Biomed. Opt. 19, 080501 (2014).
[Crossref]

Joseph, C. S.

P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, “Terahertz polarization imaging for colon cancer detection,” Proc. SPIE 8985, 89850K (2014).
[Crossref]

Kan, H.

N. F. Yu, Q. J. Wang, C. Pflugl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[Crossref]

Kan, T.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Kanda, N.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Kao, T. Y.

T. Y. Kao, J. L. Reno, and Q. Hu, “Phase-locked laser arrays through global antenna mutual coupling,” Nat. Photonics 10, 541–546 (2016).
[Crossref]

Khanna, S. P.

P. Rauter, J. Lin, P. Genevet, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, and F. Capasso, “Electrically pumped semiconductor laser with monolithic control of circular polarization,” Proc. Natl. Acad. Sci. USA 111, E5623–E5632 (2014).
[Crossref]

Khardikov, V. V.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

Konishi, K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Kumar, S.

Kuwata-Gonokami, M.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Lachab, M.

P. Rauter, J. Lin, P. Genevet, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, and F. Capasso, “Electrically pumped semiconductor laser with monolithic control of circular polarization,” Proc. Natl. Acad. Sci. USA 111, E5623–E5632 (2014).
[Crossref]

Lear, K. L.

K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform vertical-cavity laser-diodes,” Appl. Phys. Lett. 64, 2767–2769 (1994).
[Crossref]

K. D. Choquette, K. L. Lear, R. P. Schneider, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” in 14th IEEE International Semiconductor Laser Conference (1994), p. 149.

Leibenguth, R. E.

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature-dependence of gain-guided vertical-cavity surface-emitting laser polarization,” Appl. Phys. Lett. 64, 2062–2064 (1994).
[Crossref]

K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform vertical-cavity laser-diodes,” Appl. Phys. Lett. 64, 2767–2769 (1994).
[Crossref]

K. D. Choquette, K. L. Lear, R. P. Schneider, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” in 14th IEEE International Semiconductor Laser Conference (1994), p. 149.

Li, J.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Li, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Liang, G.

G. Liang, T. Liu, and Q. J. Wang, “Recent developments of terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–18 (2017).
[Crossref]

Lin, J.

P. Rauter, J. Lin, P. Genevet, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, and F. Capasso, “Electrically pumped semiconductor laser with monolithic control of circular polarization,” Proc. Natl. Acad. Sci. USA 111, E5623–E5632 (2014).
[Crossref]

Linfield, E. H.

P. Rauter, J. Lin, P. Genevet, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, and F. Capasso, “Electrically pumped semiconductor laser with monolithic control of circular polarization,” Proc. Natl. Acad. Sci. USA 111, E5623–E5632 (2014).
[Crossref]

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Liu, T.

G. Liang, T. Liu, and Q. J. Wang, “Recent developments of terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–18 (2017).
[Crossref]

Matsumoto, K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Metcalfe, G. D.

G. D. Metcalfe, M. Wraback, A. Strikwerda, K. Fan, X. Zhang, and R. Averitt, “Terahertz polarimetry based on metamaterial devices,” Proc. SPIE 8363, 83630O (2012).
[Crossref]

Milster, T. D.

T. H. Russell and T. D. Milster, “Polarization switching control in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 70, 2520 (1997).
[Crossref]

Mochizuki, K.

K. Mochizuki, M. Aoki, S. R. Tripathi, and N. Hiromoto, “Polarization-changeable THz time-domain spectroscopy system with a small incident-angle beam-splitter,” in 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), p. 690.

Nemoto, N.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

O’Hara, J. F.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Padilla, W. J.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Pan, C. L.

Pan, R. P.

Peralta, X. G.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Pesquera, L.

M. Torre, A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. Adams, “Polarization switching in long-wavelength VCSELs subject to orthogonal optical injection,” IEEE J. Quantum Electron. 47, 92–99 (2011).
[Crossref]

Pflugl, C.

N. F. Yu, Q. J. Wang, C. Pflugl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[Crossref]

Plum, E.

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106, 221901 (2015).
[Crossref]

Powers, P. E.

R. J. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. W. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140  mW output power at 1.6  μm wavelength,” Appl. Phys. Lett. 95, 191111 (2009).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

Quirce, A.

M. Torre, A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. Adams, “Polarization switching in long-wavelength VCSELs subject to orthogonal optical injection,” IEEE J. Quantum Electron. 47, 92–99 (2011).
[Crossref]

Rauter, P.

P. Rauter, J. Lin, P. Genevet, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, and F. Capasso, “Electrically pumped semiconductor laser with monolithic control of circular polarization,” Proc. Natl. Acad. Sci. USA 111, E5623–E5632 (2014).
[Crossref]

Reno, J.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Reno, J. L.

T. Y. Kao, J. L. Reno, and Q. Hu, “Phase-locked laser arrays through global antenna mutual coupling,” Nat. Photonics 10, 541–546 (2016).
[Crossref]

L. Xu, D. Chen, T. Itoh, J. L. Reno, and B. S. Williams, “Focusing metasurface quantum-cascade laser with a near diffraction-limited beam,” Opt. Express 24, 24117–24128 (2016).
[Crossref]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164  K in pulsed mode and at 117  K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[Crossref]

L. Xu, C. A. Curwen, J. L. Reno, and B. S. Williams, “High performance THz metasurface quantum cascade lasers with an intra-cryostat cavity” (in preparation).

Richie, D. A.

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature-dependence of gain-guided vertical-cavity surface-emitting laser polarization,” Appl. Phys. Lett. 64, 2062–2064 (1994).
[Crossref]

Russell, T. H.

T. H. Russell and T. D. Milster, “Polarization switching control in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 70, 2520 (1997).
[Crossref]

Schmadel, D. C.

G. S. Jenkins, D. C. Schmadel, and H. D. Drew, “Simultaneous measurement of circular dichroism and Faraday rotation at terahertz frequencies utilizing electric field sensitive detection via polarization modulation,” Rev. Sci. Instrum. 81, 083903 (2010).
[Crossref]

Schneider, R. P.

K. D. Choquette, K. L. Lear, R. P. Schneider, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” in 14th IEEE International Semiconductor Laser Conference (1994), p. 149.

Schwanecke, A. S.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

Shimoyama, I.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Slight, T. J.

Strikwerda, A.

G. D. Metcalfe, M. Wraback, A. Strikwerda, K. Fan, X. Zhang, and R. Averitt, “Terahertz polarimetry based on metamaterial devices,” Proc. SPIE 8363, 83630O (2012).
[Crossref]

Takahashi, H.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Tang, T. T.

Taylor, A. J.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Torre, M.

M. Torre, A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. Adams, “Polarization switching in long-wavelength VCSELs subject to orthogonal optical injection,” IEEE J. Quantum Electron. 47, 92–99 (2011).
[Crossref]

Tripathi, S. R.

K. Mochizuki, M. Aoki, S. R. Tripathi, and N. Hiromoto, “Polarization-changeable THz time-domain spectroscopy system with a small incident-angle beam-splitter,” in 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), p. 690.

Valavanis, A.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Valle, A.

M. Torre, A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. Adams, “Polarization switching in long-wavelength VCSELs subject to orthogonal optical injection,” IEEE J. Quantum Electron. 47, 92–99 (2011).
[Crossref]

Vallée, R.

Waldman, J.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Wang, Q. J.

G. Liang, T. Liu, and Q. J. Wang, “Recent developments of terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–18 (2017).
[Crossref]

N. F. Yu, Q. J. Wang, C. Pflugl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[Crossref]

Wanke, M. C.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Weynant, É.

Williams, B. S.

L. Xu, D. Chen, T. Itoh, J. L. Reno, and B. S. Williams, “Focusing metasurface quantum-cascade laser with a near diffraction-limited beam,” Opt. Express 24, 24117–24128 (2016).
[Crossref]

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107, 221105 (2015).
[Crossref]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164  K in pulsed mode and at 117  K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[Crossref]

L. Xu, C. A. Curwen, J. L. Reno, and B. S. Williams, “High performance THz metasurface quantum cascade lasers with an intra-cryostat cavity” (in preparation).

Wraback, M.

G. D. Metcalfe, M. Wraback, A. Strikwerda, K. Fan, X. Zhang, and R. Averitt, “Terahertz polarimetry based on metamaterial devices,” Proc. SPIE 8363, 83630O (2012).
[Crossref]

Wright, J. B.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Xu, L.

L. Xu, D. Chen, T. Itoh, J. L. Reno, and B. S. Williams, “Focusing metasurface quantum-cascade laser with a near diffraction-limited beam,” Opt. Express 24, 24117–24128 (2016).
[Crossref]

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107, 221105 (2015).
[Crossref]

L. Xu, C. A. Curwen, J. L. Reno, and B. S. Williams, “High performance THz metasurface quantum cascade lasers with an intra-cryostat cavity” (in preparation).

Yamanishi, M.

N. F. Yu, Q. J. Wang, C. Pflugl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[Crossref]

Yang, C. S.

Young, E. W.

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Yu, N. F.

N. F. Yu, Q. J. Wang, C. Pflugl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[Crossref]

Yu, O. B.

O. B. Yu, J. L. Cruz, and M. V. Andres, “Polarization switchable Erbium-doped all-fiber laser,” Laser Phys. Lett. 5, 676–679 (2008).
[Crossref]

Yu, P. S.

Zhan, Q. W.

R. J. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. W. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140  mW output power at 1.6  μm wavelength,” Appl. Phys. Lett. 95, 191111 (2009).
[Crossref]

Zhang, X.

G. D. Metcalfe, M. Wraback, A. Strikwerda, K. Fan, X. Zhang, and R. Averitt, “Terahertz polarimetry based on metamaterial devices,” Proc. SPIE 8363, 83630O (2012).
[Crossref]

Zheludev, N. I.

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106, 221901 (2015).
[Crossref]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

Zhou, R. J.

R. J. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. W. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140  mW output power at 1.6  μm wavelength,” Appl. Phys. Lett. 95, 191111 (2009).
[Crossref]

Zhu, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Appl. Phys. Lett. (7)

T. H. Russell and T. D. Milster, “Polarization switching control in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 70, 2520 (1997).
[Crossref]

K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform vertical-cavity laser-diodes,” Appl. Phys. Lett. 64, 2767–2769 (1994).
[Crossref]

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature-dependence of gain-guided vertical-cavity surface-emitting laser polarization,” Appl. Phys. Lett. 64, 2062–2064 (1994).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106, 221901 (2015).
[Crossref]

N. F. Yu, Q. J. Wang, C. Pflugl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[Crossref]

R. J. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. W. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140  mW output power at 1.6  μm wavelength,” Appl. Phys. Lett. 95, 191111 (2009).
[Crossref]

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107, 221105 (2015).
[Crossref]

Electron. Lett. (1)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Torre, A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. Adams, “Polarization switching in long-wavelength VCSELs subject to orthogonal optical injection,” IEEE J. Quantum Electron. 47, 92–99 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Liang, T. Liu, and Q. J. Wang, “Recent developments of terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–18 (2017).
[Crossref]

IEEE Trans. Antennas Propag. (1)

Y. D. Dong and T. Itoh, “Substrate integrated composite right-/left-handed leaky-wave structure for polarization-flexible antenna application,” IEEE Trans. Antennas Propag. 60, 760–771 (2012).
[Crossref]

J. Biomed. Opt. (1)

P. Doradla, K. Alavi, C. Joseph, and R. Giles, “Single-channel prototype terahertz endoscopic system,” J. Biomed. Opt. 19, 080501 (2014).
[Crossref]

Laser Phys. Lett. (1)

O. B. Yu, J. L. Cruz, and M. V. Andres, “Polarization switchable Erbium-doped all-fiber laser,” Laser Phys. Lett. 5, 676–679 (2008).
[Crossref]

Metamaterials (1)

X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H.-T. Chen, J. F. O’Hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials 4, 83–88 (2010).
[Crossref]

Nano Lett. (1)

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

Nat. Commun. (1)

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Nat. Photonics (1)

T. Y. Kao, J. L. Reno, and Q. Hu, “Phase-locked laser arrays through global antenna mutual coupling,” Nat. Photonics 10, 541–546 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. USA (1)

P. Rauter, J. Lin, P. Genevet, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, and F. Capasso, “Electrically pumped semiconductor laser with monolithic control of circular polarization,” Proc. Natl. Acad. Sci. USA 111, E5623–E5632 (2014).
[Crossref]

Proc. SPIE (2)

G. D. Metcalfe, M. Wraback, A. Strikwerda, K. Fan, X. Zhang, and R. Averitt, “Terahertz polarimetry based on metamaterial devices,” Proc. SPIE 8363, 83630O (2012).
[Crossref]

P. Doradla, K. Alavi, C. S. Joseph, and R. H. Giles, “Terahertz polarization imaging for colon cancer detection,” Proc. SPIE 8985, 89850K (2014).
[Crossref]

Rev. Sci. Instrum. (1)

G. S. Jenkins, D. C. Schmadel, and H. D. Drew, “Simultaneous measurement of circular dichroism and Faraday rotation at terahertz frequencies utilizing electric field sensitive detection via polarization modulation,” Rev. Sci. Instrum. 81, 083903 (2010).
[Crossref]

Other (3)

K. D. Choquette, K. L. Lear, R. P. Schneider, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” in 14th IEEE International Semiconductor Laser Conference (1994), p. 149.

L. Xu, C. A. Curwen, J. L. Reno, and B. S. Williams, “High performance THz metasurface quantum cascade lasers with an intra-cryostat cavity” (in preparation).

K. Mochizuki, M. Aoki, S. R. Tripathi, and N. Hiromoto, “Polarization-changeable THz time-domain spectroscopy system with a small incident-angle beam-splitter,” in 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), p. 690.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (2807 KB)      Supplementary material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) SEM image of the fabricated metasurface. The zigzag metasurface covers an area of 2    mm × 2    mm . Only a center circular region of 1.5 mm diameter is biased, shown by the red dashed circle. The portions outside the circle have an SiO 2 layer beneath the top metallization to prevent the quantum well medium from being biased. The tapered terminations serve both as the wire-bonding region and help suppress the reflection of traveling waveguide modes to prevent self-lasing. Antennas preferring one polarization direction are electrically connected together through the tapers on the top left of the metasurface, while others preferring the orthogonal polarization direction are connected together on the bottom right side. The inset shows a zoomed-in SEM image. (b) A schematic of the plano–plano VECSEL cavity. (c) Top view of a portion of the metasurface illustrated with dimensions given in micrometers. One set of antennas—the ones interacting with radiation linearly polarized at 45°—is shown in dark blue, while the second set of antennas, which interacts with radiation linearly polarized at 135°, is shown in light blue. For brevity, the former set will be referred to as Set 1, while the latter will be referred to as Set 2. The region inside the green dashed rectangle is one unit cell.

Fig. 2.
Fig. 2.

(a) Top: Co-polarization and cross-polarization reflectance of the metasurface when Set 1 and Set 2 are both passive. The 45°–45° reflectance | Γ 45 ° 45 ° | 2 designates the reflectance of light linearly polarized at 45° [defined according to the coordinates given in Fig. 1(c)] into light linearly polarized at 45°, and so on. Bottom: Co-polarization and cross-polarization reflectance of the metasurface when a QC gain of g 1 = 30    cm 1 is assumed for Set 1 patches and Set 2 is kept passive. (b) The peak reflectance for 45°–45°and 135°–135° reflectances plotted against the gain g 1 supplied to Set 1, with Set 2 kept passive throughout. Inset is the simulated E-field intensity pattern of a unit cell at 3.4 THz for an incident E-field polarized at 45°.

Fig. 3.
Fig. 3.

(a) Simulated polarization eigenstate ellipses for the output beam when operating at the peak reflectance frequency of 3.397 THz. The two selectable polarization states, shown in blue (Set 1 switched on) and red (Set 2 switched on), differ by a rotation of 89.2°, and the intensity axial ratio of the ellipse’s major axis to its minor axis is 55 dB for both. The polarization eigenstate ellipses for the output beam when operating at 3.384 and 3.41 THz are plotted in (b) and (c). For these calculations, the co-polarized reflectance is held constant at its value at 3.397 THz in order to simulate all three cases with the same lasing threshold, with only the cross-polarized reflectance varied.

Fig. 4.
Fig. 4.

Pulsed P-I-V curves measured for Set 1 and Set 2 in the same cavity setup at 77 K. The inset is the spectra measured for the two sets.

Fig. 5.
Fig. 5.

(a) Measured total power through the polarizer versus the polarizer angle for the two sets. 80° linear polarization angle switching is shown by the arrow. The circles are the experimental data, and the solid lines in red and blue are the fitted curves [to Eq. (2)]. The schematic on the bottom right of (a) shows the 2-axis far-field beam pattern measurement scheme. The measured 2D beam patterns for Set 1 and Set 2 are shown in (b) and (c), with an angular resolution of 0.5°. The 1D cuts along the x - and y -directions through the beam center for Set 1 and Set 2 are plotted as colored circles in (d) and (e), with the Gaussian curve fitting results plotted as solid colored lines.

Fig. 6.
Fig. 6.

Measured power through the polarizer against the polarizer angle at five spots on the output beam for Set 1 (a) and Set 2 (b). The dots are the experimental data, and the solid lines are the fitted curves [to Eq. (2)].

Fig. 7.
Fig. 7.

(a) Measured P-I-V curve for the polarimetric metasurface without an external cavity. Nominally identical bias is provided to both Set 1 and Set 2. The inset shows the spectra at different injection current levels. (b) Measured far-field beam pattern for the metasurface self-lasing near the peak power, with FWHM divergence angles in the x - and y -directions labeled. The polarization is mapped at different beam spots within the white dashed box. (c) Measured power through the polarizer at different spots on the beam pattern indicated by the circled white cross marks.

Tables (1)

Tables Icon

Table 1. Axial Ratios of Field Intensity (in Units of dB) for the Total Beam and Different Beam Spots from Set 1 and Set 2 Patches

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Γ M = [ Γ 45 ° 45 ° Γ 45 ° 135 ° Γ 135 ° 45 ° Γ 135 ° 135 ° ] ,
I = a 0 ( T s + T p ) + a 1 ( T s T p ) cos ( 2 θ p 2 φ ) ,

Metrics