A. Streltsov, S. Rana, M. N. Bera, and M. Lewenstein, “Towards resource theory of coherence in distributed scenarios,” Phys. Rev. X 7, 011024 (2017).

[Crossref]

J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).

[Crossref]

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).

[Crossref]

K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, “The extraction of work from quantum coherence,” New J. Phys. 18, 023045 (2016).

[Crossref]

I. Marvian, R. W. Spekkens, and P. Zanardi, “Quantum speed limits, coherence, and asymmetry,” Phys. Rev. A 93, 052331 (2016).

[Crossref]

X. Liu, Z. Tian, J. Wang, and J. Jing, “Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field,” Ann. Phys. 366, 102–112 (2016).

[Crossref]

A. Winter and D. Yang, “Operational resource theory of coherence,” Phys. Rev. Lett. 116, 120404 (2016).

[Crossref]

X. Yuan, H. Zhou, Z. Cao, and X. Ma, “Intrinsic randomness as a measure of quantum coherence,” Phys. Rev. A 92, 022124 (2015).

[Crossref]

F. G. S. L. Brandão and G. Gour, “Reversible framework for quantum resource theories,” Phys. Rev. Lett. 115, 070503 (2015).

[Crossref]

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).

[Crossref]

S. Du, Z. Bai, and Y. Guo, “Conditions for coherence transformations under incoherent operations,” Phys. Rev. A 91, 052120 (2015).

[Crossref]

M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, “Duality of quantum coherence and path distinguishability,” Phys. Rev. A 92, 012118 (2015).

[Crossref]

P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, “Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics,” Phys. Rev. Lett. 115, 210403 (2015).

[Crossref]

V. Narasimhachar and G. Gour, “Low-temperature thermodynamics with quantum coherence,” Nat. Commun. 6, 7689 (2015).

[Crossref]

B. Gardas and S. Deffner, “Thermodynamic universality of quantum Carnot engines,” Phys. Rev. E 92, 042126 (2015).

[Crossref]

M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics,” Phys. Rev. X 5, 021001 (2015).

[Crossref]

S. Cheng and M. J. W. Hall, “Complementarity relations for quantum coherence,” Phys. Rev. A 92, 042101 (2015).

[Crossref]

S. Du, Z. Bai, and X. Qi, “Coherence measures and optimal conversion for coherent states,” Quantum Inf. Comput. 15, 1307–1316 (2015).

J. Åberg, “Catalytic coherence,” Phys. Rev. Lett. 113, 150402 (2014).

[Crossref]

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).

[Crossref]

D. Girolami, “Observable measure of quantum coherence in finite dimensional systems,” Phys. Rev. Lett. 113, 170401 (2014).

[Crossref]

S. F. Huelga and M. B. Plenio, “Vibrations, quanta and biology,” Contemp. Phys. 54, 181–207 (2013).

[Crossref]

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

S. Lloyd, “Quantum coherence in biological systems,” J. Phys. 302, 012037 (2011).

[Crossref]

O. Karlström, H. Linke, G. Karlström, and A. Wacker, “Increasing thermoelectric performance using coherent transport,” Phys. Rev. B 84, 113415 (2011).

[Crossref]

M. Herranen, K. Kainulainen, and P. M. Rahkila, “Kinetic transport theory with quantum coherence,” Nucl. Phys. A 820, 203c–206c (2009).

[Crossref]

P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, “Role of quantum coherence and environmental fluctuations in chromophoric energy transport,” J. Phys. Chem. B 113, 9942–9947 (2009).

[Crossref]

M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).

[Crossref]

A. Miranowicz, “Violation of Bell inequality and entanglement of decaying Werner states,” Phys. Lett. A 327, 272–283 (2004).

[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).

[Crossref]

J. Åberg, “Catalytic coherence,” Phys. Rev. Lett. 113, 150402 (2014).

[Crossref]

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).

[Crossref]

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).

[Crossref]

A. Streltsov, G. Adesso, and M. B. Plenio, “Quantum coherence as a resource,” arXiv preprint arXiv:1609.02439 (2016).

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).

[Crossref]

P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, “Role of quantum coherence and environmental fluctuations in chromophoric energy transport,” J. Phys. Chem. B 113, 9942–9947 (2009).

[Crossref]

C. A. Rodríguez-Rosario, T. Frauenheim, and A. Aspuru-Guzik, “Thermodynamics of quantum coherence,” arXiv:1308.1245 (2013).

S. Du, Z. Bai, and X. Qi, “Coherence measures and optimal conversion for coherent states,” Quantum Inf. Comput. 15, 1307–1316 (2015).

S. Du, Z. Bai, and Y. Guo, “Conditions for coherence transformations under incoherent operations,” Phys. Rev. A 91, 052120 (2015).

[Crossref]

Z. Bai and S. Du, “Maximally coherent states,” arXiv:1503.07103 (2015).

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).

[Crossref]

A. Streltsov, S. Rana, M. N. Bera, and M. Lewenstein, “Towards resource theory of coherence in distributed scenarios,” Phys. Rev. X 7, 011024 (2017).

[Crossref]

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).

[Crossref]

M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, “Duality of quantum coherence and path distinguishability,” Phys. Rev. A 92, 012118 (2015).

[Crossref]

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).

[Crossref]

F. G. S. L. Brandão and G. Gour, “Reversible framework for quantum resource theories,” Phys. Rev. Lett. 115, 070503 (2015).

[Crossref]

X. Yuan, H. Zhou, Z. Cao, and X. Ma, “Intrinsic randomness as a measure of quantum coherence,” Phys. Rev. A 92, 022124 (2015).

[Crossref]

J.-J. Chen, J. Cui, and H. Fan, “Coherence susceptibility as a probe of quantum phase transitions,” arXiv:1509.03576 (2015).

S. Cheng and M. J. W. Hall, “Complementarity relations for quantum coherence,” Phys. Rev. A 92, 042101 (2015).

[Crossref]

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).

[Crossref]

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).

[Crossref]

J.-J. Chen, J. Cui, and H. Fan, “Coherence susceptibility as a probe of quantum phase transitions,” arXiv:1509.03576 (2015).

P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, “Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics,” Phys. Rev. Lett. 115, 210403 (2015).

[Crossref]

B. Gardas and S. Deffner, “Thermodynamic universality of quantum Carnot engines,” Phys. Rev. E 92, 042126 (2015).

[Crossref]

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).

[Crossref]

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

S. Du, Z. Bai, and X. Qi, “Coherence measures and optimal conversion for coherent states,” Quantum Inf. Comput. 15, 1307–1316 (2015).

S. Du, Z. Bai, and Y. Guo, “Conditions for coherence transformations under incoherent operations,” Phys. Rev. A 91, 052120 (2015).

[Crossref]

Z. Bai and S. Du, “Maximally coherent states,” arXiv:1503.07103 (2015).

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).

[Crossref]

J.-J. Chen, J. Cui, and H. Fan, “Coherence susceptibility as a probe of quantum phase transitions,” arXiv:1509.03576 (2015).

X. Hu and H. Fan, “Coherence extraction from measurement-induced disturbance,” arXiv:1508.01978 (2015).

C. A. Rodríguez-Rosario, T. Frauenheim, and A. Aspuru-Guzik, “Thermodynamics of quantum coherence,” arXiv:1308.1245 (2013).

B. Gardas and S. Deffner, “Thermodynamic universality of quantum Carnot engines,” Phys. Rev. E 92, 042126 (2015).

[Crossref]

J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).

[Crossref]

D. Girolami, “Observable measure of quantum coherence in finite dimensional systems,” Phys. Rev. Lett. 113, 170401 (2014).

[Crossref]

F. G. S. L. Brandão and G. Gour, “Reversible framework for quantum resource theories,” Phys. Rev. Lett. 115, 070503 (2015).

[Crossref]

V. Narasimhachar and G. Gour, “Low-temperature thermodynamics with quantum coherence,” Nat. Commun. 6, 7689 (2015).

[Crossref]

J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).

[Crossref]

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

S. Du, Z. Bai, and Y. Guo, “Conditions for coherence transformations under incoherent operations,” Phys. Rev. A 91, 052120 (2015).

[Crossref]

S. Cheng and M. J. W. Hall, “Complementarity relations for quantum coherence,” Phys. Rev. A 92, 042101 (2015).

[Crossref]

M. Herranen, K. Kainulainen, and P. M. Rahkila, “Kinetic transport theory with quantum coherence,” Nucl. Phys. A 820, 203c–206c (2009).

[Crossref]

P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, “Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics,” Phys. Rev. Lett. 115, 210403 (2015).

[Crossref]

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

X. Hu and H. Fan, “Coherence extraction from measurement-induced disturbance,” arXiv:1508.01978 (2015).

S. F. Huelga and M. B. Plenio, “Vibrations, quanta and biology,” Contemp. Phys. 54, 181–207 (2013).

[Crossref]

M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).

[Crossref]

K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, “The extraction of work from quantum coherence,” New J. Phys. 18, 023045 (2016).

[Crossref]

M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics,” Phys. Rev. X 5, 021001 (2015).

[Crossref]

X. Liu, Z. Tian, J. Wang, and J. Jing, “Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field,” Ann. Phys. 366, 102–112 (2016).

[Crossref]

M. Herranen, K. Kainulainen, and P. M. Rahkila, “Kinetic transport theory with quantum coherence,” Nucl. Phys. A 820, 203c–206c (2009).

[Crossref]

O. Karlström, H. Linke, G. Karlström, and A. Wacker, “Increasing thermoelectric performance using coherent transport,” Phys. Rev. B 84, 113415 (2011).

[Crossref]

O. Karlström, H. Linke, G. Karlström, and A. Wacker, “Increasing thermoelectric performance using coherent transport,” Phys. Rev. B 84, 113415 (2011).

[Crossref]

K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, “The extraction of work from quantum coherence,” New J. Phys. 18, 023045 (2016).

[Crossref]

M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics,” Phys. Rev. X 5, 021001 (2015).

[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).

[Crossref]

A. Streltsov, S. Rana, M. N. Bera, and M. Lewenstein, “Towards resource theory of coherence in distributed scenarios,” Phys. Rev. X 7, 011024 (2017).

[Crossref]

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).

[Crossref]

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

O. Karlström, H. Linke, G. Karlström, and A. Wacker, “Increasing thermoelectric performance using coherent transport,” Phys. Rev. B 84, 113415 (2011).

[Crossref]

X. Liu, Z. Tian, J. Wang, and J. Jing, “Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field,” Ann. Phys. 366, 102–112 (2016).

[Crossref]

S. Lloyd, “Quantum coherence in biological systems,” J. Phys. 302, 012037 (2011).

[Crossref]

K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, “The extraction of work from quantum coherence,” New J. Phys. 18, 023045 (2016).

[Crossref]

M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics,” Phys. Rev. X 5, 021001 (2015).

[Crossref]

J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).

[Crossref]

X. Yuan, H. Zhou, Z. Cao, and X. Ma, “Intrinsic randomness as a measure of quantum coherence,” Phys. Rev. A 92, 022124 (2015).

[Crossref]

I. Marvian, R. W. Spekkens, and P. Zanardi, “Quantum speed limits, coherence, and asymmetry,” Phys. Rev. A 93, 052331 (2016).

[Crossref]

A. Miranowicz, “Violation of Bell inequality and entanglement of decaying Werner states,” Phys. Lett. A 327, 272–283 (2004).

[Crossref]

P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, “Role of quantum coherence and environmental fluctuations in chromophoric energy transport,” J. Phys. Chem. B 113, 9942–9947 (2009).

[Crossref]

V. Narasimhachar and G. Gour, “Low-temperature thermodynamics with quantum coherence,” Nat. Commun. 6, 7689 (2015).

[Crossref]

K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, “The extraction of work from quantum coherence,” New J. Phys. 18, 023045 (2016).

[Crossref]

P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, “Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics,” Phys. Rev. Lett. 115, 210403 (2015).

[Crossref]

M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, “Duality of quantum coherence and path distinguishability,” Phys. Rev. A 92, 012118 (2015).

[Crossref]

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).

[Crossref]

S. F. Huelga and M. B. Plenio, “Vibrations, quanta and biology,” Contemp. Phys. 54, 181–207 (2013).

[Crossref]

M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).

[Crossref]

A. Streltsov, G. Adesso, and M. B. Plenio, “Quantum coherence as a resource,” arXiv preprint arXiv:1609.02439 (2016).

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

S. Du, Z. Bai, and X. Qi, “Coherence measures and optimal conversion for coherent states,” Quantum Inf. Comput. 15, 1307–1316 (2015).

M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, “Duality of quantum coherence and path distinguishability,” Phys. Rev. A 92, 012118 (2015).

[Crossref]

M. Herranen, K. Kainulainen, and P. M. Rahkila, “Kinetic transport theory with quantum coherence,” Nucl. Phys. A 820, 203c–206c (2009).

[Crossref]

A. Streltsov, S. Rana, M. N. Bera, and M. Lewenstein, “Towards resource theory of coherence in distributed scenarios,” Phys. Rev. X 7, 011024 (2017).

[Crossref]

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).

[Crossref]

P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, “Role of quantum coherence and environmental fluctuations in chromophoric energy transport,” J. Phys. Chem. B 113, 9942–9947 (2009).

[Crossref]

C. A. Rodríguez-Rosario, T. Frauenheim, and A. Aspuru-Guzik, “Thermodynamics of quantum coherence,” arXiv:1308.1245 (2013).

M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics,” Phys. Rev. X 5, 021001 (2015).

[Crossref]

M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, “Duality of quantum coherence and path distinguishability,” Phys. Rev. A 92, 012118 (2015).

[Crossref]

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).

[Crossref]

I. Marvian, R. W. Spekkens, and P. Zanardi, “Quantum speed limits, coherence, and asymmetry,” Phys. Rev. A 93, 052331 (2016).

[Crossref]

A. Streltsov, S. Rana, M. N. Bera, and M. Lewenstein, “Towards resource theory of coherence in distributed scenarios,” Phys. Rev. X 7, 011024 (2017).

[Crossref]

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).

[Crossref]

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).

[Crossref]

A. Streltsov, G. Adesso, and M. B. Plenio, “Quantum coherence as a resource,” arXiv preprint arXiv:1609.02439 (2016).

P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, “Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics,” Phys. Rev. Lett. 115, 210403 (2015).

[Crossref]

X. Liu, Z. Tian, J. Wang, and J. Jing, “Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field,” Ann. Phys. 366, 102–112 (2016).

[Crossref]

J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).

[Crossref]

O. Karlström, H. Linke, G. Karlström, and A. Wacker, “Increasing thermoelectric performance using coherent transport,” Phys. Rev. B 84, 113415 (2011).

[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).

[Crossref]

X. Liu, Z. Tian, J. Wang, and J. Jing, “Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field,” Ann. Phys. 366, 102–112 (2016).

[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).

[Crossref]

A. Winter and D. Yang, “Operational resource theory of coherence,” Phys. Rev. Lett. 116, 120404 (2016).

[Crossref]

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).

[Crossref]

A. Winter and D. Yang, “Operational resource theory of coherence,” Phys. Rev. Lett. 116, 120404 (2016).

[Crossref]

X. Yuan, H. Zhou, Z. Cao, and X. Ma, “Intrinsic randomness as a measure of quantum coherence,” Phys. Rev. A 92, 022124 (2015).

[Crossref]

I. Marvian, R. W. Spekkens, and P. Zanardi, “Quantum speed limits, coherence, and asymmetry,” Phys. Rev. A 93, 052331 (2016).

[Crossref]

X. Yuan, H. Zhou, Z. Cao, and X. Ma, “Intrinsic randomness as a measure of quantum coherence,” Phys. Rev. A 92, 022124 (2015).

[Crossref]

X. Liu, Z. Tian, J. Wang, and J. Jing, “Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field,” Ann. Phys. 366, 102–112 (2016).

[Crossref]

S. F. Huelga and M. B. Plenio, “Vibrations, quanta and biology,” Contemp. Phys. 54, 181–207 (2013).

[Crossref]

S. Lloyd, “Quantum coherence in biological systems,” J. Phys. 302, 012037 (2011).

[Crossref]

P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, “Role of quantum coherence and environmental fluctuations in chromophoric energy transport,” J. Phys. Chem. B 113, 9942–9947 (2009).

[Crossref]

V. Narasimhachar and G. Gour, “Low-temperature thermodynamics with quantum coherence,” Nat. Commun. 6, 7689 (2015).

[Crossref]

K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, “The extraction of work from quantum coherence,” New J. Phys. 18, 023045 (2016).

[Crossref]

M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).

[Crossref]

M. Herranen, K. Kainulainen, and P. M. Rahkila, “Kinetic transport theory with quantum coherence,” Nucl. Phys. A 820, 203c–206c (2009).

[Crossref]

A. Miranowicz, “Violation of Bell inequality and entanglement of decaying Werner states,” Phys. Lett. A 327, 272–283 (2004).

[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).

[Crossref]

X. Yuan, H. Zhou, Z. Cao, and X. Ma, “Intrinsic randomness as a measure of quantum coherence,” Phys. Rev. A 92, 022124 (2015).

[Crossref]

S. Du, Z. Bai, and Y. Guo, “Conditions for coherence transformations under incoherent operations,” Phys. Rev. A 91, 052120 (2015).

[Crossref]

M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, “Duality of quantum coherence and path distinguishability,” Phys. Rev. A 92, 012118 (2015).

[Crossref]

S. Cheng and M. J. W. Hall, “Complementarity relations for quantum coherence,” Phys. Rev. A 92, 042101 (2015).

[Crossref]

I. Marvian, R. W. Spekkens, and P. Zanardi, “Quantum speed limits, coherence, and asymmetry,” Phys. Rev. A 93, 052331 (2016).

[Crossref]

O. Karlström, H. Linke, G. Karlström, and A. Wacker, “Increasing thermoelectric performance using coherent transport,” Phys. Rev. B 84, 113415 (2011).

[Crossref]

B. Gardas and S. Deffner, “Thermodynamic universality of quantum Carnot engines,” Phys. Rev. E 92, 042126 (2015).

[Crossref]

P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, “Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics,” Phys. Rev. Lett. 115, 210403 (2015).

[Crossref]

J. Åberg, “Catalytic coherence,” Phys. Rev. Lett. 113, 150402 (2014).

[Crossref]

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).

[Crossref]

A. Winter and D. Yang, “Operational resource theory of coherence,” Phys. Rev. Lett. 116, 120404 (2016).

[Crossref]

F. G. S. L. Brandão and G. Gour, “Reversible framework for quantum resource theories,” Phys. Rev. Lett. 115, 070503 (2015).

[Crossref]

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).

[Crossref]

D. Girolami, “Observable measure of quantum coherence in finite dimensional systems,” Phys. Rev. Lett. 113, 170401 (2014).

[Crossref]

J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).

[Crossref]

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).

[Crossref]

A. Streltsov, S. Rana, M. N. Bera, and M. Lewenstein, “Towards resource theory of coherence in distributed scenarios,” Phys. Rev. X 7, 011024 (2017).

[Crossref]

M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics,” Phys. Rev. X 5, 021001 (2015).

[Crossref]

S. Du, Z. Bai, and X. Qi, “Coherence measures and optimal conversion for coherent states,” Quantum Inf. Comput. 15, 1307–1316 (2015).

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

A. Streltsov, G. Adesso, and M. B. Plenio, “Quantum coherence as a resource,” arXiv preprint arXiv:1609.02439 (2016).

J.-J. Chen, J. Cui, and H. Fan, “Coherence susceptibility as a probe of quantum phase transitions,” arXiv:1509.03576 (2015).

C. A. Rodríguez-Rosario, T. Frauenheim, and A. Aspuru-Guzik, “Thermodynamics of quantum coherence,” arXiv:1308.1245 (2013).

Z. Bai and S. Du, “Maximally coherent states,” arXiv:1503.07103 (2015).

X. Hu and H. Fan, “Coherence extraction from measurement-induced disturbance,” arXiv:1508.01978 (2015).