Abstract

Quantum coherence, which quantifies the superposition properties of a quantum state, plays an indispensable role in quantum resource theory. A recent theoretical work [Phys. Rev. Lett. 116, 070402 (2016) [CrossRef]  ] studied the manipulation of quantum coherence in bipartite or multipartite systems under the protocol local incoherent operation and classical communication (LQICC). Here we present what we believe is the first experimental realization of obtaining maximal coherence in the assisted distillation protocol based on a linear optical system. The results of our work show that the optimal distillable coherence rate can be reached even in one-copy scenario when the overall bipartite qubit state is pure. Moreover, the experiments for mixed states showed that distillable coherence can be increased with less demand than entanglement distillation. Our work might be helpful in remote quantum information processing and quantum control.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Joint measurability and temporal steering

H. S. Karthik, J. Prabhu Tej, A. R. Usha Devi, and A. K. Rajagopal
J. Opt. Soc. Am. B 32(4) A34-A39 (2015)

Detecting the degree of macroscopic quantumness using an overlap measurement

Hyunseok Jeong, Changsuk Noh, Seunglee Bae, Dimitris G. Angelakis, and Timothy C. Ralph
J. Opt. Soc. Am. B 31(12) 3057-3066 (2014)

Analog of the Clauser–Horne–Shimony–Holt inequality for steering

Eric G. Cavalcanti, Christopher J. Foster, Maria Fuwa, and Howard M. Wiseman
J. Opt. Soc. Am. B 32(4) A74-A81 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. F. Huelga and M. B. Plenio, “Vibrations, quanta and biology,” Contemp. Phys. 54, 181–207 (2013).
    [Crossref]
  2. S. Lloyd, “Quantum coherence in biological systems,” J. Phys. 302, 012037 (2011).
    [Crossref]
  3. M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).
    [Crossref]
  4. M. Herranen, K. Kainulainen, and P. M. Rahkila, “Kinetic transport theory with quantum coherence,” Nucl. Phys. A 820, 203c–206c (2009).
    [Crossref]
  5. P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, “Role of quantum coherence and environmental fluctuations in chromophoric energy transport,” J. Phys. Chem. B 113, 9942–9947 (2009).
    [Crossref]
  6. J. Åberg, “Catalytic coherence,” Phys. Rev. Lett. 113, 150402 (2014).
    [Crossref]
  7. M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics,” Phys. Rev. X 5, 021001 (2015).
    [Crossref]
  8. K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, “The extraction of work from quantum coherence,” New J. Phys. 18, 023045 (2016).
    [Crossref]
  9. P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, “Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics,” Phys. Rev. Lett. 115, 210403 (2015).
    [Crossref]
  10. V. Narasimhachar and G. Gour, “Low-temperature thermodynamics with quantum coherence,” Nat. Commun. 6, 7689 (2015).
    [Crossref]
  11. C. A. Rodríguez-Rosario, T. Frauenheim, and A. Aspuru-Guzik, “Thermodynamics of quantum coherence,” arXiv:1308.1245 (2013).
  12. B. Gardas and S. Deffner, “Thermodynamic universality of quantum Carnot engines,” Phys. Rev. E 92, 042126 (2015).
    [Crossref]
  13. O. Karlström, H. Linke, G. Karlström, and A. Wacker, “Increasing thermoelectric performance using coherent transport,” Phys. Rev. B 84, 113415 (2011).
    [Crossref]
  14. J.-J. Chen, J. Cui, and H. Fan, “Coherence susceptibility as a probe of quantum phase transitions,” arXiv:1509.03576 (2015).
  15. S. Cheng and M. J. W. Hall, “Complementarity relations for quantum coherence,” Phys. Rev. A 92, 042101 (2015).
    [Crossref]
  16. X. Hu and H. Fan, “Coherence extraction from measurement-induced disturbance,” arXiv:1508.01978 (2015).
  17. I. Marvian, R. W. Spekkens, and P. Zanardi, “Quantum speed limits, coherence, and asymmetry,” Phys. Rev. A 93, 052331 (2016).
    [Crossref]
  18. Z. Bai and S. Du, “Maximally coherent states,” arXiv:1503.07103 (2015).
  19. X. Liu, Z. Tian, J. Wang, and J. Jing, “Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field,” Ann. Phys. 366, 102–112 (2016).
    [Crossref]
  20. S. Du, Z. Bai, and Y. Guo, “Conditions for coherence transformations under incoherent operations,” Phys. Rev. A 91, 052120 (2015).
    [Crossref]
  21. M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, “Duality of quantum coherence and path distinguishability,” Phys. Rev. A 92, 012118 (2015).
    [Crossref]
  22. T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
    [Crossref]
  23. A. Winter and D. Yang, “Operational resource theory of coherence,” Phys. Rev. Lett. 116, 120404 (2016).
    [Crossref]
  24. X. Yuan, H. Zhou, Z. Cao, and X. Ma, “Intrinsic randomness as a measure of quantum coherence,” Phys. Rev. A 92, 022124 (2015).
    [Crossref]
  25. A. Streltsov, G. Adesso, and M. B. Plenio, “Quantum coherence as a resource,” arXiv preprint arXiv:1609.02439 (2016).
  26. F. G. S. L. Brandão and G. Gour, “Reversible framework for quantum resource theories,” Phys. Rev. Lett. 115, 070503 (2015).
    [Crossref]
  27. A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).
    [Crossref]
  28. D. Girolami, “Observable measure of quantum coherence in finite dimensional systems,” Phys. Rev. Lett. 113, 170401 (2014).
    [Crossref]
  29. S. Du, Z. Bai, and X. Qi, “Coherence measures and optimal conversion for coherent states,” Quantum Inf. Comput. 15, 1307–1316 (2015).
  30. J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).
    [Crossref]
  31. E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).
    [Crossref]
  32. A. Streltsov, S. Rana, M. N. Bera, and M. Lewenstein, “Towards resource theory of coherence in distributed scenarios,” Phys. Rev. X 7, 011024 (2017).
    [Crossref]
  33. B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).
  34. A. Miranowicz, “Violation of Bell inequality and entanglement of decaying Werner states,” Phys. Lett. A 327, 272–283 (2004).
    [Crossref]
  35. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).
    [Crossref]

2017 (1)

A. Streltsov, S. Rana, M. N. Bera, and M. Lewenstein, “Towards resource theory of coherence in distributed scenarios,” Phys. Rev. X 7, 011024 (2017).
[Crossref]

2016 (6)

J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).
[Crossref]

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).
[Crossref]

K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, “The extraction of work from quantum coherence,” New J. Phys. 18, 023045 (2016).
[Crossref]

I. Marvian, R. W. Spekkens, and P. Zanardi, “Quantum speed limits, coherence, and asymmetry,” Phys. Rev. A 93, 052331 (2016).
[Crossref]

X. Liu, Z. Tian, J. Wang, and J. Jing, “Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field,” Ann. Phys. 366, 102–112 (2016).
[Crossref]

A. Winter and D. Yang, “Operational resource theory of coherence,” Phys. Rev. Lett. 116, 120404 (2016).
[Crossref]

2015 (11)

X. Yuan, H. Zhou, Z. Cao, and X. Ma, “Intrinsic randomness as a measure of quantum coherence,” Phys. Rev. A 92, 022124 (2015).
[Crossref]

F. G. S. L. Brandão and G. Gour, “Reversible framework for quantum resource theories,” Phys. Rev. Lett. 115, 070503 (2015).
[Crossref]

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).
[Crossref]

S. Du, Z. Bai, and Y. Guo, “Conditions for coherence transformations under incoherent operations,” Phys. Rev. A 91, 052120 (2015).
[Crossref]

M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, “Duality of quantum coherence and path distinguishability,” Phys. Rev. A 92, 012118 (2015).
[Crossref]

P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, “Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics,” Phys. Rev. Lett. 115, 210403 (2015).
[Crossref]

V. Narasimhachar and G. Gour, “Low-temperature thermodynamics with quantum coherence,” Nat. Commun. 6, 7689 (2015).
[Crossref]

B. Gardas and S. Deffner, “Thermodynamic universality of quantum Carnot engines,” Phys. Rev. E 92, 042126 (2015).
[Crossref]

M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics,” Phys. Rev. X 5, 021001 (2015).
[Crossref]

S. Cheng and M. J. W. Hall, “Complementarity relations for quantum coherence,” Phys. Rev. A 92, 042101 (2015).
[Crossref]

S. Du, Z. Bai, and X. Qi, “Coherence measures and optimal conversion for coherent states,” Quantum Inf. Comput. 15, 1307–1316 (2015).

2014 (3)

J. Åberg, “Catalytic coherence,” Phys. Rev. Lett. 113, 150402 (2014).
[Crossref]

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref]

D. Girolami, “Observable measure of quantum coherence in finite dimensional systems,” Phys. Rev. Lett. 113, 170401 (2014).
[Crossref]

2013 (2)

S. F. Huelga and M. B. Plenio, “Vibrations, quanta and biology,” Contemp. Phys. 54, 181–207 (2013).
[Crossref]

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

2011 (2)

S. Lloyd, “Quantum coherence in biological systems,” J. Phys. 302, 012037 (2011).
[Crossref]

O. Karlström, H. Linke, G. Karlström, and A. Wacker, “Increasing thermoelectric performance using coherent transport,” Phys. Rev. B 84, 113415 (2011).
[Crossref]

2009 (2)

M. Herranen, K. Kainulainen, and P. M. Rahkila, “Kinetic transport theory with quantum coherence,” Nucl. Phys. A 820, 203c–206c (2009).
[Crossref]

P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, “Role of quantum coherence and environmental fluctuations in chromophoric energy transport,” J. Phys. Chem. B 113, 9942–9947 (2009).
[Crossref]

2008 (1)

M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).
[Crossref]

2004 (1)

A. Miranowicz, “Violation of Bell inequality and entanglement of decaying Werner states,” Phys. Lett. A 327, 272–283 (2004).
[Crossref]

1999 (1)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).
[Crossref]

Åberg, J.

J. Åberg, “Catalytic coherence,” Phys. Rev. Lett. 113, 150402 (2014).
[Crossref]

Adesso, G.

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).
[Crossref]

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).
[Crossref]

A. Streltsov, G. Adesso, and M. B. Plenio, “Quantum coherence as a resource,” arXiv preprint arXiv:1609.02439 (2016).

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).
[Crossref]

Aspuru-Guzik, A.

P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, “Role of quantum coherence and environmental fluctuations in chromophoric energy transport,” J. Phys. Chem. B 113, 9942–9947 (2009).
[Crossref]

C. A. Rodríguez-Rosario, T. Frauenheim, and A. Aspuru-Guzik, “Thermodynamics of quantum coherence,” arXiv:1308.1245 (2013).

Bai, Z.

S. Du, Z. Bai, and Y. Guo, “Conditions for coherence transformations under incoherent operations,” Phys. Rev. A 91, 052120 (2015).
[Crossref]

S. Du, Z. Bai, and X. Qi, “Coherence measures and optimal conversion for coherent states,” Quantum Inf. Comput. 15, 1307–1316 (2015).

Z. Bai and S. Du, “Maximally coherent states,” arXiv:1503.07103 (2015).

Baumgratz, T.

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref]

Bera, M. N.

A. Streltsov, S. Rana, M. N. Bera, and M. Lewenstein, “Towards resource theory of coherence in distributed scenarios,” Phys. Rev. X 7, 011024 (2017).
[Crossref]

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).
[Crossref]

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).
[Crossref]

M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, “Duality of quantum coherence and path distinguishability,” Phys. Rev. A 92, 012118 (2015).
[Crossref]

Brandão, F. G. S. L.

F. G. S. L. Brandão and G. Gour, “Reversible framework for quantum resource theories,” Phys. Rev. Lett. 115, 070503 (2015).
[Crossref]

Cao, Z.

X. Yuan, H. Zhou, Z. Cao, and X. Ma, “Intrinsic randomness as a measure of quantum coherence,” Phys. Rev. A 92, 022124 (2015).
[Crossref]

Chen, J.-J.

J.-J. Chen, J. Cui, and H. Fan, “Coherence susceptibility as a probe of quantum phase transitions,” arXiv:1509.03576 (2015).

Cheng, S.

S. Cheng and M. J. W. Hall, “Complementarity relations for quantum coherence,” Phys. Rev. A 92, 042101 (2015).
[Crossref]

Chitambar, E.

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).
[Crossref]

Cramer, M.

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref]

Cui, J.

J.-J. Chen, J. Cui, and H. Fan, “Coherence susceptibility as a probe of quantum phase transitions,” arXiv:1509.03576 (2015).

Cwiklinski, P.

P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, “Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics,” Phys. Rev. Lett. 115, 210403 (2015).
[Crossref]

Deffner, S.

B. Gardas and S. Deffner, “Thermodynamic universality of quantum Carnot engines,” Phys. Rev. E 92, 042126 (2015).
[Crossref]

Dhar, H. S.

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).
[Crossref]

Dong, D.

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

Du, S.

S. Du, Z. Bai, and X. Qi, “Coherence measures and optimal conversion for coherent states,” Quantum Inf. Comput. 15, 1307–1316 (2015).

S. Du, Z. Bai, and Y. Guo, “Conditions for coherence transformations under incoherent operations,” Phys. Rev. A 91, 052120 (2015).
[Crossref]

Z. Bai and S. Du, “Maximally coherent states,” arXiv:1503.07103 (2015).

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).
[Crossref]

Fan, H.

J.-J. Chen, J. Cui, and H. Fan, “Coherence susceptibility as a probe of quantum phase transitions,” arXiv:1509.03576 (2015).

X. Hu and H. Fan, “Coherence extraction from measurement-induced disturbance,” arXiv:1508.01978 (2015).

Frauenheim, T.

C. A. Rodríguez-Rosario, T. Frauenheim, and A. Aspuru-Guzik, “Thermodynamics of quantum coherence,” arXiv:1308.1245 (2013).

Gardas, B.

B. Gardas and S. Deffner, “Thermodynamic universality of quantum Carnot engines,” Phys. Rev. E 92, 042126 (2015).
[Crossref]

Girolami, D.

J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).
[Crossref]

D. Girolami, “Observable measure of quantum coherence in finite dimensional systems,” Phys. Rev. Lett. 113, 170401 (2014).
[Crossref]

Gour, G.

V. Narasimhachar and G. Gour, “Low-temperature thermodynamics with quantum coherence,” Nat. Commun. 6, 7689 (2015).
[Crossref]

F. G. S. L. Brandão and G. Gour, “Reversible framework for quantum resource theories,” Phys. Rev. Lett. 115, 070503 (2015).
[Crossref]

Gu, M.

J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).
[Crossref]

Guo, G.

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

Guo, Y.

S. Du, Z. Bai, and Y. Guo, “Conditions for coherence transformations under incoherent operations,” Phys. Rev. A 91, 052120 (2015).
[Crossref]

Hall, M. J. W.

S. Cheng and M. J. W. Hall, “Complementarity relations for quantum coherence,” Phys. Rev. A 92, 042101 (2015).
[Crossref]

Herranen, M.

M. Herranen, K. Kainulainen, and P. M. Rahkila, “Kinetic transport theory with quantum coherence,” Nucl. Phys. A 820, 203c–206c (2009).
[Crossref]

Horodecki, M.

P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, “Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics,” Phys. Rev. Lett. 115, 210403 (2015).
[Crossref]

Hou, Z.

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

Hu, X.

X. Hu and H. Fan, “Coherence extraction from measurement-induced disturbance,” arXiv:1508.01978 (2015).

Huelga, S. F.

S. F. Huelga and M. B. Plenio, “Vibrations, quanta and biology,” Contemp. Phys. 54, 181–207 (2013).
[Crossref]

M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).
[Crossref]

Jennings, D.

K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, “The extraction of work from quantum coherence,” New J. Phys. 18, 023045 (2016).
[Crossref]

M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics,” Phys. Rev. X 5, 021001 (2015).
[Crossref]

Jing, J.

X. Liu, Z. Tian, J. Wang, and J. Jing, “Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field,” Ann. Phys. 366, 102–112 (2016).
[Crossref]

Kainulainen, K.

M. Herranen, K. Kainulainen, and P. M. Rahkila, “Kinetic transport theory with quantum coherence,” Nucl. Phys. A 820, 203c–206c (2009).
[Crossref]

Karlström, G.

O. Karlström, H. Linke, G. Karlström, and A. Wacker, “Increasing thermoelectric performance using coherent transport,” Phys. Rev. B 84, 113415 (2011).
[Crossref]

Karlström, O.

O. Karlström, H. Linke, G. Karlström, and A. Wacker, “Increasing thermoelectric performance using coherent transport,” Phys. Rev. B 84, 113415 (2011).
[Crossref]

Korzekwa, K.

K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, “The extraction of work from quantum coherence,” New J. Phys. 18, 023045 (2016).
[Crossref]

M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics,” Phys. Rev. X 5, 021001 (2015).
[Crossref]

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).
[Crossref]

Lewenstein, M.

A. Streltsov, S. Rana, M. N. Bera, and M. Lewenstein, “Towards resource theory of coherence in distributed scenarios,” Phys. Rev. X 7, 011024 (2017).
[Crossref]

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).
[Crossref]

Li, L.

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

Linke, H.

O. Karlström, H. Linke, G. Karlström, and A. Wacker, “Increasing thermoelectric performance using coherent transport,” Phys. Rev. B 84, 113415 (2011).
[Crossref]

Liu, X.

X. Liu, Z. Tian, J. Wang, and J. Jing, “Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field,” Ann. Phys. 366, 102–112 (2016).
[Crossref]

Lloyd, S.

S. Lloyd, “Quantum coherence in biological systems,” J. Phys. 302, 012037 (2011).
[Crossref]

Lostaglio, M.

K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, “The extraction of work from quantum coherence,” New J. Phys. 18, 023045 (2016).
[Crossref]

M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics,” Phys. Rev. X 5, 021001 (2015).
[Crossref]

Ma, J.

J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).
[Crossref]

Ma, X.

X. Yuan, H. Zhou, Z. Cao, and X. Ma, “Intrinsic randomness as a measure of quantum coherence,” Phys. Rev. A 92, 022124 (2015).
[Crossref]

Marvian, I.

I. Marvian, R. W. Spekkens, and P. Zanardi, “Quantum speed limits, coherence, and asymmetry,” Phys. Rev. A 93, 052331 (2016).
[Crossref]

Miranowicz, A.

A. Miranowicz, “Violation of Bell inequality and entanglement of decaying Werner states,” Phys. Lett. A 327, 272–283 (2004).
[Crossref]

Mohseni, M.

P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, “Role of quantum coherence and environmental fluctuations in chromophoric energy transport,” J. Phys. Chem. B 113, 9942–9947 (2009).
[Crossref]

Narasimhachar, V.

V. Narasimhachar and G. Gour, “Low-temperature thermodynamics with quantum coherence,” Nat. Commun. 6, 7689 (2015).
[Crossref]

Oppenheim, J.

K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, “The extraction of work from quantum coherence,” New J. Phys. 18, 023045 (2016).
[Crossref]

P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, “Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics,” Phys. Rev. Lett. 115, 210403 (2015).
[Crossref]

Pati, A. K.

M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, “Duality of quantum coherence and path distinguishability,” Phys. Rev. A 92, 012118 (2015).
[Crossref]

Plenio, M. B.

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref]

S. F. Huelga and M. B. Plenio, “Vibrations, quanta and biology,” Contemp. Phys. 54, 181–207 (2013).
[Crossref]

M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).
[Crossref]

A. Streltsov, G. Adesso, and M. B. Plenio, “Quantum coherence as a resource,” arXiv preprint arXiv:1609.02439 (2016).

Qi, B.

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

Qi, X.

S. Du, Z. Bai, and X. Qi, “Coherence measures and optimal conversion for coherent states,” Quantum Inf. Comput. 15, 1307–1316 (2015).

Qureshi, T.

M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, “Duality of quantum coherence and path distinguishability,” Phys. Rev. A 92, 012118 (2015).
[Crossref]

Rahkila, P. M.

M. Herranen, K. Kainulainen, and P. M. Rahkila, “Kinetic transport theory with quantum coherence,” Nucl. Phys. A 820, 203c–206c (2009).
[Crossref]

Rana, S.

A. Streltsov, S. Rana, M. N. Bera, and M. Lewenstein, “Towards resource theory of coherence in distributed scenarios,” Phys. Rev. X 7, 011024 (2017).
[Crossref]

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).
[Crossref]

Rebentrost, P.

P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, “Role of quantum coherence and environmental fluctuations in chromophoric energy transport,” J. Phys. Chem. B 113, 9942–9947 (2009).
[Crossref]

Rodríguez-Rosario, C. A.

C. A. Rodríguez-Rosario, T. Frauenheim, and A. Aspuru-Guzik, “Thermodynamics of quantum coherence,” arXiv:1308.1245 (2013).

Rudolph, T.

M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics,” Phys. Rev. X 5, 021001 (2015).
[Crossref]

Siddiqui, M. A.

M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, “Duality of quantum coherence and path distinguishability,” Phys. Rev. A 92, 012118 (2015).
[Crossref]

Singh, U.

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).
[Crossref]

Spekkens, R. W.

I. Marvian, R. W. Spekkens, and P. Zanardi, “Quantum speed limits, coherence, and asymmetry,” Phys. Rev. A 93, 052331 (2016).
[Crossref]

Streltsov, A.

A. Streltsov, S. Rana, M. N. Bera, and M. Lewenstein, “Towards resource theory of coherence in distributed scenarios,” Phys. Rev. X 7, 011024 (2017).
[Crossref]

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).
[Crossref]

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).
[Crossref]

A. Streltsov, G. Adesso, and M. B. Plenio, “Quantum coherence as a resource,” arXiv preprint arXiv:1609.02439 (2016).

Studzinski, M.

P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, “Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics,” Phys. Rev. Lett. 115, 210403 (2015).
[Crossref]

Tian, Z.

X. Liu, Z. Tian, J. Wang, and J. Jing, “Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field,” Ann. Phys. 366, 102–112 (2016).
[Crossref]

Vedral, V.

J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).
[Crossref]

Wacker, A.

O. Karlström, H. Linke, G. Karlström, and A. Wacker, “Increasing thermoelectric performance using coherent transport,” Phys. Rev. B 84, 113415 (2011).
[Crossref]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).
[Crossref]

Wang, J.

X. Liu, Z. Tian, J. Wang, and J. Jing, “Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field,” Ann. Phys. 366, 102–112 (2016).
[Crossref]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).
[Crossref]

Winter, A.

A. Winter and D. Yang, “Operational resource theory of coherence,” Phys. Rev. Lett. 116, 120404 (2016).
[Crossref]

Xiang, G.

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

Yadin, B.

J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).
[Crossref]

Yang, D.

A. Winter and D. Yang, “Operational resource theory of coherence,” Phys. Rev. Lett. 116, 120404 (2016).
[Crossref]

Yuan, X.

X. Yuan, H. Zhou, Z. Cao, and X. Ma, “Intrinsic randomness as a measure of quantum coherence,” Phys. Rev. A 92, 022124 (2015).
[Crossref]

Zanardi, P.

I. Marvian, R. W. Spekkens, and P. Zanardi, “Quantum speed limits, coherence, and asymmetry,” Phys. Rev. A 93, 052331 (2016).
[Crossref]

Zhou, H.

X. Yuan, H. Zhou, Z. Cao, and X. Ma, “Intrinsic randomness as a measure of quantum coherence,” Phys. Rev. A 92, 022124 (2015).
[Crossref]

Ann. Phys. (1)

X. Liu, Z. Tian, J. Wang, and J. Jing, “Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field,” Ann. Phys. 366, 102–112 (2016).
[Crossref]

Contemp. Phys. (1)

S. F. Huelga and M. B. Plenio, “Vibrations, quanta and biology,” Contemp. Phys. 54, 181–207 (2013).
[Crossref]

J. Phys. (1)

S. Lloyd, “Quantum coherence in biological systems,” J. Phys. 302, 012037 (2011).
[Crossref]

J. Phys. Chem. B (1)

P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, “Role of quantum coherence and environmental fluctuations in chromophoric energy transport,” J. Phys. Chem. B 113, 9942–9947 (2009).
[Crossref]

Nat. Commun. (1)

V. Narasimhachar and G. Gour, “Low-temperature thermodynamics with quantum coherence,” Nat. Commun. 6, 7689 (2015).
[Crossref]

New J. Phys. (2)

K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, “The extraction of work from quantum coherence,” New J. Phys. 18, 023045 (2016).
[Crossref]

M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).
[Crossref]

Nucl. Phys. A (1)

M. Herranen, K. Kainulainen, and P. M. Rahkila, “Kinetic transport theory with quantum coherence,” Nucl. Phys. A 820, 203c–206c (2009).
[Crossref]

Phys. Lett. A (1)

A. Miranowicz, “Violation of Bell inequality and entanglement of decaying Werner states,” Phys. Lett. A 327, 272–283 (2004).
[Crossref]

Phys. Rev. A (6)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773(R) (1999).
[Crossref]

X. Yuan, H. Zhou, Z. Cao, and X. Ma, “Intrinsic randomness as a measure of quantum coherence,” Phys. Rev. A 92, 022124 (2015).
[Crossref]

S. Du, Z. Bai, and Y. Guo, “Conditions for coherence transformations under incoherent operations,” Phys. Rev. A 91, 052120 (2015).
[Crossref]

M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, “Duality of quantum coherence and path distinguishability,” Phys. Rev. A 92, 012118 (2015).
[Crossref]

S. Cheng and M. J. W. Hall, “Complementarity relations for quantum coherence,” Phys. Rev. A 92, 042101 (2015).
[Crossref]

I. Marvian, R. W. Spekkens, and P. Zanardi, “Quantum speed limits, coherence, and asymmetry,” Phys. Rev. A 93, 052331 (2016).
[Crossref]

Phys. Rev. B (1)

O. Karlström, H. Linke, G. Karlström, and A. Wacker, “Increasing thermoelectric performance using coherent transport,” Phys. Rev. B 84, 113415 (2011).
[Crossref]

Phys. Rev. E (1)

B. Gardas and S. Deffner, “Thermodynamic universality of quantum Carnot engines,” Phys. Rev. E 92, 042126 (2015).
[Crossref]

Phys. Rev. Lett. (9)

P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, “Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics,” Phys. Rev. Lett. 115, 210403 (2015).
[Crossref]

J. Åberg, “Catalytic coherence,” Phys. Rev. Lett. 113, 150402 (2014).
[Crossref]

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref]

A. Winter and D. Yang, “Operational resource theory of coherence,” Phys. Rev. Lett. 116, 120404 (2016).
[Crossref]

F. G. S. L. Brandão and G. Gour, “Reversible framework for quantum resource theories,” Phys. Rev. Lett. 115, 070503 (2015).
[Crossref]

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, “Measuring quantum coherence with entanglement,” Phys. Rev. Lett. 115, 020403 (2015).
[Crossref]

D. Girolami, “Observable measure of quantum coherence in finite dimensional systems,” Phys. Rev. Lett. 113, 170401 (2014).
[Crossref]

J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, “Converting coherence to quantum correlations,” Phys. Rev. Lett. 116, 160407 (2016).
[Crossref]

E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, “Assisted distillation of quantum coherence,” Phys. Rev. Lett. 116, 070402 (2016).
[Crossref]

Phys. Rev. X (2)

A. Streltsov, S. Rana, M. N. Bera, and M. Lewenstein, “Towards resource theory of coherence in distributed scenarios,” Phys. Rev. X 7, 011024 (2017).
[Crossref]

M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, “Quantum coherence, time-translation symmetry, and thermodynamics,” Phys. Rev. X 5, 021001 (2015).
[Crossref]

Quantum Inf. Comput. (1)

S. Du, Z. Bai, and X. Qi, “Coherence measures and optimal conversion for coherent states,” Quantum Inf. Comput. 15, 1307–1316 (2015).

Sci. Rep. (1)

B. Qi, Z. Hou, L. Li, D. Dong, G. Xiang, and G. Guo, “Quantum state tomography via linear regression estimation,” Sci. Rep. 3, 3496 (2013).

Other (5)

A. Streltsov, G. Adesso, and M. B. Plenio, “Quantum coherence as a resource,” arXiv preprint arXiv:1609.02439 (2016).

J.-J. Chen, J. Cui, and H. Fan, “Coherence susceptibility as a probe of quantum phase transitions,” arXiv:1509.03576 (2015).

C. A. Rodríguez-Rosario, T. Frauenheim, and A. Aspuru-Guzik, “Thermodynamics of quantum coherence,” arXiv:1308.1245 (2013).

Z. Bai and S. Du, “Maximally coherent states,” arXiv:1503.07103 (2015).

X. Hu and H. Fan, “Coherence extraction from measurement-induced disturbance,” arXiv:1508.01978 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup has two modules: state preparation and LQICC. In the state preparation module, two classes of pure states |ΨAB=cos2θ|HH+sin2θ|VV and |ΨAB=12(cos2θ|HH+cos2θ|HV+sin2θ|VHsin2θ|VV), and arbitrary Werner states in the form ρAB=p|ΨΨ|+(1p)I4 can be generated. After preparation of the desired two-photon resource states, the two photons are distributed to Alice and Bob. In the LQICC module, optimal assisted operations are then performed by Alice on her photon and the measurement results are sent to Bob via a classical communication channel. According to the classical message from Alice, desired corresponding incoherent operations are performed on Bob’s photon. After the assisted distillation protocol, quantum state tomography is used to characterize the final state of Bob’s photon to identify the final distillable coherence. Key to components: HWP, half-wave plate; QWP, quarter-wave plate; BS, beam splitter; IF, interference filter; SPD, single photon detector; and PBS, polarizing beam splitter.

Fig. 2.
Fig. 2.

Experimental results for the pure states. As shown in Fig. 1, Cd(ρB) (red upward-pointing triangles) represent the distillable coherence of Bob without distillation, CdA|B(|ΨAB) (pink downward-pointing triangles) represent the distillable coherence of Bob after assisted distillation, δCd(ρB) (blue squares) represent an increase in coherence, and black dashed-dotted lines represent the theoretical curve. In Fig. 1, the resource state has the form of |ΨAB=cos2θ|HH+sin2θ|VV and in Fig. 3 below, |ΨAB=12(cos2θ|HH+cos2θ|HV+sin2θ|VHsin2θ|VV).

Fig. 3.
Fig. 3.

Experimental results for Werner states [the colored symbols have the same meaning as shown in Fig. 2, except the brown dash-dotted line represents the theoretical calculated upper bound in inequality in Eq. (2)]. The resource state has the form ρAB=p|ΨΨ|+(1p)I4.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

CdA|B(ρ)=sup{R:limn(infΛΛ(ρn)ϕRn)=0},
CdA|B(ρAB)CrA|B(ρAB),
Ca(ρ)=maxipiS(Δ(Ψi)).
|ΨAB=k=11ck|ΨkA|kB,
Ca(ρ)=Ca(ρ)=S(Δ(ρ)).

Metrics