Abstract

Significant progress has been made in the field of silicon photonics over the past two decades. Silicon photonics provides substantial performance advantages in many data processing and transfer applications. Until now, the benefits of active silicon photonics in cryogenic systems have remained unexplored. Here we demonstrate the operation of a high-speed, CMOS compatible silicon micro-disk modulator transmitting data at rates up to 10 Gb/s and at temperatures down to 4.8 K. This opens the door for the use of silicon photonics as an interface to low temperature, bandwidth intensive systems such as high-performance superconducting-based computing and integrated quantum optics circuits interfacing to superconducting single-photon detectors.

Full Article  |  PDF Article
OSA Recommended Articles
Vertical junction silicon microdisk modulators and switches

Michael R. Watts, William A. Zortman, Douglas C. Trotter, Ralph W. Young, and Anthony L. Lentine
Opt. Express 19(22) 21989-22003 (2011)

Depletion-mode carrier-plasma optical modulator in zero-change advanced CMOS

Jeffrey M. Shainline, Jason S. Orcutt, Mark T. Wade, Kareem Nammari, Benjamin Moss, Michael Georgas, Chen Sun, Rajeev J. Ram, Vladimir Stojanović, and Miloš A. Popović
Opt. Lett. 38(15) 2657-2659 (2013)

Low Vπ Silicon photonics modulators with highly linear epitaxially grown phase shifters

Saeed Sharif Azadeh, Florian Merget, Sebastian Romero-García, Alvaro Moscoso-Mártir, Nils von den Driesch, Juliana Müller, Siegfried Mantl, Dan Buca, and Jeremy Witzens
Opt. Express 23(18) 23526-23550 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
    [Crossref]
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref]
  3. G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  4. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
    [Crossref]
  5. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
    [Crossref]
  6. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45  GHz CMOS compatible germanium waveguide photodiode with low dark current,” Opt. Express 19, 24897–24904 (2011).
    [Crossref]
  7. A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60  GHz bandwidth using inductive gain peaking,” Opt. Express 21, 28387–28393 (2013).
    [Crossref]
  8. K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems,” IEEE Trans. Appl. Supercond. 1, 3–28 (1991).
    [Crossref]
  9. M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
    [Crossref]
  10. F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
    [Crossref]
  11. G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
    [Crossref]
  12. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
    [Crossref]
  13. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
    [Crossref]
  14. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [Crossref]
  15. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
    [Crossref]
  16. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161–164 (2004).
    [Crossref]
  17. Office of the Director of National Intelligence, “Data ingress and egress for cryogenic systems,” Request for information retrieved from http://www.iarpa.gov/ .
  18. F. Kuemmeth and C. M. Marcus, “Reducing noise and temperature during measurements in cryostats,” U.S. patentUS20150060190 A1 (March5, 2015).
  19. B. Lu, Y.-C. Lu, J. Cheng, R. P. Schneider, J. C. Zolper, and G. Goncher, “Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 1347–1359 (1996).
    [Crossref]
  20. G. Ortiz, C. Hains, B. Lu, S. Sun, J. Cheng, and J. Zolper, “Cryogenic VCSELs with chirped multiple quantum wells for a very wide temperature range of CW operation,” IEEE Photon. Technol. Lett. 8, 1423–1425 (1996).
    [Crossref]
  21. Z. Zou, D. Huffaker, and D. Deppe, “Ultralow-threshold cryogenic vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 12, 1–3 (2000).
    [Crossref]
  22. K. McCammon, J. Morse, D. Masquelier, C. McConaghey, H. Garrett, K. Hugenberg, M. Lowry, E. Track, and L. Bunz, “Fiber optic transceiver for interfacing digital superconducting electronics,” (Lawrence Livermore National Laboratory, 1994).
  23. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
    [Crossref]
  24. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low V pp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
    [Crossref]
  25. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
    [Crossref]
  26. W. A. Zortman, D. C. Trotter, A. L. Lentine, G. Robertson, A. Hsia, and M. R. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photon. J. 4, 242–249 (2012).
    [Crossref]
  27. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  28. J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [Crossref]
  29. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
    [Crossref]
  30. J. Wright, D. C. Trotter, W. Zortman, A. L. Lentine, E. Shaner, M. R. Watts, A. Akturk, and M. Peckerar, “Cryogenic operation of silicon photonic modulators,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2012), paper IM2A–5.
  31. W. H. Pernice, C. Schuck, M. Li, and H. X. Tang, “Carrier and thermal dynamics of silicon photonic resonators at cryogenic temperatures,” Opt. Express 19, 3290–3296 (2011).
    [Crossref]
  32. X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3, 1436 (2013).
  33. M. Chin and S. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol. 16, 1433–1446 (1998).
    [Crossref]
  34. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18, 2127–2136 (2010).
    [Crossref]
  35. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  36. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19, 26017–26026 (2011).
    [Crossref]
  37. A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
    [Crossref]
  38. S. Selberherr, “MOS device modeling at 77  K,” IEEE Trans. Electron Dev. 36, 1464–1474 (1989).
    [Crossref]
  39. A. Akturk, J. Allnutt, Z. Dilli, N. Goldsman, and M. Peckerar, “Device modeling at cryogenic temperatures: effects of incomplete ionization,” IEEE Trans. Electron Dev. 54, 2984–2990 (2007).
    [Crossref]
  40. V. Borblik, Y. M. Shwarts, M. Shwarts, and A. Fonkich, “Concerning the nature of relaxation oscillations in silicon diodes in the cryogenic temperature region,” Cryogenics 50, 417–420 (2010).
    [Crossref]
  41. S. Koenig and G. Gunther-Mohr, “The low temperature electrical conductivity of n-type germanium,” J. Phys. Chem. Solids 2, 268–283 (1957).
    [Crossref]
  42. T. Rosenbaum, K. Andres, G. Thomas, and R. Bhatt, “Sharp metal-insulator transition in a random solid,” Phys. Rev. Lett. 45, 1723–1726 (1980).
    [Crossref]
  43. C. H. Cox, Analog Optical Links: Theory and Practice (Cambridge University, 2006), pp. 92–93.
  44. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2010).

2015 (2)

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

2014 (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

2013 (2)

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60  GHz bandwidth using inductive gain peaking,” Opt. Express 21, 28387–28393 (2013).
[Crossref]

X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3, 1436 (2013).

2012 (3)

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref]

W. A. Zortman, D. C. Trotter, A. L. Lentine, G. Robertson, A. Hsia, and M. R. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photon. J. 4, 242–249 (2012).
[Crossref]

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
[Crossref]

2011 (5)

2010 (4)

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18, 2127–2136 (2010).
[Crossref]

V. Borblik, Y. M. Shwarts, M. Shwarts, and A. Fonkich, “Concerning the nature of relaxation oscillations in silicon diodes in the cryogenic temperature region,” Cryogenics 50, 417–420 (2010).
[Crossref]

2009 (4)

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low V pp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

2007 (2)

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]

A. Akturk, J. Allnutt, Z. Dilli, N. Goldsman, and M. Peckerar, “Device modeling at cryogenic temperatures: effects of incomplete ionization,” IEEE Trans. Electron Dev. 54, 2984–2990 (2007).
[Crossref]

2006 (2)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

2004 (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161–164 (2004).
[Crossref]

2001 (1)

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

2000 (1)

Z. Zou, D. Huffaker, and D. Deppe, “Ultralow-threshold cryogenic vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 12, 1–3 (2000).
[Crossref]

1998 (1)

1996 (2)

B. Lu, Y.-C. Lu, J. Cheng, R. P. Schneider, J. C. Zolper, and G. Goncher, “Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 1347–1359 (1996).
[Crossref]

G. Ortiz, C. Hains, B. Lu, S. Sun, J. Cheng, and J. Zolper, “Cryogenic VCSELs with chirped multiple quantum wells for a very wide temperature range of CW operation,” IEEE Photon. Technol. Lett. 8, 1423–1425 (1996).
[Crossref]

1991 (1)

K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems,” IEEE Trans. Appl. Supercond. 1, 3–28 (1991).
[Crossref]

1989 (1)

S. Selberherr, “MOS device modeling at 77  K,” IEEE Trans. Electron Dev. 36, 1464–1474 (1989).
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

1980 (1)

T. Rosenbaum, K. Andres, G. Thomas, and R. Bhatt, “Sharp metal-insulator transition in a random solid,” Phys. Rev. Lett. 45, 1723–1726 (1980).
[Crossref]

1957 (1)

S. Koenig and G. Gunther-Mohr, “The low temperature electrical conductivity of n-type germanium,” J. Phys. Chem. Solids 2, 268–283 (1957).
[Crossref]

Adibi, A.

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2010).

Akhlaghi, M. K.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref]

Akturk, A.

A. Akturk, J. Allnutt, Z. Dilli, N. Goldsman, and M. Peckerar, “Device modeling at cryogenic temperatures: effects of incomplete ionization,” IEEE Trans. Electron Dev. 54, 2984–2990 (2007).
[Crossref]

J. Wright, D. C. Trotter, W. Zortman, A. L. Lentine, E. Shaner, M. R. Watts, A. Akturk, and M. Peckerar, “Cryogenic operation of silicon photonic modulators,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2012), paper IM2A–5.

Alegre, T. M.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Allnutt, J.

A. Akturk, J. Allnutt, Z. Dilli, N. Goldsman, and M. Peckerar, “Device modeling at cryogenic temperatures: effects of incomplete ionization,” IEEE Trans. Electron Dev. 54, 2984–2990 (2007).
[Crossref]

Andres, K.

T. Rosenbaum, K. Andres, G. Thomas, and R. Bhatt, “Sharp metal-insulator transition in a random solid,” Phys. Rev. Lett. 45, 1723–1726 (1980).
[Crossref]

Asghari, M.

Aspelmeyer, M.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Assefa, S.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Atabaki, A. H.

Baehr-Jones, T.

Bellei, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Berggren, K. K.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

Bhatt, R.

T. Rosenbaum, K. Andres, G. Thomas, and R. Bhatt, “Sharp metal-insulator transition in a random solid,” Phys. Rev. Lett. 45, 1723–1726 (1980).
[Crossref]

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
[Crossref]

Borblik, V.

V. Borblik, Y. M. Shwarts, M. Shwarts, and A. Fonkich, “Concerning the nature of relaxation oscillations in silicon diodes in the cryogenic temperature region,” Cryogenics 50, 417–420 (2010).
[Crossref]

Bunz, L.

K. McCammon, J. Morse, D. Masquelier, C. McConaghey, H. Garrett, K. Hugenberg, M. Lowry, E. Track, and L. Bunz, “Fiber optic transceiver for interfacing digital superconducting electronics,” (Lawrence Livermore National Laboratory, 1994).

Capellini, G.

Chan, J.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Cheng, J.

G. Ortiz, C. Hains, B. Lu, S. Sun, J. Cheng, and J. Zolper, “Cryogenic VCSELs with chirped multiple quantum wells for a very wide temperature range of CW operation,” IEEE Photon. Technol. Lett. 8, 1423–1425 (1996).
[Crossref]

B. Lu, Y.-C. Lu, J. Cheng, R. P. Schneider, J. C. Zolper, and G. Goncher, “Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 1347–1359 (1996).
[Crossref]

Chin, M.

Chulkova, G.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Cox, C. H.

C. H. Cox, Analog Optical Links: Theory and Practice (Cambridge University, 2006), pp. 92–93.

Dane, A.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Dauler, E. A.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

Davids, P. S.

Deléglise, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref]

Deppe, D.

Z. Zou, D. Huffaker, and D. Deppe, “Ultralow-threshold cryogenic vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 12, 1–3 (2000).
[Crossref]

DeRose, C. T.

Dilli, Z.

A. Akturk, J. Allnutt, Z. Dilli, N. Goldsman, and M. Peckerar, “Device modeling at cryogenic temperatures: effects of incomplete ionization,” IEEE Trans. Electron Dev. 54, 2984–2990 (2007).
[Crossref]

Dong, P.

Dzardanov, A.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Englund, D.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Feng, D.

Fisher, M.

Fonkich, A.

V. Borblik, Y. M. Shwarts, M. Shwarts, and A. Fonkich, “Concerning the nature of relaxation oscillations in silicon diodes in the cryogenic temperature region,” Cryogenics 50, 417–420 (2010).
[Crossref]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Gardes, F.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Garrett, H.

K. McCammon, J. Morse, D. Masquelier, C. McConaghey, H. Garrett, K. Hugenberg, M. Lowry, E. Track, and L. Bunz, “Fiber optic transceiver for interfacing digital superconducting electronics,” (Lawrence Livermore National Laboratory, 1994).

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref]

Gol’Tsman, G.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Goldsman, N.

A. Akturk, J. Allnutt, Z. Dilli, N. Goldsman, and M. Peckerar, “Device modeling at cryogenic temperatures: effects of incomplete ionization,” IEEE Trans. Electron Dev. 54, 2984–2990 (2007).
[Crossref]

Goltsman, G.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

Goncher, G.

B. Lu, Y.-C. Lu, J. Cheng, R. P. Schneider, J. C. Zolper, and G. Goncher, “Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 1347–1359 (1996).
[Crossref]

Gould, M.

Gröblacher, S.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Gunther-Mohr, G.

S. Koenig and G. Gunther-Mohr, “The low temperature electrical conductivity of n-type germanium,” J. Phys. Chem. Solids 2, 268–283 (1957).
[Crossref]

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

Hains, C.

G. Ortiz, C. Hains, B. Lu, S. Sun, J. Cheng, and J. Zolper, “Cryogenic VCSELs with chirped multiple quantum wells for a very wide temperature range of CW operation,” IEEE Photon. Technol. Lett. 8, 1423–1425 (1996).
[Crossref]

Hamilton, S. A.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

Harris, N. C.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Hill, J. T.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Ho, S.

Hochberg, M.

Hosseini, E. S.

Hsia, A.

W. A. Zortman, D. C. Trotter, A. L. Lentine, G. Robertson, A. Hsia, and M. R. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photon. J. 4, 242–249 (2012).
[Crossref]

Hu, X.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Huffaker, D.

Z. Zou, D. Huffaker, and D. Deppe, “Ultralow-threshold cryogenic vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 12, 1–3 (2000).
[Crossref]

Hugenberg, K.

K. McCammon, J. Morse, D. Masquelier, C. McConaghey, H. Garrett, K. Hugenberg, M. Lowry, E. Track, and L. Bunz, “Fiber optic transceiver for interfacing digital superconducting electronics,” (Lawrence Livermore National Laboratory, 1994).

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Kerman, A. J.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

Kharel, P.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Kippenberg, T. J.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref]

Koenig, S.

S. Koenig and G. Gunther-Mohr, “The low temperature electrical conductivity of n-type germanium,” J. Phys. Chem. Solids 2, 268–283 (1957).
[Crossref]

Krause, A.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Krishnamoorthy, A. V.

Kuemmeth, F.

F. Kuemmeth and C. M. Marcus, “Reducing noise and temperature during measurements in cryostats,” U.S. patentUS20150060190 A1 (March5, 2015).

Kung, C.-C.

Lee, C.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Lentine, A. L.

W. A. Zortman, D. C. Trotter, A. L. Lentine, G. Robertson, A. Hsia, and M. R. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photon. J. 4, 242–249 (2012).
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19, 26017–26026 (2011).
[Crossref]

J. Wright, D. C. Trotter, W. Zortman, A. L. Lentine, E. Shaner, M. R. Watts, A. Akturk, and M. Peckerar, “Cryogenic operation of silicon photonic modulators,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2012), paper IM2A–5.

Li, G.

Li, M.

Liang, H.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Liao, S.

Likharev, K. K.

K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems,” IEEE Trans. Appl. Supercond. 1, 3–28 (1991).
[Crossref]

Lim, A. E.-J.

Lipatov, A.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Lipson, M.

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Liu, Y.

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref]

Lo, G.-Q.

Lowry, M.

K. McCammon, J. Morse, D. Masquelier, C. McConaghey, H. Garrett, K. Hugenberg, M. Lowry, E. Track, and L. Bunz, “Fiber optic transceiver for interfacing digital superconducting electronics,” (Lawrence Livermore National Laboratory, 1994).

Lu, B.

G. Ortiz, C. Hains, B. Lu, S. Sun, J. Cheng, and J. Zolper, “Cryogenic VCSELs with chirped multiple quantum wells for a very wide temperature range of CW operation,” IEEE Photon. Technol. Lett. 8, 1423–1425 (1996).
[Crossref]

B. Lu, Y.-C. Lu, J. Cheng, R. P. Schneider, J. C. Zolper, and G. Goncher, “Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 1347–1359 (1996).
[Crossref]

Lu, Y.-C.

B. Lu, Y.-C. Lu, J. Cheng, R. P. Schneider, J. C. Zolper, and G. Goncher, “Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 1347–1359 (1996).
[Crossref]

Lundeen, J. S.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161–164 (2004).
[Crossref]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref]

Manipatruni, S.

Marcus, C. M.

F. Kuemmeth and C. M. Marcus, “Reducing noise and temperature during measurements in cryostats,” U.S. patentUS20150060190 A1 (March5, 2015).

Marsili, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Masquelier, D.

K. McCammon, J. Morse, D. Masquelier, C. McConaghey, H. Garrett, K. Hugenberg, M. Lowry, E. Track, and L. Bunz, “Fiber optic transceiver for interfacing digital superconducting electronics,” (Lawrence Livermore National Laboratory, 1994).

McCammon, K.

K. McCammon, J. Morse, D. Masquelier, C. McConaghey, H. Garrett, K. Hugenberg, M. Lowry, E. Track, and L. Bunz, “Fiber optic transceiver for interfacing digital superconducting electronics,” (Lawrence Livermore National Laboratory, 1994).

McConaghey, C.

K. McCammon, J. Morse, D. Masquelier, C. McConaghey, H. Garrett, K. Hugenberg, M. Lowry, E. Track, and L. Bunz, “Fiber optic transceiver for interfacing digital superconducting electronics,” (Lawrence Livermore National Laboratory, 1994).

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Mitchell, M. W.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161–164 (2004).
[Crossref]

Morse, J.

K. McCammon, J. Morse, D. Masquelier, C. McConaghey, H. Garrett, K. Hugenberg, M. Lowry, E. Track, and L. Bunz, “Fiber optic transceiver for interfacing digital superconducting electronics,” (Lawrence Livermore National Laboratory, 1994).

Mower, J.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Najafi, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Novack, A.

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Okunev, O.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Ortiz, G.

G. Ortiz, C. Hains, B. Lu, S. Sun, J. Cheng, and J. Zolper, “Cryogenic VCSELs with chirped multiple quantum wells for a very wide temperature range of CW operation,” IEEE Photon. Technol. Lett. 8, 1423–1425 (1996).
[Crossref]

Painter, O.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Peckerar, M.

A. Akturk, J. Allnutt, Z. Dilli, N. Goldsman, and M. Peckerar, “Device modeling at cryogenic temperatures: effects of incomplete ionization,” IEEE Trans. Electron Dev. 54, 2984–2990 (2007).
[Crossref]

J. Wright, D. C. Trotter, W. Zortman, A. L. Lentine, E. Shaner, M. R. Watts, A. Akturk, and M. Peckerar, “Cryogenic operation of silicon photonic modulators,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2012), paper IM2A–5.

Pernice, W. H.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Qian, W.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Robertson, G.

W. A. Zortman, D. C. Trotter, A. L. Lentine, G. Robertson, A. Hsia, and M. R. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photon. J. 4, 242–249 (2012).
[Crossref]

Robinson, B. S.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

Rosenbaum, T.

T. Rosenbaum, K. Andres, G. Thomas, and R. Bhatt, “Sharp metal-insulator transition in a random solid,” Phys. Rev. Lett. 45, 1723–1726 (1980).
[Crossref]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Safavi-Naeini, A. H.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Schelew, E.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref]

Schliesser, A.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref]

Schmidt, B.

Schneider, R. P.

B. Lu, Y.-C. Lu, J. Cheng, R. P. Schneider, J. C. Zolper, and G. Goncher, “Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 1347–1359 (1996).
[Crossref]

Schuck, C.

X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3, 1436 (2013).

W. H. Pernice, C. Schuck, M. Li, and H. X. Tang, “Carrier and thermal dynamics of silicon photonic resonators at cryogenic temperatures,” Opt. Express 19, 3290–3296 (2011).
[Crossref]

Selberherr, S.

S. Selberherr, “MOS device modeling at 77  K,” IEEE Trans. Electron Dev. 36, 1464–1474 (1989).
[Crossref]

Semenov, A.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Semenov, V. K.

K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems,” IEEE Trans. Appl. Supercond. 1, 3–28 (1991).
[Crossref]

Shafiiha, R.

Shakya, J.

Shaner, E.

J. Wright, D. C. Trotter, W. Zortman, A. L. Lentine, E. Shaner, M. R. Watts, A. Akturk, and M. Peckerar, “Cryogenic operation of silicon photonic modulators,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2012), paper IM2A–5.

Shwarts, M.

V. Borblik, Y. M. Shwarts, M. Shwarts, and A. Fonkich, “Concerning the nature of relaxation oscillations in silicon diodes in the cryogenic temperature region,” Cryogenics 50, 417–420 (2010).
[Crossref]

Shwarts, Y. M.

V. Borblik, Y. M. Shwarts, M. Shwarts, and A. Fonkich, “Concerning the nature of relaxation oscillations in silicon diodes in the cryogenic temperature region,” Cryogenics 50, 417–420 (2010).
[Crossref]

Smirnov, K.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Sobolewski, R.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Soltani, M.

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Starbuck, A. L.

Steinberg, A. M.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161–164 (2004).
[Crossref]

Streshinsky, M.

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Sun, S.

G. Ortiz, C. Hains, B. Lu, S. Sun, J. Cheng, and J. Zolper, “Cryogenic VCSELs with chirped multiple quantum wells for a very wide temperature range of CW operation,” IEEE Photon. Technol. Lett. 8, 1423–1425 (1996).
[Crossref]

Sun, X.

X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3, 1436 (2013).

Tang, H. X.

X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3, 1436 (2013).

W. H. Pernice, C. Schuck, M. Li, and H. X. Tang, “Carrier and thermal dynamics of silicon photonic resonators at cryogenic temperatures,” Opt. Express 19, 3290–3296 (2011).
[Crossref]

Thomas, G.

T. Rosenbaum, K. Andres, G. Thomas, and R. Bhatt, “Sharp metal-insulator transition in a random solid,” Phys. Rev. Lett. 45, 1723–1726 (1980).
[Crossref]

Thomson, D.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
[Crossref]

Track, E.

K. McCammon, J. Morse, D. Masquelier, C. McConaghey, H. Garrett, K. Hugenberg, M. Lowry, E. Track, and L. Bunz, “Fiber optic transceiver for interfacing digital superconducting electronics,” (Lawrence Livermore National Laboratory, 1994).

Trotter, D. C.

Verhagen, E.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref]

Voronov, B.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

W. A. Zortman, D. C. Trotter, A. L. Lentine, G. Robertson, A. Hsia, and M. R. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photon. J. 4, 242–249 (2012).
[Crossref]

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
[Crossref]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19, 26017–26026 (2011).
[Crossref]

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45  GHz CMOS compatible germanium waveguide photodiode with low dark current,” Opt. Express 19, 24897–24904 (2011).
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

J. Wright, D. C. Trotter, W. Zortman, A. L. Lentine, E. Shaner, M. R. Watts, A. Akturk, and M. Peckerar, “Cryogenic operation of silicon photonic modulators,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2012), paper IM2A–5.

Weis, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref]

Williams, C.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Wright, J.

J. Wright, D. C. Trotter, W. Zortman, A. L. Lentine, E. Shaner, M. R. Watts, A. Akturk, and M. Peckerar, “Cryogenic operation of silicon photonic modulators,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2012), paper IM2A–5.

Xu, Q.

Xuan, Z.

Yang, J. K.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

Yang, Y.

Yegnanarayanan, S.

Young, J. F.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref]

Young, R. W.

Zhang, X.

X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3, 1436 (2013).

Zheng, D.

Zheng, X.

Zolper, J.

G. Ortiz, C. Hains, B. Lu, S. Sun, J. Cheng, and J. Zolper, “Cryogenic VCSELs with chirped multiple quantum wells for a very wide temperature range of CW operation,” IEEE Photon. Technol. Lett. 8, 1423–1425 (1996).
[Crossref]

Zolper, J. C.

B. Lu, Y.-C. Lu, J. Cheng, R. P. Schneider, J. C. Zolper, and G. Goncher, “Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 1347–1359 (1996).
[Crossref]

Zortman, W.

J. Wright, D. C. Trotter, W. Zortman, A. L. Lentine, E. Shaner, M. R. Watts, A. Akturk, and M. Peckerar, “Cryogenic operation of silicon photonic modulators,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2012), paper IM2A–5.

Zortman, W. A.

Zou, Z.

Z. Zou, D. Huffaker, and D. Deppe, “Ultralow-threshold cryogenic vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 12, 1–3 (2000).
[Crossref]

Appl. Phys. Lett. (1)

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Cryogenics (1)

V. Borblik, Y. M. Shwarts, M. Shwarts, and A. Fonkich, “Concerning the nature of relaxation oscillations in silicon diodes in the cryogenic temperature region,” Cryogenics 50, 417–420 (2010).
[Crossref]

IEEE J. Quantum Electron. (2)

B. Lu, Y.-C. Lu, J. Cheng, R. P. Schneider, J. C. Zolper, and G. Goncher, “Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs-GaAs vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 1347–1359 (1996).
[Crossref]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

IEEE Photon. J. (1)

W. A. Zortman, D. C. Trotter, A. L. Lentine, G. Robertson, A. Hsia, and M. R. Watts, “Monolithic and two-dimensional integration of silicon photonic microdisks with microelectronics,” IEEE Photon. J. 4, 242–249 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (2)

G. Ortiz, C. Hains, B. Lu, S. Sun, J. Cheng, and J. Zolper, “Cryogenic VCSELs with chirped multiple quantum wells for a very wide temperature range of CW operation,” IEEE Photon. Technol. Lett. 8, 1423–1425 (1996).
[Crossref]

Z. Zou, D. Huffaker, and D. Deppe, “Ultralow-threshold cryogenic vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 12, 1–3 (2000).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems,” IEEE Trans. Appl. Supercond. 1, 3–28 (1991).
[Crossref]

IEEE Trans. Electron Dev. (2)

S. Selberherr, “MOS device modeling at 77  K,” IEEE Trans. Electron Dev. 36, 1464–1474 (1989).
[Crossref]

A. Akturk, J. Allnutt, Z. Dilli, N. Goldsman, and M. Peckerar, “Device modeling at cryogenic temperatures: effects of incomplete ionization,” IEEE Trans. Electron Dev. 54, 2984–2990 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

J. Phys. Chem. Solids (1)

S. Koenig and G. Gunther-Mohr, “The low temperature electrical conductivity of n-type germanium,” J. Phys. Chem. Solids 2, 268–283 (1957).
[Crossref]

Nat. Commun. (3)

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Nat. Photonics (4)

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Nature (5)

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref]

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161–164 (2004).
[Crossref]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Opt. Express (9)

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45  GHz CMOS compatible germanium waveguide photodiode with low dark current,” Opt. Express 19, 24897–24904 (2011).
[Crossref]

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60  GHz bandwidth using inductive gain peaking,” Opt. Express 21, 28387–28393 (2013).
[Crossref]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low V pp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

W. H. Pernice, C. Schuck, M. Li, and H. X. Tang, “Carrier and thermal dynamics of silicon photonic resonators at cryogenic temperatures,” Opt. Express 19, 3290–3296 (2011).
[Crossref]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18, 2127–2136 (2010).
[Crossref]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19, 26017–26026 (2011).
[Crossref]

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
[Crossref]

Phys. Rev. Lett. (2)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref]

T. Rosenbaum, K. Andres, G. Thomas, and R. Bhatt, “Sharp metal-insulator transition in a random solid,” Phys. Rev. Lett. 45, 1723–1726 (1980).
[Crossref]

Sci. Rep. (1)

X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3, 1436 (2013).

Other (6)

Office of the Director of National Intelligence, “Data ingress and egress for cryogenic systems,” Request for information retrieved from http://www.iarpa.gov/ .

F. Kuemmeth and C. M. Marcus, “Reducing noise and temperature during measurements in cryostats,” U.S. patentUS20150060190 A1 (March5, 2015).

J. Wright, D. C. Trotter, W. Zortman, A. L. Lentine, E. Shaner, M. R. Watts, A. Akturk, and M. Peckerar, “Cryogenic operation of silicon photonic modulators,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2012), paper IM2A–5.

K. McCammon, J. Morse, D. Masquelier, C. McConaghey, H. Garrett, K. Hugenberg, M. Lowry, E. Track, and L. Bunz, “Fiber optic transceiver for interfacing digital superconducting electronics,” (Lawrence Livermore National Laboratory, 1994).

C. H. Cox, Analog Optical Links: Theory and Practice (Cambridge University, 2006), pp. 92–93.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

A micro-disk modulator consists of a 3.5 μm diameter silicon disk coupled to a silicon strip waveguide. The disk, waveguide, and electrical interconnects can be seen in the scanning electron microscope image of (a) where the encapsulating oxide has been etched away. The lowest order radial mode of the micro-disk is overlaid on a schematic diagram of the micro-disk in (b). This mode is localized near the edge of the disk, while electrical connections are made near the center of the disk to minimize scattering losses.

Fig. 2.
Fig. 2.

The modulator is designed with a curved waveguide in order to increase phase-matching to this mode. This minimizes the spectral signature of higher order modes, allowing for a large free spectral range. Here we see the simulated transmission spectrum with a free spectral range of the order of 86 nm. In the measured transmission of this device, higher order radial modes still appear; however, they contribute less than 2 dB of extra loss.

Fig. 3.
Fig. 3.

Doping profile of the micro-disk modulator is shown in (a). Highly doped regions in the center of the disk form ohmic contacts, while lighter doped regions along the circumference of the disk form the p–n junction. The concentration of electrons and holes along a cross section of the p–n junction is shown in (b) at 300 K. The junction is shifted slightly toward the n-doped region, providing greater overlap of the optical mode with the free-hole concentration, which provides a greater refractive index shift.

Fig. 4.
Fig. 4.

In (a), the IV curve of a device is shown as the temperature is decreased. This device is doped with 1.9 × 10 18 / cm 3 ( 2.4 × 10 18 / cm 3 ) acceptors (donors) and shows signs of carrier freeze-out. The inset shows the IV curve measured at room temperature for comparison. In (b), the low temperature IV curve of the device from (a) is compared to the IV curve of a device that is doped with 5.0 × 10 18 / cm 3 ( 7.1 × 10 18 / cm 3 ) acceptors (donors), showing decreased effects of carrier freeze-out.

Fig. 5.
Fig. 5.

Application of a voltage across the p–n junction of the modulator results in a change of the free-carrier concentration and a shift in the optical resonance. In (a), the shift of the micro-disk resonance is shown as the voltage is tuned from 1    V to a voltage that produces 100 μA at 300 K. In (b), the resonance shift of the same device is shown at 4.8 K, again from 1    V to a forward current of 100 μA.

Fig. 6.
Fig. 6.

In (a) and (b), the differential wavelength shift is shown as a function of applied voltage at 300 K and 4.8 K, respectively. The differential wavelength shift is quite similar in magnitude from 300 K down to 4.8 K. This is interesting given the fact that the current flowing through the device is much less at 4.8 K. This means a similar wavelength shift can be achieved with less energy and less Joule heating of the device at 4.8 K. The dashed lines draw attention to the differential wavelength shift just before a forward current begins to flow. At 4.8 K the device reaches almost 200 pm/V before turn-on.

Fig. 7.
Fig. 7.

Frequency response of the modulator was measured using a network analyzer as illustrated in (a). A 100 kHz linewidth laser was detuned from the modulator resonance by + 100    pm . The transmitted laser was amplified and spectrally filtered before being detected. The device was measured outside of the cryostat using RF probes, revealing a 3 dB cut-off frequency greater than 20 GHz at room temperature in (b).

Fig. 8.
Fig. 8.

In (a) the response of several preliminary devices with different dopant levels is shown near 4 K, with the highest doped device showing a cut-off frequency of 1.7 GHz. In (b), the device from Fig. 6(b), which has similarly high doping, is shown to have a cutoff of 4.5 GHz at 4.8 K. From 300 K down to 100 K there is little change in the frequency response. The devices in (a) have a dopant geometry, which created a greater electrical path length through n-doped silicon relative to p-doped silicon, while the device in (b) has a greater electrical path length through p-doped silicon as depicted in Fig. 3(a).

Fig. 9.
Fig. 9.

A pseudo-random bit pattern was transmitted using the device of Fig. 7(b) at 1 Gb/s. Eye diagrams of this data pattern are compared from (a) 300 K down to (b) 4.8 K. For these measurements, the laser source was attenuated to 5    dBm , providing approximately 11    dBm of optical power at the modulator. The optical signal was amplified by an EDFA set to a constant current, and the power at the optical detector was controlled using a variable attenuator. The eye diagrams were collected at the same attenuator setting, which provided an average optical power at the detector of the order of 2.5 dBm. The vertical scale of these plots is identical. Ringing of the signal is attributed to the LC resonance of the wire bonds and bonding pads. In (c), the BER at 1 Gb/s is plotted as a function of power at the detector for 5, 100, and 300 K.

Fig. 10.
Fig. 10.

Eye diagrams corresponding to a data rate of 5 Gb/s are shown at (a) 300 K and (b) 4.8 K under the same conditions as Fig. 9. In (c), the BER at 5 Gb/s is plotted as a function of power at the detector for 5, 100, and 300 K.

Fig. 11.
Fig. 11.

Eye diagrams corresponding to a data rate of 10 Gb/s are shown at (a) 300 K and (b) 4.8 K under the same conditions as in Fig. 9. In (c), the BER rate at 10 Gb/s is plotted as a function of power at the detector for 5, 100, and 300 K.

Metrics