Abstract

Hyperuniform disordered networks belong to a peculiar class of structured materials predicted to display isotropic complete photonic bandgaps for a refractive index contrast larger than 3. The practical realization of such photonic designer materials is challenging, however, as it requires control over a multi-step fabrication process on optical length scales. Here we report the direct-laser writing of three-dimensional hyperuniform polymeric templates followed by a silicon double inversion procedure leading to high-quality network structures made of polycrystalline silicon. We observe a pronounced gap in the shortwave infrared centered at a wavelength of λGap2.5  μm, in good agreement with numerical simulations. In the experiments the typical structural length scale can be varied between 2 and 1.54 μm, leading to a blueshift of the gap accompanied by an increase of the silicon filling fraction.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of mesoscale polymeric templates for three-dimensional disordered photonic materials

Jakub Haberko and Frank Scheffold
Opt. Express 21(1) 1057-1065 (2013)

Evidence of near-infrared partial photonic bandgap in polymeric rod-connected diamond structures

Lifeng Chen, Mike P. C. Taverne, Xu Zheng, Jia-De Lin, Ruth Oulton, Martin Lopez-Garcia, Ying-Lung D. Ho, and John G. Rarity
Opt. Express 23(20) 26565-26575 (2015)

Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener
Opt. Lett. 35(7) 1094-1096 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
    [Crossref]
  2. K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley, 2006).
  3. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
    [Crossref]
  4. Y. Fang, S.-Y. Leo, Y. Ni, L. Yu, P. Qi, B. Wang, V. Basile, C. Taylor, and P. Jiang, “Optically bistable macroporous photonic crystals enabled by thermoresponsive shape memory polymers,” Adv. Opt. Mater. 3, 1509–1516 (2015).
    [Crossref]
  5. Y. Fang, Y. Ni, S.-Y. Leo, C. Taylor, V. Basile, and P. Jiang, “Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers,” Nat. Commun. 6, 7416 (2015).
    [Crossref]
  6. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref]
  7. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref]
  8. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
    [Crossref]
  9. H. Miguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocana, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
    [Crossref]
  10. C. Becker, S. Linden, G. Von Freymann, M. Wegener, N. Tétreault, E. Vekris, V. Kitaev, and G. Ozin, “Two-color pump-probe experiments on silicon inverse opals,” Appl. Phys. Lett. 87, 091111 (2005).
    [Crossref]
  11. M. Reufer, L. F. Rojas-Ochoa, S. Eiden, J. J. Sáenz, and F. Scheffold, “Transport of light in amorphous photonic materials,” Appl. Phys. Lett. 91, 171904 (2007).
    [Crossref]
  12. K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100, 013901 (2008).
    [Crossref]
  13. M. Florescu, S. Torquato, and P. J. Steinhardt, “Designer disordered materials with large, complete photonic band gaps,” Proc. Natl. Acad. Sci. USA 106, 20658–20663 (2009).
    [Crossref]
  14. S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne, C. S. O’Hern, and H. Cao, “Photonic band gaps in three-dimensional network structures with short-range order,” Phys. Rev. A 84, 063818 (2011).
    [Crossref]
  15. D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7, 188–196 (2013).
    [Crossref]
  16. N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon hyperuniform disordered photonic materials with a pronounced gap in the shortwave infrared,” Adv. Opt. Mater. 2, 115–119 (2014).
    [Crossref]
  17. O. Leseur, R. Pierrat, and R. Carminati, “High-density hyperuniform materials can be transparent,” Optica 3, 763–767 (2016).
    [Crossref]
  18. L. S. Froufe-Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “The role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials,” Phys. Rev. Lett. 117, 05390 (2016).
  19. W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. USA 110, 15886–15891 (2013).
    [Crossref]
  20. S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2008).
    [Crossref]
  21. W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972–19981 (2013).
    [Crossref]
  22. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
    [Crossref]
  23. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
    [Crossref]
  24. K. M. Ho, C. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
    [Crossref]
  25. M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Mater. 17, 2273–2277 (2007).
  26. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. Von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35, 1094–1096 (2010).
    [Crossref]
  27. A. Frölich, J. Fischer, T. Zebrowski, K. Busch, and M. Wegener, “Titania woodpiles with complete three-dimensional photonic bandgaps in the visible,” Adv. Mater. 25, 3588–3592 (2013).
    [Crossref]
  28. J. Haberko and F. Scheffold, “Fabrication of mesoscale polymeric templates for three-dimensional disordered photonic materials,” Opt. Express 21, 1057–1065 (2013).
    [Crossref]
  29. J. Haberko, N. Muller, and F. Scheffold, “Direct laser writing of three-dimensional network structures as templates for disordered photonic materials,” Phys. Rev. A 88, 043822 (2013).
    [Crossref]
  30. C. Song, P. Wang, and H. A. Makse, “A phase diagram for jammed matter,” Nature 453, 629–632 (2008).
    [Crossref]
  31. D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450  cm-1 ≤ ω ≤ 4000 cm-1) refractive index values of silicon,” J. Appl. Phys. 97, 123526 (2005).
    [Crossref]
  32. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  33. C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6, 21818 (2016).
    [Crossref]
  34. G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
    [Crossref]
  35. P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405  nm diode laser,” Opt. Lett. 39, 6847–6850 (2014).
    [Crossref]

2016 (3)

L. S. Froufe-Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “The role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials,” Phys. Rev. Lett. 117, 05390 (2016).

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6, 21818 (2016).
[Crossref]

O. Leseur, R. Pierrat, and R. Carminati, “High-density hyperuniform materials can be transparent,” Optica 3, 763–767 (2016).
[Crossref]

2015 (2)

Y. Fang, S.-Y. Leo, Y. Ni, L. Yu, P. Qi, B. Wang, V. Basile, C. Taylor, and P. Jiang, “Optically bistable macroporous photonic crystals enabled by thermoresponsive shape memory polymers,” Adv. Opt. Mater. 3, 1509–1516 (2015).
[Crossref]

Y. Fang, Y. Ni, S.-Y. Leo, C. Taylor, V. Basile, and P. Jiang, “Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers,” Nat. Commun. 6, 7416 (2015).
[Crossref]

2014 (2)

P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405  nm diode laser,” Opt. Lett. 39, 6847–6850 (2014).
[Crossref]

N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon hyperuniform disordered photonic materials with a pronounced gap in the shortwave infrared,” Adv. Opt. Mater. 2, 115–119 (2014).
[Crossref]

2013 (7)

J. Haberko, N. Muller, and F. Scheffold, “Direct laser writing of three-dimensional network structures as templates for disordered photonic materials,” Phys. Rev. A 88, 043822 (2013).
[Crossref]

D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7, 188–196 (2013).
[Crossref]

J. Haberko and F. Scheffold, “Fabrication of mesoscale polymeric templates for three-dimensional disordered photonic materials,” Opt. Express 21, 1057–1065 (2013).
[Crossref]

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972–19981 (2013).
[Crossref]

A. Frölich, J. Fischer, T. Zebrowski, K. Busch, and M. Wegener, “Titania woodpiles with complete three-dimensional photonic bandgaps in the visible,” Adv. Mater. 25, 3588–3592 (2013).
[Crossref]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
[Crossref]

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. USA 110, 15886–15891 (2013).
[Crossref]

2011 (1)

S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne, C. S. O’Hern, and H. Cao, “Photonic band gaps in three-dimensional network structures with short-range order,” Phys. Rev. A 84, 063818 (2011).
[Crossref]

2010 (3)

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. Von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35, 1094–1096 (2010).
[Crossref]

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

2009 (1)

M. Florescu, S. Torquato, and P. J. Steinhardt, “Designer disordered materials with large, complete photonic band gaps,” Proc. Natl. Acad. Sci. USA 106, 20658–20663 (2009).
[Crossref]

2008 (3)

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100, 013901 (2008).
[Crossref]

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2008).
[Crossref]

C. Song, P. Wang, and H. A. Makse, “A phase diagram for jammed matter,” Nature 453, 629–632 (2008).
[Crossref]

2007 (2)

M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Mater. 17, 2273–2277 (2007).

M. Reufer, L. F. Rojas-Ochoa, S. Eiden, J. J. Sáenz, and F. Scheffold, “Transport of light in amorphous photonic materials,” Appl. Phys. Lett. 91, 171904 (2007).
[Crossref]

2006 (1)

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[Crossref]

2005 (2)

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450  cm-1 ≤ ω ≤ 4000 cm-1) refractive index values of silicon,” J. Appl. Phys. 97, 123526 (2005).
[Crossref]

C. Becker, S. Linden, G. Von Freymann, M. Wegener, N. Tétreault, E. Vekris, V. Kitaev, and G. Ozin, “Two-color pump-probe experiments on silicon inverse opals,” Appl. Phys. Lett. 87, 091111 (2005).
[Crossref]

2004 (1)

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[Crossref]

2003 (1)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[Crossref]

2000 (1)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

1997 (1)

H. Miguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocana, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

1994 (1)

K. M. Ho, C. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Amirtharaj, P. M.

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450  cm-1 ≤ ω ≤ 4000 cm-1) refractive index values of silicon,” J. Appl. Phys. 97, 123526 (2005).
[Crossref]

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[Crossref]

Basile, V.

Y. Fang, S.-Y. Leo, Y. Ni, L. Yu, P. Qi, B. Wang, V. Basile, C. Taylor, and P. Jiang, “Optically bistable macroporous photonic crystals enabled by thermoresponsive shape memory polymers,” Adv. Opt. Mater. 3, 1509–1516 (2015).
[Crossref]

Y. Fang, Y. Ni, S.-Y. Leo, C. Taylor, V. Basile, and P. Jiang, “Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers,” Nat. Commun. 6, 7416 (2015).
[Crossref]

Becker, C.

C. Becker, S. Linden, G. Von Freymann, M. Wegener, N. Tétreault, E. Vekris, V. Kitaev, and G. Ozin, “Two-color pump-probe experiments on silicon inverse opals,” Appl. Phys. Lett. 87, 091111 (2005).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Biswas, R.

K. M. Ho, C. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

H. Miguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocana, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Braun, P. V.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2008).
[Crossref]

Busch, K.

A. Frölich, J. Fischer, T. Zebrowski, K. Busch, and M. Wegener, “Titania woodpiles with complete three-dimensional photonic bandgaps in the visible,” Adv. Mater. 25, 3588–3592 (2013).
[Crossref]

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. Von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35, 1094–1096 (2010).
[Crossref]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[Crossref]

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley, 2006).

Cao, H.

S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne, C. S. O’Hern, and H. Cao, “Photonic band gaps in three-dimensional network structures with short-range order,” Phys. Rev. A 84, 063818 (2011).
[Crossref]

Carminati, R.

Chaikin, P.

Chaikin, P. M.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. USA 110, 15886–15891 (2013).
[Crossref]

Chan, C.

K. M. Ho, C. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

Chandler-Horowitz, D.

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450  cm-1 ≤ ω ≤ 4000 cm-1) refractive index values of silicon,” J. Appl. Phys. 97, 123526 (2005).
[Crossref]

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[Crossref]

Damasceno, P. F.

L. S. Froufe-Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “The role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials,” Phys. Rev. Lett. 117, 05390 (2016).

Deubel, M.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[Crossref]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[Crossref]

Dufresne, E. R.

S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne, C. S. O’Hern, and H. Cao, “Photonic band gaps in three-dimensional network structures with short-range order,” Phys. Rev. A 84, 063818 (2011).
[Crossref]

Edagawa, K.

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100, 013901 (2008).
[Crossref]

Eiden, S.

M. Reufer, L. F. Rojas-Ochoa, S. Eiden, J. J. Sáenz, and F. Scheffold, “Transport of light in amorphous photonic materials,” Appl. Phys. Lett. 91, 171904 (2007).
[Crossref]

Engel, M.

L. S. Froufe-Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “The role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials,” Phys. Rev. Lett. 117, 05390 (2016).

Essig, S.

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. Von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35, 1094–1096 (2010).
[Crossref]

Fang, Y.

Y. Fang, S.-Y. Leo, Y. Ni, L. Yu, P. Qi, B. Wang, V. Basile, C. Taylor, and P. Jiang, “Optically bistable macroporous photonic crystals enabled by thermoresponsive shape memory polymers,” Adv. Opt. Mater. 3, 1509–1516 (2015).
[Crossref]

Y. Fang, Y. Ni, S.-Y. Leo, C. Taylor, V. Basile, and P. Jiang, “Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers,” Nat. Commun. 6, 7416 (2015).
[Crossref]

Fischer, J.

A. Frölich, J. Fischer, T. Zebrowski, K. Busch, and M. Wegener, “Titania woodpiles with complete three-dimensional photonic bandgaps in the visible,” Adv. Mater. 25, 3588–3592 (2013).
[Crossref]

Florescu, M.

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972–19981 (2013).
[Crossref]

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. USA 110, 15886–15891 (2013).
[Crossref]

M. Florescu, S. Torquato, and P. J. Steinhardt, “Designer disordered materials with large, complete photonic band gaps,” Proc. Natl. Acad. Sci. USA 106, 20658–20663 (2009).
[Crossref]

Föll, H.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley, 2006).

Fornés, V.

H. Miguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocana, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Foteinopoulou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[Crossref]

Frölich, A.

A. Frölich, J. Fischer, T. Zebrowski, K. Busch, and M. Wegener, “Titania woodpiles with complete three-dimensional photonic bandgaps in the visible,” Adv. Mater. 25, 3588–3592 (2013).
[Crossref]

Froufe-Pérez, L. S.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6, 21818 (2016).
[Crossref]

L. S. Froufe-Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “The role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials,” Phys. Rev. Lett. 117, 05390 (2016).

García-Santamaría, F.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2008).
[Crossref]

Glotzer, S. C.

L. S. Froufe-Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “The role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials,” Phys. Rev. Lett. 117, 05390 (2016).

Gondaira, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
[Crossref]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Haberko, J.

L. S. Froufe-Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “The role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials,” Phys. Rev. Lett. 117, 05390 (2016).

N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon hyperuniform disordered photonic materials with a pronounced gap in the shortwave infrared,” Adv. Opt. Mater. 2, 115–119 (2014).
[Crossref]

J. Haberko, N. Muller, and F. Scheffold, “Direct laser writing of three-dimensional network structures as templates for disordered photonic materials,” Phys. Rev. A 88, 043822 (2013).
[Crossref]

J. Haberko and F. Scheffold, “Fabrication of mesoscale polymeric templates for three-dimensional disordered photonic materials,” Opt. Express 21, 1057–1065 (2013).
[Crossref]

Hashemizad, S.

Hashemizad, S. R.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. USA 110, 15886–15891 (2013).
[Crossref]

He, Y.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. USA 110, 15886–15891 (2013).
[Crossref]

Hermatschweiler, M.

M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Mater. 17, 2273–2277 (2007).

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[Crossref]

Ho, K. M.

K. M. Ho, C. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Ishizaki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
[Crossref]

Jiang, P.

Y. Fang, Y. Ni, S.-Y. Leo, C. Taylor, V. Basile, and P. Jiang, “Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers,” Nat. Commun. 6, 7416 (2015).
[Crossref]

Y. Fang, S.-Y. Leo, Y. Ni, L. Yu, P. Qi, B. Wang, V. Basile, C. Taylor, and P. Jiang, “Optically bistable macroporous photonic crystals enabled by thermoresponsive shape memory polymers,” Adv. Opt. Mater. 3, 1509–1516 (2015).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

John, S.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[Crossref]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Kanoko, S.

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100, 013901 (2008).
[Crossref]

Kitaev, V.

C. Becker, S. Linden, G. Von Freymann, M. Wegener, N. Tétreault, E. Vekris, V. Kitaev, and G. Ozin, “Two-color pump-probe experiments on silicon inverse opals,” Appl. Phys. Lett. 87, 091111 (2005).
[Crossref]

Koumura, M.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
[Crossref]

Ledermann, A.

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Mater. 17, 2273–2277 (2007).

Leo, S.-Y.

Y. Fang, S.-Y. Leo, Y. Ni, L. Yu, P. Qi, B. Wang, V. Basile, C. Taylor, and P. Jiang, “Optically bistable macroporous photonic crystals enabled by thermoresponsive shape memory polymers,” Adv. Opt. Mater. 3, 1509–1516 (2015).
[Crossref]

Y. Fang, Y. Ni, S.-Y. Leo, C. Taylor, V. Basile, and P. Jiang, “Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers,” Nat. Commun. 6, 7416 (2015).
[Crossref]

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Leseur, O.

Leung, B. Y.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. USA 110, 15886–15891 (2013).
[Crossref]

Liew, S. F.

S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne, C. S. O’Hern, and H. Cao, “Photonic band gaps in three-dimensional network structures with short-range order,” Phys. Rev. A 84, 063818 (2011).
[Crossref]

Linden, S.

C. Becker, S. Linden, G. Von Freymann, M. Wegener, N. Tétreault, E. Vekris, V. Kitaev, and G. Ozin, “Two-color pump-probe experiments on silicon inverse opals,” Appl. Phys. Lett. 87, 091111 (2005).
[Crossref]

Liner, D. R.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. USA 110, 15886–15891 (2013).
[Crossref]

Lölkes, S.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley, 2006).

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

López, C.

H. Miguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocana, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Makse, H. A.

C. Song, P. Wang, and H. A. Makse, “A phase diagram for jammed matter,” Nature 453, 629–632 (2008).
[Crossref]

Man, W.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. USA 110, 15886–15891 (2013).
[Crossref]

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972–19981 (2013).
[Crossref]

Marichy, C.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6, 21818 (2016).
[Crossref]

N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon hyperuniform disordered photonic materials with a pronounced gap in the shortwave infrared,” Adv. Opt. Mater. 2, 115–119 (2014).
[Crossref]

Matsuyama, K.

Mayoral, R.

H. Miguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocana, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

H. Miguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocana, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Mifsud, A.

H. Miguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocana, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

H. Miguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocana, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Mueller, P.

Muller, N.

L. S. Froufe-Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “The role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials,” Phys. Rev. Lett. 117, 05390 (2016).

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6, 21818 (2016).
[Crossref]

N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon hyperuniform disordered photonic materials with a pronounced gap in the shortwave infrared,” Adv. Opt. Mater. 2, 115–119 (2014).
[Crossref]

J. Haberko, N. Muller, and F. Scheffold, “Direct laser writing of three-dimensional network structures as templates for disordered photonic materials,” Phys. Rev. A 88, 043822 (2013).
[Crossref]

Nahal, G.

Ni, Y.

Y. Fang, Y. Ni, S.-Y. Leo, C. Taylor, V. Basile, and P. Jiang, “Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers,” Nat. Commun. 6, 7416 (2015).
[Crossref]

Y. Fang, S.-Y. Leo, Y. Ni, L. Yu, P. Qi, B. Wang, V. Basile, C. Taylor, and P. Jiang, “Optically bistable macroporous photonic crystals enabled by thermoresponsive shape memory polymers,” Adv. Opt. Mater. 3, 1509–1516 (2015).
[Crossref]

Noda, S.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
[Crossref]

Noh, H.

S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne, C. S. O’Hern, and H. Cao, “Photonic band gaps in three-dimensional network structures with short-range order,” Phys. Rev. A 84, 063818 (2011).
[Crossref]

Notomi, M.

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100, 013901 (2008).
[Crossref]

O’Hern, C. S.

S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne, C. S. O’Hern, and H. Cao, “Photonic band gaps in three-dimensional network structures with short-range order,” Phys. Rev. A 84, 063818 (2011).
[Crossref]

Ocana, M.

H. Miguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocana, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[Crossref]

Ozin, G.

C. Becker, S. Linden, G. Von Freymann, M. Wegener, N. Tétreault, E. Vekris, V. Kitaev, and G. Ozin, “Two-color pump-probe experiments on silicon inverse opals,” Appl. Phys. Lett. 87, 091111 (2005).
[Crossref]

Ozin, G. A.

M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Mater. 17, 2273–2277 (2007).

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[Crossref]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Pereira, S.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[Crossref]

Perez-Willard, F.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[Crossref]

Pierrat, R.

Qi, P.

Y. Fang, S.-Y. Leo, Y. Ni, L. Yu, P. Qi, B. Wang, V. Basile, C. Taylor, and P. Jiang, “Optically bistable macroporous photonic crystals enabled by thermoresponsive shape memory polymers,” Adv. Opt. Mater. 3, 1509–1516 (2015).
[Crossref]

Reufer, M.

M. Reufer, L. F. Rojas-Ochoa, S. Eiden, J. J. Sáenz, and F. Scheffold, “Transport of light in amorphous photonic materials,” Appl. Phys. Lett. 91, 171904 (2007).
[Crossref]

Rinne, S. A.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2008).
[Crossref]

Rojas-Ochoa, L. F.

M. Reufer, L. F. Rojas-Ochoa, S. Eiden, J. J. Sáenz, and F. Scheffold, “Transport of light in amorphous photonic materials,” Appl. Phys. Lett. 91, 171904 (2007).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Sáenz, J. J.

M. Reufer, L. F. Rojas-Ochoa, S. Eiden, J. J. Sáenz, and F. Scheffold, “Transport of light in amorphous photonic materials,” Appl. Phys. Lett. 91, 171904 (2007).
[Crossref]

Scheffold, F.

L. S. Froufe-Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “The role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials,” Phys. Rev. Lett. 117, 05390 (2016).

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6, 21818 (2016).
[Crossref]

N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon hyperuniform disordered photonic materials with a pronounced gap in the shortwave infrared,” Adv. Opt. Mater. 2, 115–119 (2014).
[Crossref]

J. Haberko, N. Muller, and F. Scheffold, “Direct laser writing of three-dimensional network structures as templates for disordered photonic materials,” Phys. Rev. A 88, 043822 (2013).
[Crossref]

J. Haberko and F. Scheffold, “Fabrication of mesoscale polymeric templates for three-dimensional disordered photonic materials,” Opt. Express 21, 1057–1065 (2013).
[Crossref]

M. Reufer, L. F. Rojas-Ochoa, S. Eiden, J. J. Sáenz, and F. Scheffold, “Transport of light in amorphous photonic materials,” Appl. Phys. Lett. 91, 171904 (2007).
[Crossref]

Schreck, C. F.

S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne, C. S. O’Hern, and H. Cao, “Photonic band gaps in three-dimensional network structures with short-range order,” Phys. Rev. A 84, 063818 (2011).
[Crossref]

Sigalas, M.

K. M. Ho, C. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

Song, C.

C. Song, P. Wang, and H. A. Makse, “A phase diagram for jammed matter,” Nature 453, 629–632 (2008).
[Crossref]

Soukoulis, C.

K. M. Ho, C. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

Soukoulis, C. M.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[Crossref]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[Crossref]

Staude, I.

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. Von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35, 1094–1096 (2010).
[Crossref]

Steinhardt, P.

Steinhardt, P. J.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. USA 110, 15886–15891 (2013).
[Crossref]

M. Florescu, S. Torquato, and P. J. Steinhardt, “Designer disordered materials with large, complete photonic band gaps,” Proc. Natl. Acad. Sci. USA 106, 20658–20663 (2009).
[Crossref]

Suzuki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
[Crossref]

Taylor, C.

Y. Fang, S.-Y. Leo, Y. Ni, L. Yu, P. Qi, B. Wang, V. Basile, C. Taylor, and P. Jiang, “Optically bistable macroporous photonic crystals enabled by thermoresponsive shape memory polymers,” Adv. Opt. Mater. 3, 1509–1516 (2015).
[Crossref]

Y. Fang, Y. Ni, S.-Y. Leo, C. Taylor, V. Basile, and P. Jiang, “Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers,” Nat. Commun. 6, 7416 (2015).
[Crossref]

Tétreault, N.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[Crossref]

C. Becker, S. Linden, G. Von Freymann, M. Wegener, N. Tétreault, E. Vekris, V. Kitaev, and G. Ozin, “Two-color pump-probe experiments on silicon inverse opals,” Appl. Phys. Lett. 87, 091111 (2005).
[Crossref]

Thiel, M.

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Torquato, S.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. USA 110, 15886–15891 (2013).
[Crossref]

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972–19981 (2013).
[Crossref]

M. Florescu, S. Torquato, and P. J. Steinhardt, “Designer disordered materials with large, complete photonic band gaps,” Proc. Natl. Acad. Sci. USA 106, 20658–20663 (2009).
[Crossref]

van Driel, H. M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

Vázquez, L.

H. Miguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocana, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Vekris, E.

C. Becker, S. Linden, G. Von Freymann, M. Wegener, N. Tétreault, E. Vekris, V. Kitaev, and G. Ozin, “Two-color pump-probe experiments on silicon inverse opals,” Appl. Phys. Lett. 87, 091111 (2005).
[Crossref]

Von Freymann, G.

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. Von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35, 1094–1096 (2010).
[Crossref]

M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Mater. 17, 2273–2277 (2007).

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[Crossref]

C. Becker, S. Linden, G. Von Freymann, M. Wegener, N. Tétreault, E. Vekris, V. Kitaev, and G. Ozin, “Two-color pump-probe experiments on silicon inverse opals,” Appl. Phys. Lett. 87, 091111 (2005).
[Crossref]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[Crossref]

Wang, B.

Y. Fang, S.-Y. Leo, Y. Ni, L. Yu, P. Qi, B. Wang, V. Basile, C. Taylor, and P. Jiang, “Optically bistable macroporous photonic crystals enabled by thermoresponsive shape memory polymers,” Adv. Opt. Mater. 3, 1509–1516 (2015).
[Crossref]

Wang, P.

C. Song, P. Wang, and H. A. Makse, “A phase diagram for jammed matter,” Nature 453, 629–632 (2008).
[Crossref]

Wegener, M.

P. Mueller, M. Thiel, and M. Wegener, “3D direct laser writing using a 405  nm diode laser,” Opt. Lett. 39, 6847–6850 (2014).
[Crossref]

A. Frölich, J. Fischer, T. Zebrowski, K. Busch, and M. Wegener, “Titania woodpiles with complete three-dimensional photonic bandgaps in the visible,” Adv. Mater. 25, 3588–3592 (2013).
[Crossref]

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. Von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35, 1094–1096 (2010).
[Crossref]

M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Mater. 17, 2273–2277 (2007).

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[Crossref]

C. Becker, S. Linden, G. Von Freymann, M. Wegener, N. Tétreault, E. Vekris, V. Kitaev, and G. Ozin, “Two-color pump-probe experiments on silicon inverse opals,” Appl. Phys. Lett. 87, 091111 (2005).
[Crossref]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[Crossref]

Wehrspohn, R. B.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley, 2006).

Wiersma, D. S.

D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7, 188–196 (2013).
[Crossref]

Williamson, E.

Williamson, E. P.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. USA 110, 15886–15891 (2013).
[Crossref]

Wolff, C.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Yadak, P.

Yang, J.-K.

S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne, C. S. O’Hern, and H. Cao, “Photonic band gaps in three-dimensional network structures with short-range order,” Phys. Rev. A 84, 063818 (2011).
[Crossref]

Yu, L.

Y. Fang, S.-Y. Leo, Y. Ni, L. Yu, P. Qi, B. Wang, V. Basile, C. Taylor, and P. Jiang, “Optically bistable macroporous photonic crystals enabled by thermoresponsive shape memory polymers,” Adv. Opt. Mater. 3, 1509–1516 (2015).
[Crossref]

Zebrowski, T.

A. Frölich, J. Fischer, T. Zebrowski, K. Busch, and M. Wegener, “Titania woodpiles with complete three-dimensional photonic bandgaps in the visible,” Adv. Mater. 25, 3588–3592 (2013).
[Crossref]

Adv. Funct. Mater. (1)

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Adv. Mater. (3)

A. Frölich, J. Fischer, T. Zebrowski, K. Busch, and M. Wegener, “Titania woodpiles with complete three-dimensional photonic bandgaps in the visible,” Adv. Mater. 25, 3588–3592 (2013).
[Crossref]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[Crossref]

M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Mater. 17, 2273–2277 (2007).

Adv. Opt. Mater. (2)

Y. Fang, S.-Y. Leo, Y. Ni, L. Yu, P. Qi, B. Wang, V. Basile, C. Taylor, and P. Jiang, “Optically bistable macroporous photonic crystals enabled by thermoresponsive shape memory polymers,” Adv. Opt. Mater. 3, 1509–1516 (2015).
[Crossref]

N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon hyperuniform disordered photonic materials with a pronounced gap in the shortwave infrared,” Adv. Opt. Mater. 2, 115–119 (2014).
[Crossref]

Appl. Phys. Lett. (3)

H. Miguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocana, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

C. Becker, S. Linden, G. Von Freymann, M. Wegener, N. Tétreault, E. Vekris, V. Kitaev, and G. Ozin, “Two-color pump-probe experiments on silicon inverse opals,” Appl. Phys. Lett. 87, 091111 (2005).
[Crossref]

M. Reufer, L. F. Rojas-Ochoa, S. Eiden, J. J. Sáenz, and F. Scheffold, “Transport of light in amorphous photonic materials,” Appl. Phys. Lett. 91, 171904 (2007).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

J. Appl. Phys. (1)

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450  cm-1 ≤ ω ≤ 4000 cm-1) refractive index values of silicon,” J. Appl. Phys. 97, 123526 (2005).
[Crossref]

Nat. Commun. (1)

Y. Fang, Y. Ni, S.-Y. Leo, C. Taylor, V. Basile, and P. Jiang, “Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers,” Nat. Commun. 6, 7416 (2015).
[Crossref]

Nat. Mater. (1)

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[Crossref]

Nat. Photonics (3)

D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7, 188–196 (2013).
[Crossref]

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2008).
[Crossref]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
[Crossref]

Nature (3)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[Crossref]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref]

C. Song, P. Wang, and H. A. Makse, “A phase diagram for jammed matter,” Nature 453, 629–632 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (2)

J. Haberko, N. Muller, and F. Scheffold, “Direct laser writing of three-dimensional network structures as templates for disordered photonic materials,” Phys. Rev. A 88, 043822 (2013).
[Crossref]

S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne, C. S. O’Hern, and H. Cao, “Photonic band gaps in three-dimensional network structures with short-range order,” Phys. Rev. A 84, 063818 (2011).
[Crossref]

Phys. Rev. Lett. (4)

L. S. Froufe-Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “The role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials,” Phys. Rev. Lett. 117, 05390 (2016).

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100, 013901 (2008).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

M. Florescu, S. Torquato, and P. J. Steinhardt, “Designer disordered materials with large, complete photonic band gaps,” Proc. Natl. Acad. Sci. USA 106, 20658–20663 (2009).
[Crossref]

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. USA 110, 15886–15891 (2013).
[Crossref]

Sci. Rep. (1)

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6, 21818 (2016).
[Crossref]

Solid State Commun. (1)

K. M. Ho, C. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

Other (1)

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley, 2006).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (2986 KB)      Supplementary Material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. SEM of hyperuniform disordered network structures. (a) Top view of a polymer template with a=2  μm and height h=5.5  μm. (b) Image of the back side of an a=1.82  μm and h=5.5  μm structure composed of polycrystalline silicon acquired after the silicon double-inversion process. The image confirms that the structure was completely infiltrated during the procedure. (c) Close-up view of a FIB cross section of a Si–ZnO composite structure reveals the bulk network structure of solid silicon rods. The dimensions of the rods in-plane are determined to be approximately 210  nm×580  nm, resulting in a silicon volume filling fraction of ϕ0.13.
Fig. 2.
Fig. 2. (a) Fourier transform infrared spectroscopy (FTIR) of silicon hyperuniform network structures. Transmittance and reflectance spectra for a hyperuniform structure of a=1.82  μm and height h=5.5  μm recorded using a pair of Cassegrain objectives. The probing cone of light possesses an angular spread of 10°–30° with respect to normal incidence. Additional transmittance measurements are performed with an angular spread of 0°–10° with respect to the surface normal. Inset: FTIR spectrometer microscope sample chamber with Cassegrain objectives for illumination and detection of the transmitted and reflected light intensity. The tilted sample holder shown allows probing illumination under 0°–10° with respect to normal incidence when shadowing part of the Cassegrain objectives. Symbols: transmittance background level obtained from the measurement on a opaque gold pad. (b) FDTD simulations. The lines show the results obtained for a filling fraction of ϕ=13%, a=1.82μm, n=3.4, and for different heights h.
Fig. 3.
Fig. 3. (a) Transmittance and (b) reflectance spectra for h5.5  μm and for different values of a. The data reveals a blueshift of the gap wavelength λG upon reducing the typical structure length scale of the seed pattern a=2, at 1.82, 1.67, and 1.54 μm. Inset: dependence of the reduced gap wavelength λG/a on the silicon filling fraction. Solid circles: experiment results with aeff=0.88a. Dashed–dotted line: FDTD simulations.

Metrics