Abstract

Optical-based rotation sensors have revolutionized precision, high-sensitivity inertial navigation systems. At the same time these sensors use bulky optical fiber spools or free-space resonators. A chip-based, micro-optical gyroscope is demonstrated that uses counterpropagating Brillouin lasers to measure rotation as a Sagnac-induced frequency shift. Preliminary work has demonstrated a rotation-rate measurement that surpasses prior micro-optical rotation-sensing systems by over 40-fold.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-optic gyroscopes: from design to production [Invited]

Jagannath Nayak
Appl. Opt. 50(25) E152-E161 (2011)

Stimulated Brillouin fiber-optic laser gyroscope

F. Zarinetchi, S. P. Smith, and S. Ezekiel
Opt. Lett. 16(4) 229-231 (1991)

Resonant microphotonic gyroscope

Wei Liang, Vladimir S. Ilchenko, Anatoliy A. Savchenkov, Elijah Dale, Danny Eliyahu, Andrey B. Matsko, and Lute Maleki
Optica 4(1) 114-117 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Chow, J. Gea-Banacloche, L. Pedrotti, V. Sanders, W. Schleich, and M. Scully, Rev. Mod. Phys. 57, 61 (1985).
    [Crossref]
  2. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 2014).
  3. K. Liu, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, G. Ma, and Q. Xiao, J. Micromech. Microeng. 19, 113001 (2009).
    [Crossref]
  4. J. Li, M.-G. Suh, and K. Vahala, in Nonlinear Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper NTh3A.2.
  5. H. Ma, W. Wang, Y. Ren, and Z. Jin, IEEE Photon. Technol. Lett. 25, 198 (2013).
    [Crossref]
  6. F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. Armenise, J. Eur. Opt. Soc. Rapid Pub. 9, 14013 (2014).
    [Crossref]
  7. F. Zarinetchi, S. Smith, and S. Ezekiel, Opt. Lett. 16, 229 (1991).
    [Crossref]
  8. E. Ippen and R. Stolen, Appl. Phys. Lett. 21, 539 (1972).
    [Crossref]
  9. G. Sagnac, C. R. Acad. Sci. 157, 708 (1913).
  10. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
    [Crossref]
  11. J. Li, H. Lee, T. Chen, and K. J. Vahala, Opt. Express 20, 20170 (2012).
    [Crossref]
  12. J. Li, H. Lee, and K. J. Vahala, Nat. Commun. 4, 2097 (2013).
    [Crossref]
  13. H. Ma, J. Zhang, L. Wang, and Z. Jin, Opt. Express 23, 15088 (2015).
  14. L. Maleki, W. Liang, D. Eliyahu, V. Ilchenko, A. Savchenkov, and A. Matsko, in 2016 IEEE Photonics Conference Technical Digest (online) (IEEE, 2016), paper TuD1.3.

2015 (1)

2014 (1)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. Armenise, J. Eur. Opt. Soc. Rapid Pub. 9, 14013 (2014).
[Crossref]

2013 (2)

H. Ma, W. Wang, Y. Ren, and Z. Jin, IEEE Photon. Technol. Lett. 25, 198 (2013).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, Nat. Commun. 4, 2097 (2013).
[Crossref]

2012 (2)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, Opt. Express 20, 20170 (2012).
[Crossref]

2009 (1)

K. Liu, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, G. Ma, and Q. Xiao, J. Micromech. Microeng. 19, 113001 (2009).
[Crossref]

1991 (1)

1985 (1)

W. Chow, J. Gea-Banacloche, L. Pedrotti, V. Sanders, W. Schleich, and M. Scully, Rev. Mod. Phys. 57, 61 (1985).
[Crossref]

1972 (1)

E. Ippen and R. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[Crossref]

1913 (1)

G. Sagnac, C. R. Acad. Sci. 157, 708 (1913).

Armenise, M.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. Armenise, J. Eur. Opt. Soc. Rapid Pub. 9, 14013 (2014).
[Crossref]

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, Opt. Express 20, 20170 (2012).
[Crossref]

Chen, W.

K. Liu, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, G. Ma, and Q. Xiao, J. Micromech. Microeng. 19, 113001 (2009).
[Crossref]

Chow, W.

W. Chow, J. Gea-Banacloche, L. Pedrotti, V. Sanders, W. Schleich, and M. Scully, Rev. Mod. Phys. 57, 61 (1985).
[Crossref]

Ciminelli, C.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. Armenise, J. Eur. Opt. Soc. Rapid Pub. 9, 14013 (2014).
[Crossref]

Cui, F.

K. Liu, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, G. Ma, and Q. Xiao, J. Micromech. Microeng. 19, 113001 (2009).
[Crossref]

Dai, F.

K. Liu, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, G. Ma, and Q. Xiao, J. Micromech. Microeng. 19, 113001 (2009).
[Crossref]

Dell’Olio, F.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. Armenise, J. Eur. Opt. Soc. Rapid Pub. 9, 14013 (2014).
[Crossref]

Eliyahu, D.

L. Maleki, W. Liang, D. Eliyahu, V. Ilchenko, A. Savchenkov, and A. Matsko, in 2016 IEEE Photonics Conference Technical Digest (online) (IEEE, 2016), paper TuD1.3.

Ezekiel, S.

Gea-Banacloche, J.

W. Chow, J. Gea-Banacloche, L. Pedrotti, V. Sanders, W. Schleich, and M. Scully, Rev. Mod. Phys. 57, 61 (1985).
[Crossref]

Ilchenko, V.

L. Maleki, W. Liang, D. Eliyahu, V. Ilchenko, A. Savchenkov, and A. Matsko, in 2016 IEEE Photonics Conference Technical Digest (online) (IEEE, 2016), paper TuD1.3.

Ippen, E.

E. Ippen and R. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[Crossref]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[Crossref]

Jin, Z.

H. Ma, J. Zhang, L. Wang, and Z. Jin, Opt. Express 23, 15088 (2015).

H. Ma, W. Wang, Y. Ren, and Z. Jin, IEEE Photon. Technol. Lett. 25, 198 (2013).
[Crossref]

Lee, H.

J. Li, H. Lee, and K. J. Vahala, Nat. Commun. 4, 2097 (2013).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, Opt. Express 20, 20170 (2012).
[Crossref]

Lefevre, H. C.

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 2014).

Li, J.

J. Li, H. Lee, and K. J. Vahala, Nat. Commun. 4, 2097 (2013).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, Opt. Express 20, 20170 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[Crossref]

J. Li, M.-G. Suh, and K. Vahala, in Nonlinear Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper NTh3A.2.

Li, K.

K. Liu, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, G. Ma, and Q. Xiao, J. Micromech. Microeng. 19, 113001 (2009).
[Crossref]

Liang, W.

L. Maleki, W. Liang, D. Eliyahu, V. Ilchenko, A. Savchenkov, and A. Matsko, in 2016 IEEE Photonics Conference Technical Digest (online) (IEEE, 2016), paper TuD1.3.

Liu, K.

K. Liu, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, G. Ma, and Q. Xiao, J. Micromech. Microeng. 19, 113001 (2009).
[Crossref]

Ma, G.

K. Liu, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, G. Ma, and Q. Xiao, J. Micromech. Microeng. 19, 113001 (2009).
[Crossref]

Ma, H.

H. Ma, J. Zhang, L. Wang, and Z. Jin, Opt. Express 23, 15088 (2015).

H. Ma, W. Wang, Y. Ren, and Z. Jin, IEEE Photon. Technol. Lett. 25, 198 (2013).
[Crossref]

Maleki, L.

L. Maleki, W. Liang, D. Eliyahu, V. Ilchenko, A. Savchenkov, and A. Matsko, in 2016 IEEE Photonics Conference Technical Digest (online) (IEEE, 2016), paper TuD1.3.

Matsko, A.

L. Maleki, W. Liang, D. Eliyahu, V. Ilchenko, A. Savchenkov, and A. Matsko, in 2016 IEEE Photonics Conference Technical Digest (online) (IEEE, 2016), paper TuD1.3.

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[Crossref]

Pedrotti, L.

W. Chow, J. Gea-Banacloche, L. Pedrotti, V. Sanders, W. Schleich, and M. Scully, Rev. Mod. Phys. 57, 61 (1985).
[Crossref]

Ren, Y.

H. Ma, W. Wang, Y. Ren, and Z. Jin, IEEE Photon. Technol. Lett. 25, 198 (2013).
[Crossref]

Sagnac, G.

G. Sagnac, C. R. Acad. Sci. 157, 708 (1913).

Sanders, V.

W. Chow, J. Gea-Banacloche, L. Pedrotti, V. Sanders, W. Schleich, and M. Scully, Rev. Mod. Phys. 57, 61 (1985).
[Crossref]

Savchenkov, A.

L. Maleki, W. Liang, D. Eliyahu, V. Ilchenko, A. Savchenkov, and A. Matsko, in 2016 IEEE Photonics Conference Technical Digest (online) (IEEE, 2016), paper TuD1.3.

Schleich, W.

W. Chow, J. Gea-Banacloche, L. Pedrotti, V. Sanders, W. Schleich, and M. Scully, Rev. Mod. Phys. 57, 61 (1985).
[Crossref]

Scully, M.

W. Chow, J. Gea-Banacloche, L. Pedrotti, V. Sanders, W. Schleich, and M. Scully, Rev. Mod. Phys. 57, 61 (1985).
[Crossref]

Smith, S.

Stolen, R.

E. Ippen and R. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[Crossref]

Suh, M.-G.

J. Li, M.-G. Suh, and K. Vahala, in Nonlinear Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper NTh3A.2.

Tatoli, T.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. Armenise, J. Eur. Opt. Soc. Rapid Pub. 9, 14013 (2014).
[Crossref]

Vahala, K.

J. Li, M.-G. Suh, and K. Vahala, in Nonlinear Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper NTh3A.2.

Vahala, K. J.

J. Li, H. Lee, and K. J. Vahala, Nat. Commun. 4, 2097 (2013).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, Opt. Express 20, 20170 (2012).
[Crossref]

Wang, L.

Wang, W.

H. Ma, W. Wang, Y. Ren, and Z. Jin, IEEE Photon. Technol. Lett. 25, 198 (2013).
[Crossref]

Wu, X.

K. Liu, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, G. Ma, and Q. Xiao, J. Micromech. Microeng. 19, 113001 (2009).
[Crossref]

Xiao, Q.

K. Liu, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, G. Ma, and Q. Xiao, J. Micromech. Microeng. 19, 113001 (2009).
[Crossref]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[Crossref]

Zarinetchi, F.

Zhang, J.

Zhang, W.

K. Liu, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, G. Ma, and Q. Xiao, J. Micromech. Microeng. 19, 113001 (2009).
[Crossref]

Appl. Phys. Lett. (1)

E. Ippen and R. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[Crossref]

C. R. Acad. Sci. (1)

G. Sagnac, C. R. Acad. Sci. 157, 708 (1913).

IEEE Photon. Technol. Lett. (1)

H. Ma, W. Wang, Y. Ren, and Z. Jin, IEEE Photon. Technol. Lett. 25, 198 (2013).
[Crossref]

J. Eur. Opt. Soc. Rapid Pub. (1)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. Armenise, J. Eur. Opt. Soc. Rapid Pub. 9, 14013 (2014).
[Crossref]

J. Micromech. Microeng. (1)

K. Liu, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, G. Ma, and Q. Xiao, J. Micromech. Microeng. 19, 113001 (2009).
[Crossref]

Nat. Commun. (1)

J. Li, H. Lee, and K. J. Vahala, Nat. Commun. 4, 2097 (2013).
[Crossref]

Nat. Photonics (1)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, Nat. Photonics 6, 369 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Rev. Mod. Phys. (1)

W. Chow, J. Gea-Banacloche, L. Pedrotti, V. Sanders, W. Schleich, and M. Scully, Rev. Mod. Phys. 57, 61 (1985).
[Crossref]

Other (3)

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 2014).

J. Li, M.-G. Suh, and K. Vahala, in Nonlinear Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper NTh3A.2.

L. Maleki, W. Liang, D. Eliyahu, V. Ilchenko, A. Savchenkov, and A. Matsko, in 2016 IEEE Photonics Conference Technical Digest (online) (IEEE, 2016), paper TuD1.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Simplified schematic illustrating the principle of Brillouin laser gyroscope operation. Optical pumping (clockwise direction) induces Brillouin laser action, which results in cascaded odd (counter-clockwise, CCW) and even (clockwise, CW) order Stokes lasers. These lasing modes experience opposing Sagnac frequency shifts. Detection of the beat frequency of these co-lasing signals followed by a frequency-to-voltage readout (f-V) provides rotation sensing. Laser action on odd Stokes (red) and even Stokes (blue) lines is shown. CW, rest, and CCW rotation induces beat frequency shifts as indicated. (b) Upper panel is a detailed experimental schematic for the gyroscope. The microcavity (yellow) is optically pumped. The laser pump is locked to a microcavity resonance using a Pound–Drever–Hall lock. Second-order and third-order Stokes co-lasing optical signals are coupled onto a photodetector using a circulator and bidirectional coupler. The laser lines are filtered using an optical band-pass filter (OBPF) before detection. In the lower panel, the frequency-to-voltage readout system is shown. A voltage-controlled oscillator (VCO) is phase locked to the detected beat frequency and the servo output provides a calibrated frequency readout. The readout is analyzed using an oscilloscope (Scope) and an electrical spectrum analyzer (ESA). Also shown in the figure: PI, proportional integral servo; PM, phase modulator.

Fig. 2.
Fig. 2.

(a) A gyro resonator was packaged into a fiber-connectorized box for rotation measurement. Left panel shows the box with the lid removed, and the 18 mm diameter resonator is visible as the gray silicon chip. (b), (c) CW rotation and CCW rotation of the SBS gyroscope with second- and third-order Stokes laser signals as indicated. Background coloring of the two rotation cases presented in (b) and (c) corresponds to the shaded regions in (d). (d) Time domain measurement of gyroscope output under sinusoidal rotation. Blue, angular displacement applied to the gyroscope; red, measured Sagnac frequency shift.

Fig. 3.
Fig. 3.

(a) Measurement of sinusoidal rotations using an electrical spectrum analyzer. The rms rotation rates are given in the legend. Left scale gives the gyroscope sensitivity as set by the white noise floor. An alternate scale giving the frequency-noise spectral density is provided on the right axis. (b) Plot of rms Sagnac frequency shift versus rms angular rotation rate measured as shown in (a).

Metrics