Abstract

Optical fibers containing multiple cores are widely regarded as the leading solution to the optical communications capacity crunch. The most prevalent paradigm for the design and employment of multi-core fibers relies on the suppression of direct coupling of optical power among cores. The cores, however, remain mechanically coupled. Inter-core, opto-mechanical cross-talk, among cores that are otherwise optically isolated from one another, is shown in this work for the first time, to the best of our knowledge. Light in one core stimulates guided acoustic modes of the entire fiber cladding. These modes, in turn, induce refractive index perturbations that extend across to other cores. Unlike corresponding processes in standard fiber, light waves in off-axis cores stimulate general torsional–radial guided acoustic modes of the cylindrical cross section. Hundreds of such modes give rise to inter-core cross-phase modulation, with broad spectra that are quasi-continuous up to 1 GHz frequency. Inter-core cross-talk in a commercial, seven-core fiber is studied in both analysis and experiment. Opto-mechanical cross-talk is quantified in terms of an equivalent nonlinear coefficient, per acoustic mode or per frequency. The nonlinear coefficient may reach 1.9[W×km]1, a value that is comparable with that of the intra-core Kerr effect in the same fiber.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Opto-electronic oscillator mediated by acoustic wave in a photonic crystal fiber stimulated in 1  μm band

Sigang Yang, Yi Yang, Jinyan Li, Siming Ding, Hongwei Chen, Minghua Chen, and Shizhong Xie
Opt. Lett. 43(20) 4879-4882 (2018)

Electrostriction-free n2 measurement in single-mode optical fibers based on nonlinear-polarization evolution

Jesús Subı́as, Javier Pelayo, Rafael Alonso, Francisco Villuendas, and Carlos Heras
J. Opt. Soc. Am. B 19(3) 390-394 (2002)

Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber

Zhiyong Zhao, Yunli Dang, Ming Tang, Borui Li, Lin Gan, Songnian Fu, Huifeng Wei, Weijun Tong, Ping Shum, and Deming Liu
Opt. Lett. 42(1) 171-174 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28, 423–433 (2010).
    [Crossref]
  2. R. J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101, 163901 (2008).
    [Crossref]
  3. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
    [Crossref]
  4. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Wizner, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012).
    [Crossref]
  5. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19, B102–B111 (2011).
    [Crossref]
  6. J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20, 15157–15170 (2012).
    [Crossref]
  7. T. Watanabe and Y. Kokubun, “Ultra-large number of transmission channels in space division multiplexing using few-mode multi-core fiber with optimized air-hole-assisted double-cladding structure,” Opt. Express 22, 8309–8319 (2014).
    [Crossref]
  8. T. Hayashi, T. Sasaki, E. Sasaoka, K. Saitoh, and M. Koshiba, “Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend,” Opt. Express 21, 5401–5412 (2013).
    [Crossref]
  9. A. Macho, M. Morant, and R. Llorente, “Experimental evaluation of nonlinear crosstalk in multi-core fiber,” Opt. Express 23, 18712–18720 (2015).
    [Crossref]
  10. C. Antonelli, M. Shtaif, and A. Mecozzi, “Modeling of nonlinear propagation in space-division multiplexed fiber-optic transmission,” J. Lightwave Technol. 34, 36–54 (2016).
    [Crossref]
  11. S. W. Rienstra and A. Hirschberg, An Introduction to Acoustics (Eindhoven University of Technology, 2015), Chap. 7.
  12. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
    [Crossref]
  13. A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibers,” IEEE J. Quantum Electron. 32, 765–775 (2002).
    [Crossref]
  14. P. St. J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett. 26, 1195–1196 (1990).
    [Crossref]
  15. P. St. J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
    [Crossref]
  16. M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
    [Crossref]
  17. J. Wang, Y. Zhu, R. Zhang, and D. J. Gauthier, “FSBS resonances observed in standard highly nonlinear fiber,” Opt. Express 19, 5339–5349 (2011).
    [Crossref]
  18. E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
    [Crossref]
  19. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
    [Crossref]
  20. M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre-laser by optomechanically bound states of solitons,” Nat. Photonics 10, 454–458 (2016).
    [Crossref]
  21. J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, and P. St. J. Russell, “Effects of squeezed film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
    [Crossref]
  22. A. Butsch, J. R. Koehler, R. E. Noskov, and P. St. J. Russell, “CW-pumped single-pass frequency comb generation by resonant optomechanical nonlinearity in dual-nanoweb fiber,” Optica 1, 158–164 (2014).
    [Crossref]
  23. J. R. Koehler, R. E. Noskov, A. A. Sukhorukov, A. Butsch, D. Novoa, and P. St. J. Russell, “Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillations in dual-nanoweb fiber,” Appl. Phys. Lett. Photon. 1, 056101 (2016).
    [Crossref]
  24. Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica 3, 510–516 (2016).
    [Crossref]
  25. Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
    [Crossref]
  26. T. Matsui, K. Nakajima, T. Sakamoto, K. Shiraki, and I. Sankawa, “Structural dependence of guided acoustic-wave Brillouin scattering spectra in hole-assisted fiber and its temperature dependence,” Appl. Opt. 46, 6912–6917 (2007).
    [Crossref]
  27. E. Carry, J. C. Beugnot, B. Stiller, M. W. Lee, H. Maillotte, and T. Sylvestre, “Temperature coefficient of the high-frequency guided acoustic mode in a photonic crystal fiber,” Appl. Opt. 50, 6543–6547 (2011).
    [Crossref]
  28. Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 11, 865–867 (1999).
    [Crossref]
  29. Y. Antman, Y. London, and A. Zadok, “Scanning-free characterization of temperature dependence of forward stimulated Brillouin scattering resonances,” Proc. SPIE 9634, 96345C (2015).
    [Crossref]
  30. W. H. Renninger, R. O. Behunin, and P. T. Rakich, “Guided-wave Brillouin scattering in air,” Optica 3, 1316–1319 (2016).
    [Crossref]
  31. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
    [Crossref]
  32. H. Shin, J. A. Cox, A. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
    [Crossref]
  33. T. Matsui, K. Nakajima, and F. Yamamoto, “Guided acoustic-wave Brillouin scattering characteristics of few-mode fiber,” Appl. Opt. 54, 6093–6097 (2015).
    [Crossref]
  34. P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
    [Crossref]
  35. A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, and P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
    [Crossref]
  36. P. K. A. Wai and C. R. Menyuk, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 14, 148–157 (1996).
    [Crossref]
  37. R. N. Thurston, “Elastic waves in rods and optical fibers,” J. Sound Vib. 159, 441–467 (1992).
    [Crossref]
  38. H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1988).
    [Crossref]
  39. B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973).
  40. H. Al-Raweshidy and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks (Artech House, 2002).
  41. I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photon. J. 4, 877–888 (2012).
    [Crossref]
  42. M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky, and A. P. Napartovich, “Phase locking in a multicore fiber laser by means of a Talbot resonator,” Opt. Lett. 25, 1436–1438 (2000).
    [Crossref]
  43. E. J. Bochove, P. K. Cheo, and G. G. King, “Self-organization in a multicore fiber laser array,” Opt. Lett. 28, 1200–1202 (2003).
    [Crossref]
  44. Y. Huo and P. K. Cheo, “Analysis of transverse mode competition and selection in multicore fiber lasers,” J. Opt. Soc. Am. B 22, 2345–2349 (2005).
    [Crossref]
  45. L. Li, A. Schülzgen, S. Chen, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Phase locking and in-phase supermode selection in monolithic multicore fiber lasers,” Opt. Lett. 31, 2577–2579 (2006).
    [Crossref]
  46. D. Levandovsky, M. Vasilyev, and P. Kumar, “Near-noiseless amplification of light by a phase-sensitive fibre amplifier,” Pramana 56, 281–285 (2001).
    [Crossref]
  47. P. Frascella, S. Sygletos, F. C. Garcia Gunning, R. Weerasuriya, L. Gruner Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23, 516–518 (2011).
    [Crossref]
  48. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20, 2967–2973 (2012).
    [Crossref]
  49. Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Distributed shape sensing using Brillouin scattering in multi-core fibers,” Opt. Express 24, 25211–25223 (2016).
    [Crossref]
  50. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1996).
    [Crossref]
  51. Y. London, H. H. Diamandi, and A. Zadok, “Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber,” Appl. Phys. Lett. Photon. (submitted).

2016 (6)

2015 (4)

T. Matsui, K. Nakajima, and F. Yamamoto, “Guided acoustic-wave Brillouin scattering characteristics of few-mode fiber,” Appl. Opt. 54, 6093–6097 (2015).
[Crossref]

A. Macho, M. Morant, and R. Llorente, “Experimental evaluation of nonlinear crosstalk in multi-core fiber,” Opt. Express 23, 18712–18720 (2015).
[Crossref]

Y. Antman, Y. London, and A. Zadok, “Scanning-free characterization of temperature dependence of forward stimulated Brillouin scattering resonances,” Proc. SPIE 9634, 96345C (2015).
[Crossref]

H. Shin, J. A. Cox, A. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

2014 (2)

2013 (3)

T. Hayashi, T. Sasaki, E. Sasaoka, K. Saitoh, and M. Koshiba, “Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend,” Opt. Express 21, 5401–5412 (2013).
[Crossref]

J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, and P. St. J. Russell, “Effects of squeezed film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

2012 (5)

2011 (4)

2010 (1)

2009 (2)

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

2008 (1)

R. J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101, 163901 (2008).
[Crossref]

2007 (1)

2006 (3)

2005 (1)

2003 (1)

2002 (1)

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibers,” IEEE J. Quantum Electron. 32, 765–775 (2002).
[Crossref]

2001 (1)

D. Levandovsky, M. Vasilyev, and P. Kumar, “Near-noiseless amplification of light by a phase-sensitive fibre amplifier,” Pramana 56, 281–285 (2001).
[Crossref]

2000 (1)

1999 (2)

E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
[Crossref]

Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 11, 865–867 (1999).
[Crossref]

1998 (1)

Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
[Crossref]

1996 (2)

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1996).
[Crossref]

P. K. A. Wai and C. R. Menyuk, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 14, 148–157 (1996).
[Crossref]

1992 (1)

R. N. Thurston, “Elastic waves in rods and optical fibers,” J. Sound Vib. 159, 441–467 (1992).
[Crossref]

1991 (1)

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

1990 (1)

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett. 26, 1195–1196 (1990).
[Crossref]

1988 (1)

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1988).
[Crossref]

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Al-Raweshidy, H.

H. Al-Raweshidy and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks (Artech House, 2002).

Antman, Y.

Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica 3, 510–516 (2016).
[Crossref]

Y. Antman, Y. London, and A. Zadok, “Scanning-free characterization of temperature dependence of forward stimulated Brillouin scattering resonances,” Proc. SPIE 9634, 96345C (2015).
[Crossref]

Antonelli, C.

Auld, B. A.

B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973).

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Behunin, R. O.

Beugnot, J. C.

Biryukov, A. S.

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibers,” IEEE J. Quantum Electron. 32, 765–775 (2002).
[Crossref]

Blake, J. N.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1988).
[Crossref]

Bochove, E. J.

Bolle, C.

Brenn, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Burrows, E. C.

Butsch, A.

J. R. Koehler, R. E. Noskov, A. A. Sukhorukov, A. Butsch, D. Novoa, and P. St. J. Russell, “Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillations in dual-nanoweb fiber,” Appl. Phys. Lett. Photon. 1, 056101 (2016).
[Crossref]

A. Butsch, J. R. Koehler, R. E. Noskov, and P. St. J. Russell, “CW-pumped single-pass frequency comb generation by resonant optomechanical nonlinearity in dual-nanoweb fiber,” Optica 1, 158–164 (2014).
[Crossref]

J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, and P. St. J. Russell, “Effects of squeezed film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
[Crossref]

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, and P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

Capmany, J.

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photon. J. 4, 877–888 (2012).
[Crossref]

Carmon, T.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Carry, E.

Chen, S.

Cheo, P. K.

Clain, A.

Cotter, D.

Cox, J. A.

H. Shin, J. A. Cox, A. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

Culverhouse, D.

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett. 26, 1195–1196 (1990).
[Crossref]

Dainese, P.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[Crossref]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[Crossref]

Diamandi, H. H.

Y. London, H. H. Diamandi, and A. Zadok, “Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber,” Appl. Phys. Lett. Photon. (submitted).

Dianov, E. M.

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibers,” IEEE J. Quantum Electron. 32, 765–775 (2002).
[Crossref]

Ellis, A. D.

P. Frascella, S. Sygletos, F. C. Garcia Gunning, R. Weerasuriya, L. Gruner Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23, 516–518 (2011).
[Crossref]

Ellis, E. D.

Engan, H. E.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1988).
[Crossref]

Esmaeelpour, M.

Essiambre, R. J.

Euser, T. G.

J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, and P. St. J. Russell, “Effects of squeezed film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
[Crossref]

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, and P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

Farahi, F.

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett. 26, 1195–1196 (1990).
[Crossref]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Fischer, D.

Foschini, G. J.

R. J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101, 163901 (2008).
[Crossref]

Fragnito, H. L.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[Crossref]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[Crossref]

Frascella, P.

P. Frascella, S. Sygletos, F. C. Garcia Gunning, R. Weerasuriya, L. Gruner Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23, 516–518 (2011).
[Crossref]

Garcia Gunning, F. C.

P. Frascella, S. Sygletos, F. C. Garcia Gunning, R. Weerasuriya, L. Gruner Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23, 516–518 (2011).
[Crossref]

Gasulla, I.

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photon. J. 4, 877–888 (2012).
[Crossref]

Gauthier, D. J.

Glas, P.

Gnauck, A. H.

Gruner Nielsen, L.

P. Frascella, S. Sygletos, F. C. Garcia Gunning, R. Weerasuriya, L. Gruner Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23, 516–518 (2011).
[Crossref]

Hayashi, T.

He, W.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre-laser by optomechanically bound states of solitons,” Nat. Photonics 10, 454–458 (2016).
[Crossref]

Hirschberg, A.

S. W. Rienstra and A. Hirschberg, An Introduction to Acoustics (Eindhoven University of Technology, 2015), Chap. 7.

Huo, Y.

Jarecki, A.

H. Shin, J. A. Cox, A. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

Jiang, X.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre-laser by optomechanically bound states of solitons,” Nat. Photonics 10, 454–458 (2016).
[Crossref]

Joly, N.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[Crossref]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[Crossref]

Kang, M. S.

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, and P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Keding, R.

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, and P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

Khelif, A.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[Crossref]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[Crossref]

Kim, B. Y.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1988).
[Crossref]

King, G. G.

Knight, J. C.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[Crossref]

Koehler, J. R.

J. R. Koehler, R. E. Noskov, A. A. Sukhorukov, A. Butsch, D. Novoa, and P. St. J. Russell, “Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillations in dual-nanoweb fiber,” Appl. Phys. Lett. Photon. 1, 056101 (2016).
[Crossref]

A. Butsch, J. R. Koehler, R. E. Noskov, and P. St. J. Russell, “CW-pumped single-pass frequency comb generation by resonant optomechanical nonlinearity in dual-nanoweb fiber,” Optica 1, 158–164 (2014).
[Crossref]

J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, and P. St. J. Russell, “Effects of squeezed film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
[Crossref]

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, and P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

Kokubun, Y.

Komaki, S.

H. Al-Raweshidy and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks (Artech House, 2002).

Koshiba, M.

Kramer, G.

R. J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101, 163901 (2008).
[Crossref]

Kumar, P.

D. Levandovsky, M. Vasilyev, and P. Kumar, “Near-noiseless amplification of light by a phase-sensitive fibre amplifier,” Pramana 56, 281–285 (2001).
[Crossref]

Laude, V.

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[Crossref]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[Crossref]

Lee, M. W.

Leitner, M.

Levandovsky, D.

D. Levandovsky, M. Vasilyev, and P. Kumar, “Near-noiseless amplification of light by a phase-sensitive fibre amplifier,” Pramana 56, 281–285 (2001).
[Crossref]

Levenson, M. D.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Li, L.

Lingle, R.

Llorente, R.

London, Y.

Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica 3, 510–516 (2016).
[Crossref]

Y. Antman, Y. London, and A. Zadok, “Scanning-free characterization of temperature dependence of forward stimulated Brillouin scattering resonances,” Proc. SPIE 9634, 96345C (2015).
[Crossref]

Y. London, H. H. Diamandi, and A. Zadok, “Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber,” Appl. Phys. Lett. Photon. (submitted).

Macho, A.

Maillotte, H.

Maleki, L.

Matsui, T.

Matsuo, S.

McCurdy, A. H.

Mecozzi, A.

Menyuk, C. R.

P. K. A. Wai and C. R. Menyuk, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 14, 148–157 (1996).
[Crossref]

Moloney, J. V.

Moore, J. P.

Morant, M.

Mumtaz, S.

Nakajima, K.

Napartovich, A. P.

Nazarkin, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Noskov, R. E.

J. R. Koehler, R. E. Noskov, A. A. Sukhorukov, A. Butsch, D. Novoa, and P. St. J. Russell, “Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillations in dual-nanoweb fiber,” Appl. Phys. Lett. Photon. 1, 056101 (2016).
[Crossref]

A. Butsch, J. R. Koehler, R. E. Noskov, and P. St. J. Russell, “CW-pumped single-pass frequency comb generation by resonant optomechanical nonlinearity in dual-nanoweb fiber,” Optica 1, 158–164 (2014).
[Crossref]

J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, and P. St. J. Russell, “Effects of squeezed film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
[Crossref]

Novoa, D.

J. R. Koehler, R. E. Noskov, A. A. Sukhorukov, A. Butsch, D. Novoa, and P. St. J. Russell, “Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillations in dual-nanoweb fiber,” Appl. Phys. Lett. Photon. 1, 056101 (2016).
[Crossref]

O’Gorman, J.

P. Frascella, S. Sygletos, F. C. Garcia Gunning, R. Weerasuriya, L. Gruner Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23, 516–518 (2011).
[Crossref]

Ogusu, K.

Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 11, 865–867 (1999).
[Crossref]

Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
[Crossref]

Pang, M.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre-laser by optomechanically bound states of solitons,” Nat. Photonics 10, 454–458 (2016).
[Crossref]

Peckham, D. W.

Peral, E.

E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
[Crossref]

Peyghambarian, N.

Phelan, R.

P. Frascella, S. Sygletos, F. C. Garcia Gunning, R. Weerasuriya, L. Gruner Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23, 516–518 (2011).
[Crossref]

Rakich, P. T.

W. H. Renninger, R. O. Behunin, and P. T. Rakich, “Guided-wave Brillouin scattering in air,” Optica 3, 1316–1319 (2016).
[Crossref]

H. Shin, J. A. Cox, A. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

Rammler, S.

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, and P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

Randel, S.

Renninger, W. H.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Rienstra, S. W.

S. W. Rienstra and A. Hirschberg, An Introduction to Acoustics (Eindhoven University of Technology, 2015), Chap. 7.

Rogge, M. D.

Russell, P. St. J.

J. R. Koehler, R. E. Noskov, A. A. Sukhorukov, A. Butsch, D. Novoa, and P. St. J. Russell, “Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillations in dual-nanoweb fiber,” Appl. Phys. Lett. Photon. 1, 056101 (2016).
[Crossref]

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre-laser by optomechanically bound states of solitons,” Nat. Photonics 10, 454–458 (2016).
[Crossref]

A. Butsch, J. R. Koehler, R. E. Noskov, and P. St. J. Russell, “CW-pumped single-pass frequency comb generation by resonant optomechanical nonlinearity in dual-nanoweb fiber,” Optica 1, 158–164 (2014).
[Crossref]

J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, and P. St. J. Russell, “Effects of squeezed film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
[Crossref]

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, and P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[Crossref]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[Crossref]

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett. 26, 1195–1196 (1990).
[Crossref]

Ryf, R.

Saitoh, K.

Sakamoto, T.

Sankawa, I.

Sasaki, T.

Sasaoka, E.

Schülzgen, A.

Shaw, H. J.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1988).
[Crossref]

Shelby, R. M.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Shin, H.

H. Shin, J. A. Cox, A. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

Shiraki, K.

Shtaif, M.

Sierra, A.

Soto, M. A.

Starbuck, A.

H. Shin, J. A. Cox, A. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

Stiller, B.

Sukharev, M. E.

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibers,” IEEE J. Quantum Electron. 32, 765–775 (2002).
[Crossref]

Sukhorukov, A. A.

J. R. Koehler, R. E. Noskov, A. A. Sukhorukov, A. Butsch, D. Novoa, and P. St. J. Russell, “Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillations in dual-nanoweb fiber,” Appl. Phys. Lett. Photon. 1, 056101 (2016).
[Crossref]

Sygletos, S.

P. Frascella, S. Sygletos, F. C. Garcia Gunning, R. Weerasuriya, L. Gruner Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23, 516–518 (2011).
[Crossref]

Sylvestre, T.

Takenaga, K.

Tanaka, Y.

Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 11, 865–867 (1999).
[Crossref]

Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
[Crossref]

Tang, M.

Temyanko, V. L.

Thévenaz, L.

Thurston, R. N.

R. N. Thurston, “Elastic waves in rods and optical fibers,” J. Sound Vib. 159, 441–467 (1992).
[Crossref]

Tomes, M.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Tu, J.

Vasilyev, M.

D. Levandovsky, M. Vasilyev, and P. Kumar, “Near-noiseless amplification of light by a phase-sensitive fibre amplifier,” Pramana 56, 281–285 (2001).
[Crossref]

Vysotsky, D. V.

Wai, P. K. A.

P. K. A. Wai and C. R. Menyuk, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 14, 148–157 (1996).
[Crossref]

Wang, J.

Wang, Z.

H. Shin, J. A. Cox, A. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

Watanabe, T.

Weerasuriya, R.

P. Frascella, S. Sygletos, F. C. Garcia Gunning, R. Weerasuriya, L. Gruner Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23, 516–518 (2011).
[Crossref]

Wiederhecker, G. S.

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[Crossref]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[Crossref]

Winzer, P. J.

R. J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101, 163901 (2008).
[Crossref]

Wizner, P. J.

Wrage, M.

Yamamoto, F.

Yao, X. S.

Yariv, A.

E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
[Crossref]

Zadok, A.

Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica 3, 510–516 (2016).
[Crossref]

Y. Antman, Y. London, and A. Zadok, “Scanning-free characterization of temperature dependence of forward stimulated Brillouin scattering resonances,” Proc. SPIE 9634, 96345C (2015).
[Crossref]

Y. London, H. H. Diamandi, and A. Zadok, “Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber,” Appl. Phys. Lett. Photon. (submitted).

Zhang, R.

Zhao, J.

Zhao, Z.

Zhu, Y.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, and P. St. J. Russell, “Effects of squeezed film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
[Crossref]

Appl. Phys. Lett. Photon. (1)

J. R. Koehler, R. E. Noskov, A. A. Sukhorukov, A. Butsch, D. Novoa, and P. St. J. Russell, “Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillations in dual-nanoweb fiber,” Appl. Phys. Lett. Photon. 1, 056101 (2016).
[Crossref]

Electron. Lett. (1)

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett. 26, 1195–1196 (1990).
[Crossref]

IEEE J. Quantum Electron. (3)

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
[Crossref]

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibers,” IEEE J. Quantum Electron. 32, 765–775 (2002).
[Crossref]

IEEE Photon. J. (1)

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photon. J. 4, 877–888 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (3)

P. Frascella, S. Sygletos, F. C. Garcia Gunning, R. Weerasuriya, L. Gruner Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23, 516–518 (2011).
[Crossref]

Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 11, 865–867 (1999).
[Crossref]

Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. B (2)

J. Sound Vib. (1)

R. N. Thurston, “Elastic waves in rods and optical fibers,” J. Sound Vib. 159, 441–467 (1992).
[Crossref]

Nat. Commun. (1)

H. Shin, J. A. Cox, A. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref]

Nat. Photonics (2)

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre-laser by optomechanically bound states of solitons,” Nat. Photonics 10, 454–458 (2016).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Nat. Phys. (2)

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[Crossref]

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Opt. Express (9)

J. Wang, Y. Zhu, R. Zhang, and D. J. Gauthier, “FSBS resonances observed in standard highly nonlinear fiber,” Opt. Express 19, 5339–5349 (2011).
[Crossref]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19, B102–B111 (2011).
[Crossref]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20, 15157–15170 (2012).
[Crossref]

T. Watanabe and Y. Kokubun, “Ultra-large number of transmission channels in space division multiplexing using few-mode multi-core fiber with optimized air-hole-assisted double-cladding structure,” Opt. Express 22, 8309–8319 (2014).
[Crossref]

T. Hayashi, T. Sasaki, E. Sasaoka, K. Saitoh, and M. Koshiba, “Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend,” Opt. Express 21, 5401–5412 (2013).
[Crossref]

A. Macho, M. Morant, and R. Llorente, “Experimental evaluation of nonlinear crosstalk in multi-core fiber,” Opt. Express 23, 18712–18720 (2015).
[Crossref]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[Crossref]

J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20, 2967–2973 (2012).
[Crossref]

Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Distributed shape sensing using Brillouin scattering in multi-core fibers,” Opt. Express 24, 25211–25223 (2016).
[Crossref]

Opt. Lett. (3)

Optica (3)

Phys. Rev. B (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Phys. Rev. Lett. (3)

R. J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101, 163901 (2008).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, and P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

Pramana (1)

D. Levandovsky, M. Vasilyev, and P. Kumar, “Near-noiseless amplification of light by a phase-sensitive fibre amplifier,” Pramana 56, 281–285 (2001).
[Crossref]

Proc. SPIE (1)

Y. Antman, Y. London, and A. Zadok, “Scanning-free characterization of temperature dependence of forward stimulated Brillouin scattering resonances,” Proc. SPIE 9634, 96345C (2015).
[Crossref]

Other (4)

S. W. Rienstra and A. Hirschberg, An Introduction to Acoustics (Eindhoven University of Technology, 2015), Chap. 7.

B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973).

H. Al-Raweshidy and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks (Artech House, 2002).

Y. London, H. H. Diamandi, and A. Zadok, “Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber,” Appl. Phys. Lett. Photon. (submitted).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1314 KB)      Supplementary analysis

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic illustrations of the experimental setup used to study opto-mechanical inter-core cross-phase modulation in a commercial seven-core fiber [16,24]. The pump wave propagated in the central core of the fiber under test, in one direction only. In some experiments the pump wave was modulated by pulses of 0.5 ns duration and 1 μs period, using a semiconductor optical amplifier (SOA) and an electro-optic modulator (EOM) connected in series. Pulses were amplified to peak power levels between 0.3 and 6.0 W by an erbium-doped fiber amplifier (EDFA). In other experiments, the pump wave was modulated by continuous RF sine waves using the EOM only, and amplified by the EDFA to average power levels of 20–60 mW. A continuous probe wave propagated in either the inner core [panel (a)] or an outer core [panel (b)] of the same fiber, in both directions, in a Sagnac loop configuration. When the probe propagated in the inner core alongside the intense pump [panel (a)], optical bandpass filters (BPFs) were used to block the pump wave from reaching the loop output. GAWBS driven by the pump pulses induced non-reciprocal phase delay perturbation to the probe wave. The non-reciprocal phase modulation was converted to intensity changes upon detection of the probe wave at the loop output. Polarization controllers (PCs) were used to adjust the states of polarization of the probe wave.
Fig. 2.
Fig. 2. (a) Output voltage of the detected probe wave as a function of time, following propagation in the inner core. Pump pulses were 0.5 ns long, with peak power of 3.5 W. (b) Trace of panel (a), digitally filtered to select the contribution of acoustic mode R0,10 at resonance frequency Ω10=2π464  MHz. The modal oscillations decay exponentially with a linewidth Γ10=2π6.4  MHz. (c) Measured (red) and calculated (black) normalized PSDs of the probe wave opto-mechanical phase modulation. Good agreement between measurements, analysis, and previous studies is achieved.
Fig. 3.
Fig. 3. (a) Output voltage of the detected probe wave as a function of time, following propagation in an outer core. Pump pulses were 0.5 ns long, with peak power of 3.5 W. (b) Trace of panel (a), digitally filtered to select the contribution of mode R08 at resonance frequency Ω8=2π369.2  MHz. (c) Measured peak-to-peak magnitude of the output voltage, as a function the average pump power. The pump was modulated by a sine wave of frequency Ω8. A linear relation is observed as expected. (d) Measured (red) and calculated (black) normalized PSDs of the probe wave phase modulation. The irregular spectrum observed is fully accounted for by the analysis.
Fig. 4.
Fig. 4. Simulated, normalized transverse profiles of the photo-elastic index variations as a function of Cartesian coordinates x and y. The index changes were calculated for light that is polarized along the local azimuthal direction (see Supplement 1). The cores of the fiber are noted in black circles. Panels (a) and (b) correspond to modes R07 and R08, respectively. The index perturbation for R07 (Ω7=2π322  MHz) changes sign within the outer cores, leading to effective cancellation of the photo-elastic overlap integral QPE(7). The corresponding profile for mode R08 (Ω8=2π369.2  MHz) passes through a maximum within outer cores.
Fig. 5.
Fig. 5. Example of the calculated normalized transverse profile of the GAWBS-induced dielectric tensor perturbation δε˜. The profile corresponds to the torsional–radial guided acoustic mode TR18,14. The cut-off frequency of the particular mode is Ω18,14=2π526  MHz. The dielectric tensor perturbations are presented in polar coordinates r, φ. Top left, δε˜rr; top right, δε˜rφ; bottom left, δε˜φr; bottom right, δε˜φφ.
Fig. 6.
Fig. 6. Calculated equivalent nonlinear coefficient of guided acoustic wave Brillouin scattering between two adjacent outer cores in a seven-core fiber, as a function of radio-frequency. The scattering spectrum consists of contributions of hundreds of torsional–radial acoustic modes. Azimuthal orders p between 0 and 36 were considered.
Fig. 7.
Fig. 7. (a) Voltage of the detected probe wave as a function of time, at the output of the Sagnac loop, following propagation in an outer core. Short pump pulses of 10 W peak power and 0.7 ns duration propagated in an adjacent outer core. (b) Measured nonlinear power spectral density of the output probe wave. A broad, quasi-continuous phase modulation spectrum is observed up to a frequency of 750 MHz, limited by the bandwidth of pump pulses. The spectrum is in marked contrast to those of radial modes only [see Fig. 3(d)].

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δφ˜OM(m)(Ω)=k04n2cρ0QES(m)QPE(m)ΓmΩmLP˜(Ω)j2(ΩΩm)/Γm.
γOM(m)k04n2cρ0QES(m)QPE(m)ΓmΩm.
|δφ˜OM(m)(Ωm)|2=|γOM(m)|2L2|P˜(Ωm)|2.
δV(t)12VmaxδφOM(t).
|γOM(8)z|=2|δV˜(Ω8)|/[VmaxL|P˜(Ω8)|].
γ˜OM(i)(Ω)k04n2cρ0H˜OM(i)(Ω).
δφ˜(i)(Ω)=γOM(i)(Ω)P˜(Ω)L.

Metrics