Abstract

Wavefront shaping based on digital optical phase conjugation (DOPC) focuses light through or inside scattering media, but the low speed of DOPC prevents it from being applied to thick, living biological tissue. Although a fast DOPC approach was recently developed, the reported single-shot wavefront measurement method does not work when the goal is to focus light inside, instead of through, highly scattering media. Here, using a ferroelectric liquid crystal based spatial light modulator, we develop a simpler but faster DOPC system that focuses light not only through, but also inside scattering media. By controlling 2.6×105 optical degrees of freedom, our system focused light through 3 mm thick moving chicken tissue, with a system latency of 3.0 ms. Using ultrasound-guided DOPC, along with a binary wavefront measurement method, our system focused light inside a scattering medium comprising moving tissue with a latency of 6.0 ms, which is one to two orders of magnitude shorter than those of previous digital wavefront shaping systems. Since the demonstrated speed approaches tissue decorrelation rates, this work is an important step toward in vivo deep-tissue non-invasive optical imaging, manipulation, and therapy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Focusing through dynamic tissue with millisecond digital optical phase conjugation

Daifa Wang, Edward Haojiang Zhou, Joshua Brake, Haowen Ruan, Mooseok Jang, and Changhuei Yang
Optica 2(8) 728-735 (2015)

Angular-spectrum modeling of focusing light inside scattering media by optical phase conjugation

Jiamiao Yang, Jingwei Li, Sailing He, and Lihong V. Wang
Optica 6(3) 250-256 (2019)

Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation

Cheng Ma, Fengbo Zhou, Yan Liu, and Lihong V. Wang
Optica 2(10) 869-876 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
    [Crossref]
  2. Y. Liu, C. Zhang, and L. V. Wang, “Effects of light scattering on optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 17, 126014 (2012).
    [Crossref]
  3. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
    [Crossref]
  4. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
    [Crossref]
  5. I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23, 12189–12206 (2015).
    [Crossref]
  6. H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
    [Crossref]
  7. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref]
  8. S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
    [Crossref]
  9. M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19, 2989–2995 (2011).
    [Crossref]
  10. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
    [Crossref]
  11. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010).
    [Crossref]
  12. C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
    [Crossref]
  13. E. N. Leith and J. Upatnieks, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523 (1966).
    [Crossref]
  14. C. Ma, F. Zhou, Y. Liu, and L. V. Wang, “Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation,” Optica 2, 869–876 (2015).
  15. Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
    [Crossref]
  16. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
    [Crossref]
  17. C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8, 931–936 (2014).
    [Crossref]
  18. E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1, 227–232 (2014).
  19. H. Ruan, M. Jang, and C. Yang, “Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light,” Nat. Commun. 6, 8968 (2015).
    [Crossref]
  20. Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21, 085001 (2016).
    [Crossref]
  21. M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, “Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin,” Biomed. Opt. Express 6, 72–85 (2015).
    [Crossref]
  22. A. Lev and B. Sfez, “In vivo demonstration of the ultrasound-modulated light technique,” J. Opt. Soc. Am. A 20, 2347–2354 (2003).
    [Crossref]
  23. D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2, 728–735 (2015).
  24. Y. Liu, C. Ma, Y. Shen, and L. V. Wang, “Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media,” Opt. Lett. 41, 1321–1324 (2016).
    [Crossref]
  25. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
    [Crossref]
  26. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
    [Crossref]
  27. R. Fiolka, K. Si, and M. Cui, “Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation,” Opt. Express 20, 24827–24834 (2012).
    [Crossref]
  28. K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep. 2, 748 (2012).
    [Crossref]
  29. H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative time-reversed ultrasonically encoded light focusing in backscattering mode,” Sci. Rep. 4, 7156 (2014).
    [Crossref]
  30. Y. Suzuki, J. W. Tay, Q. Yang, and L. V. Wang, “Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation,” Opt. Lett. 39, 3441–3444 (2014).
    [Crossref]
  31. Y. Suzuki and L. V. Wang, “Frequency-swept time-reversed ultrasonically encoded optical focusing,” Appl. Phys. Lett. 105, 191108 (2014).
    [Crossref]
  32. M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22, 14054–14071 (2014).
    [Crossref]
  33. T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3, 1909 (2013).
    [Crossref]
  34. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
    [Crossref]
  35. D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39, 1921–1924 (2014).
    [Crossref]
  36. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
    [Crossref]
  37. A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).
    [Crossref]
  38. X. Tao, D. Bodington, M. Reinig, and J. Kubby, “High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing,” Opt. Express 23, 14168–14187 (2015).
    [Crossref]
  39. X. Zhang and P. Kner, “Binary wavefront optimization using a genetic algorithm,” J. Opt. 16, 125704 (2014).
    [Crossref]
  40. D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011).
    [Crossref]
  41. J. W. Tay, J. Liang, and L. V. Wang, “Amplitude-masked photoacoustic wavefront shaping and application in flowmetry,” Opt. Lett. 39, 5499–5502 (2014).
    [Crossref]
  42. Hamamatsu Photonics, Phase spatial light modulator LCOS-SLM, https://www.hamamatsu.com/resources/pdf/ssd/e12_handbook_lcos_slm.pdf .
  43. S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” Proc. SPIE 8979, 897905 (2014).
    [Crossref]
  44. I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
    [Crossref]
  45. T. Kurokawa and S. Fukushima, “Spatial light modulators using ferroelectric liquid crystal,” Opt. Quantum Electron. 24, 1151–1163 (1992).
    [Crossref]
  46. M. Azimipour, F. Atry, and R. Pashaie, “Calibration of digital optical phase conjugation setups based on orthonormal rectangular polynomials,” Appl. Opt. 55, 2873–2880 (2016).
    [Crossref]
  47. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
    [Crossref]
  48. W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
    [Crossref]
  49. L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903 (2001).
    [Crossref]
  50. Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Sub-Nyquist sampling boosts targeted light transport through opaque scattering media,” Optica 4, 97–102 (2017).
  51. J. A. Kubby, Adaptive Optics for Biological Imaging (CRC Press, 2013).
  52. Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through scattering media by full-polarization digital optical phase conjugation,” Opt. Lett. 41, 1130–1133 (2016).
    [Crossref]
  53. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20, 15086–15092 (2012).
    [Crossref]
  54. Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108, 231106 (2016).
    [Crossref]
  55. A. S. Hemphill, J. W. Tay, and L. V. Wang, “Hybridized wavefront shaping for high-speed, high-efficiency focusing through dynamic diffusive media,” J. Biomed. Opt. 21, 121502 (2016).
    [Crossref]
  56. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25, 2088–2094 (2008).
    [Crossref]
  57. P. R. Dmochowski, B. R. Hayes-Gill, M. Clark, J. A. Crowe, M. G. Somekh, and S. P. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
    [Crossref]
  58. J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci. Rep. 4, 3918 (2014).
    [Crossref]
  59. T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
    [Crossref]
  60. F. Kong, R. H. Silverman, L. Liu, P. V. Chitnis, K. K. Lee, and Y. C. Chen, “Photoacoustic-guided convergence of light through optically diffusive media,” Opt. Lett. 36, 2053–2055 (2011).
    [Crossref]

2017 (1)

2016 (6)

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through scattering media by full-polarization digital optical phase conjugation,” Opt. Lett. 41, 1130–1133 (2016).
[Crossref]

Y. Liu, C. Ma, Y. Shen, and L. V. Wang, “Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media,” Opt. Lett. 41, 1321–1324 (2016).
[Crossref]

M. Azimipour, F. Atry, and R. Pashaie, “Calibration of digital optical phase conjugation setups based on orthonormal rectangular polynomials,” Appl. Opt. 55, 2873–2880 (2016).
[Crossref]

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21, 085001 (2016).
[Crossref]

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108, 231106 (2016).
[Crossref]

A. S. Hemphill, J. W. Tay, and L. V. Wang, “Hybridized wavefront shaping for high-speed, high-efficiency focusing through dynamic diffusive media,” J. Biomed. Opt. 21, 121502 (2016).
[Crossref]

2015 (10)

H. Ruan, M. Jang, and C. Yang, “Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light,” Nat. Commun. 6, 8968 (2015).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref]

M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, “Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin,” Biomed. Opt. Express 6, 72–85 (2015).
[Crossref]

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).
[Crossref]

I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23, 12189–12206 (2015).
[Crossref]

X. Tao, D. Bodington, M. Reinig, and J. Kubby, “High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing,” Opt. Express 23, 14168–14187 (2015).
[Crossref]

D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2, 728–735 (2015).

C. Ma, F. Zhou, Y. Liu, and L. V. Wang, “Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation,” Optica 2, 869–876 (2015).

2014 (12)

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39, 1921–1924 (2014).
[Crossref]

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22, 14054–14071 (2014).
[Crossref]

Y. Suzuki, J. W. Tay, Q. Yang, and L. V. Wang, “Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation,” Opt. Lett. 39, 3441–3444 (2014).
[Crossref]

J. W. Tay, J. Liang, and L. V. Wang, “Amplitude-masked photoacoustic wavefront shaping and application in flowmetry,” Opt. Lett. 39, 5499–5502 (2014).
[Crossref]

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1, 227–232 (2014).

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8, 931–936 (2014).
[Crossref]

H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative time-reversed ultrasonically encoded light focusing in backscattering mode,” Sci. Rep. 4, 7156 (2014).
[Crossref]

Y. Suzuki and L. V. Wang, “Frequency-swept time-reversed ultrasonically encoded optical focusing,” Appl. Phys. Lett. 105, 191108 (2014).
[Crossref]

X. Zhang and P. Kner, “Binary wavefront optimization using a genetic algorithm,” J. Opt. 16, 125704 (2014).
[Crossref]

S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” Proc. SPIE 8979, 897905 (2014).
[Crossref]

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci. Rep. 4, 3918 (2014).
[Crossref]

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

2013 (2)

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3, 1909 (2013).
[Crossref]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[Crossref]

2012 (10)

Y. Liu, C. Zhang, and L. V. Wang, “Effects of light scattering on optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 17, 126014 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep. 2, 748 (2012).
[Crossref]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
[Crossref]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
[Crossref]

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20, 15086–15092 (2012).
[Crossref]

R. Fiolka, K. Si, and M. Cui, “Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation,” Opt. Express 20, 24827–24834 (2012).
[Crossref]

2011 (4)

2010 (4)

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010).
[Crossref]

C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[Crossref]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

2008 (2)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25, 2088–2094 (2008).
[Crossref]

2007 (1)

2004 (1)

P. R. Dmochowski, B. R. Hayes-Gill, M. Clark, J. A. Crowe, M. G. Somekh, and S. P. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[Crossref]

2003 (1)

2001 (1)

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903 (2001).
[Crossref]

1995 (1)

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[Crossref]

1992 (1)

T. Kurokawa and S. Fukushima, “Spatial light modulators using ferroelectric liquid crystal,” Opt. Quantum Electron. 24, 1151–1163 (1992).
[Crossref]

1966 (1)

Akbulut, D.

Atry, F.

Azimipour, M.

Bifano, T.

Boccara, A.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Boccara, A. C.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

Bodington, D.

Bossy, E.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

Brake, J.

Caravaca-Aguirre, A. M.

Carminati, R.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Chaigne, T.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

Chandrasekaran, S. N.

S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” Proc. SPIE 8979, 897905 (2014).
[Crossref]

Chen, Y. C.

Chitnis, P. V.

Choi, W.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39, 1921–1924 (2014).
[Crossref]

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3, 1909 (2013).
[Crossref]

Chung, E.

Clark, M.

P. R. Dmochowski, B. R. Hayes-Gill, M. Clark, J. A. Crowe, M. G. Somekh, and S. P. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[Crossref]

Conkey, D. B.

Crowe, J. A.

P. R. Dmochowski, B. R. Hayes-Gill, M. Clark, J. A. Crowe, M. G. Somekh, and S. P. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[Crossref]

Cui, M.

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep. 2, 748 (2012).
[Crossref]

R. Fiolka, K. Si, and M. Cui, “Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation,” Opt. Express 20, 24827–24834 (2012).
[Crossref]

M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19, 2989–2995 (2011).
[Crossref]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010).
[Crossref]

Dasari, R. R.

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3, 1909 (2013).
[Crossref]

Daudet, L.

DiMarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref]

Dmochowski, P. R.

P. R. Dmochowski, B. R. Hayes-Gill, M. Clark, J. A. Crowe, M. G. Somekh, and S. P. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[Crossref]

Drémeau, A.

Duncan, D. D.

Farahi, S.

Feld, M. S.

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3, 1909 (2013).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

Fink, M.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Fiolka, R.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep. 2, 748 (2012).
[Crossref]

R. Fiolka, K. Si, and M. Cui, “Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation,” Opt. Express 20, 24827–24834 (2012).
[Crossref]

Fukushima, S.

T. Kurokawa and S. Fukushima, “Spatial light modulators using ferroelectric liquid crystal,” Opt. Quantum Electron. 24, 1151–1163 (1992).
[Crossref]

Gigan, S.

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).
[Crossref]

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Grabar, A. A.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref]

Grange, R.

Hayes-Gill, B. R.

P. R. Dmochowski, B. R. Hayes-Gill, M. Clark, J. A. Crowe, M. G. Somekh, and S. P. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[Crossref]

Hemphill, A. S.

A. S. Hemphill, J. W. Tay, and L. V. Wang, “Hybridized wavefront shaping for high-speed, high-efficiency focusing through dynamic diffusive media,” J. Biomed. Opt. 21, 121502 (2016).
[Crossref]

Hillman, T. R.

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3, 1909 (2013).
[Crossref]

Hoffman, S.

Horstmeyer, R.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[Crossref]

Hsieh, C.-L.

Huisman, T. J.

Jang, M.

Judkewitz, B.

M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, “Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin,” Biomed. Opt. Express 6, 72–85 (2015).
[Crossref]

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1, 227–232 (2014).

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22, 14054–14071 (2014).
[Crossref]

H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative time-reversed ultrasonically encoded light focusing in backscattering mode,” Sci. Rep. 4, 7156 (2014).
[Crossref]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref]

Katz, O.

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).
[Crossref]

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

Kim, D.

Kim, J.

Kim, K.

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Kim, M.

Kirkpatrick, S. J.

Kner, P.

X. Zhang and P. Kner, “Binary wavefront optimization using a genetic algorithm,” J. Opt. 16, 125704 (2014).
[Crossref]

Kong, F.

Krzakala, F.

Kubby, J.

Kubby, J. A.

J. A. Kubby, Adaptive Optics for Biological Imaging (CRC Press, 2013).

Kurokawa, T.

T. Kurokawa and S. Fukushima, “Spatial light modulators using ferroelectric liquid crystal,” Opt. Quantum Electron. 24, 1151–1163 (1992).
[Crossref]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Lai, P.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref]

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci. Rep. 4, 3918 (2014).
[Crossref]

Laporte, G.

Lee, K.

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Lee, K. K.

Lee, S.

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Leith, E. N.

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Leutz, W.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[Crossref]

Lev, A.

Liang, J.

Ligtenberg, H.

S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” Proc. SPIE 8979, 897905 (2014).
[Crossref]

Liu, H.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[Crossref]

Liu, L.

Liu, Y.

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Sub-Nyquist sampling boosts targeted light transport through opaque scattering media,” Optica 4, 97–102 (2017).

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through scattering media by full-polarization digital optical phase conjugation,” Opt. Lett. 41, 1130–1133 (2016).
[Crossref]

Y. Liu, C. Ma, Y. Shen, and L. V. Wang, “Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media,” Opt. Lett. 41, 1321–1324 (2016).
[Crossref]

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108, 231106 (2016).
[Crossref]

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21, 085001 (2016).
[Crossref]

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref]

C. Ma, F. Zhou, Y. Liu, and L. V. Wang, “Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation,” Optica 2, 869–876 (2015).

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8, 931–936 (2014).
[Crossref]

Y. Liu, C. Zhang, and L. V. Wang, “Effects of light scattering on optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 17, 126014 (2012).
[Crossref]

Liutkus, A.

Lu, Y.

Ma, C.

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Sub-Nyquist sampling boosts targeted light transport through opaque scattering media,” Optica 4, 97–102 (2017).

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through scattering media by full-polarization digital optical phase conjugation,” Opt. Lett. 41, 1130–1133 (2016).
[Crossref]

Y. Liu, C. Ma, Y. Shen, and L. V. Wang, “Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media,” Opt. Lett. 41, 1321–1324 (2016).
[Crossref]

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21, 085001 (2016).
[Crossref]

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108, 231106 (2016).
[Crossref]

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref]

C. Ma, F. Zhou, Y. Liu, and L. V. Wang, “Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation,” Optica 2, 869–876 (2015).

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8, 931–936 (2014).
[Crossref]

Maret, G.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[Crossref]

Martina, D.

Mathy, A.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[Crossref]

Moon, J.

Moore, J.

Morgan, S. P.

P. R. Dmochowski, B. R. Hayes-Gill, M. Clark, J. A. Crowe, M. G. Somekh, and S. P. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[Crossref]

Moser, C.

Mosk, A. P.

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[Crossref]

Papadopoulos, I. N.

Park, J.

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Park, Y.

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3, 1909 (2013).
[Crossref]

Pashaie, R.

Paxman, R.

Piestun, R.

Popoff, S.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Psaltis, D.

Pu, Y.

Reinig, M.

Ruan, H.

Schülke, C.

Sfez, B.

Shen, Y.

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Sub-Nyquist sampling boosts targeted light transport through opaque scattering media,” Optica 4, 97–102 (2017).

Y. Liu, C. Ma, Y. Shen, and L. V. Wang, “Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media,” Opt. Lett. 41, 1321–1324 (2016).
[Crossref]

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through scattering media by full-polarization digital optical phase conjugation,” Opt. Lett. 41, 1130–1133 (2016).
[Crossref]

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108, 231106 (2016).
[Crossref]

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21, 085001 (2016).
[Crossref]

Shi, J.

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108, 231106 (2016).
[Crossref]

Si, K.

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep. 2, 748 (2012).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[Crossref]

R. Fiolka, K. Si, and M. Cui, “Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation,” Opt. Express 20, 24827–24834 (2012).
[Crossref]

Silverman, R. H.

Somekh, M. G.

P. R. Dmochowski, B. R. Hayes-Gill, M. Clark, J. A. Crowe, M. G. Somekh, and S. P. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[Crossref]

Steenbergen, W.

S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” Proc. SPIE 8979, 897905 (2014).
[Crossref]

Stockbridge, C.

Suzuki, Y.

Y. Suzuki, J. W. Tay, Q. Yang, and L. V. Wang, “Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation,” Opt. Lett. 39, 3441–3444 (2014).
[Crossref]

Y. Suzuki and L. V. Wang, “Frequency-swept time-reversed ultrasonically encoded optical focusing,” Appl. Phys. Lett. 105, 191108 (2014).
[Crossref]

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci. Rep. 4, 3918 (2014).
[Crossref]

Tao, X.

Tay, J. W.

A. S. Hemphill, J. W. Tay, and L. V. Wang, “Hybridized wavefront shaping for high-speed, high-efficiency focusing through dynamic diffusive media,” J. Biomed. Opt. 21, 121502 (2016).
[Crossref]

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci. Rep. 4, 3918 (2014).
[Crossref]

Y. Suzuki, J. W. Tay, Q. Yang, and L. V. Wang, “Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation,” Opt. Lett. 39, 3441–3444 (2014).
[Crossref]

J. W. Tay, J. Liang, and L. V. Wang, “Amplitude-masked photoacoustic wavefront shaping and application in flowmetry,” Opt. Lett. 39, 5499–5502 (2014).
[Crossref]

Toussaint, K.

Upatnieks, J.

van Putten, E. G.

Vellekoop, I. M.

Vos, W. L.

Wang, D.

Wang, L. V.

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Sub-Nyquist sampling boosts targeted light transport through opaque scattering media,” Optica 4, 97–102 (2017).

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through scattering media by full-polarization digital optical phase conjugation,” Opt. Lett. 41, 1130–1133 (2016).
[Crossref]

Y. Liu, C. Ma, Y. Shen, and L. V. Wang, “Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media,” Opt. Lett. 41, 1321–1324 (2016).
[Crossref]

A. S. Hemphill, J. W. Tay, and L. V. Wang, “Hybridized wavefront shaping for high-speed, high-efficiency focusing through dynamic diffusive media,” J. Biomed. Opt. 21, 121502 (2016).
[Crossref]

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108, 231106 (2016).
[Crossref]

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21, 085001 (2016).
[Crossref]

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref]

C. Ma, F. Zhou, Y. Liu, and L. V. Wang, “Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation,” Optica 2, 869–876 (2015).

Y. Suzuki, J. W. Tay, Q. Yang, and L. V. Wang, “Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation,” Opt. Lett. 39, 3441–3444 (2014).
[Crossref]

J. W. Tay, J. Liang, and L. V. Wang, “Amplitude-masked photoacoustic wavefront shaping and application in flowmetry,” Opt. Lett. 39, 5499–5502 (2014).
[Crossref]

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8, 931–936 (2014).
[Crossref]

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci. Rep. 4, 3918 (2014).
[Crossref]

Y. Suzuki and L. V. Wang, “Frequency-swept time-reversed ultrasonically encoded optical focusing,” Appl. Phys. Lett. 105, 191108 (2014).
[Crossref]

Y. Liu, C. Zhang, and L. V. Wang, “Effects of light scattering on optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 17, 126014 (2012).
[Crossref]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[Crossref]

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903 (2001).
[Crossref]

Wang, Y. M.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref]

Xu, X.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref]

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8, 931–936 (2014).
[Crossref]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[Crossref]

Yamauchi, T.

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3, 1909 (2013).
[Crossref]

Yang, C.

H. Ruan, M. Jang, and C. Yang, “Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light,” Nat. Commun. 6, 8968 (2015).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2, 728–735 (2015).

M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, “Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin,” Biomed. Opt. Express 6, 72–85 (2015).
[Crossref]

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1, 227–232 (2014).

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22, 14054–14071 (2014).
[Crossref]

H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative time-reversed ultrasonically encoded light focusing in backscattering mode,” Sci. Rep. 4, 7156 (2014).
[Crossref]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
[Crossref]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

Yang, Q.

Yang, T. D.

Yaqoob, Z.

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3, 1909 (2013).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

Yoon, J.

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Yu, H.

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Zhang, C.

Y. Liu, C. Zhang, and L. V. Wang, “Effects of light scattering on optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 17, 126014 (2012).
[Crossref]

Zhang, X.

X. Zhang and P. Kner, “Binary wavefront optimization using a genetic algorithm,” J. Opt. 16, 125704 (2014).
[Crossref]

Zhou, E. H.

Zhou, F.

Zhou, H.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
[Crossref]

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108, 231106 (2016).
[Crossref]

Y. Suzuki and L. V. Wang, “Frequency-swept time-reversed ultrasonically encoded optical focusing,” Appl. Phys. Lett. 105, 191108 (2014).
[Crossref]

Biomed. Opt. Express (1)

Curr. Appl. Phys. (1)

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Electron. Lett. (1)

P. R. Dmochowski, B. R. Hayes-Gill, M. Clark, J. A. Crowe, M. G. Somekh, and S. P. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[Crossref]

J. Biomed. Opt. (3)

A. S. Hemphill, J. W. Tay, and L. V. Wang, “Hybridized wavefront shaping for high-speed, high-efficiency focusing through dynamic diffusive media,” J. Biomed. Opt. 21, 121502 (2016).
[Crossref]

Y. Liu, C. Zhang, and L. V. Wang, “Effects of light scattering on optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 17, 126014 (2012).
[Crossref]

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21, 085001 (2016).
[Crossref]

J. Opt. (1)

X. Zhang and P. Kner, “Binary wavefront optimization using a genetic algorithm,” J. Opt. 16, 125704 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Nat. Commun. (3)

H. Ruan, M. Jang, and C. Yang, “Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light,” Nat. Commun. 6, 8968 (2015).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref]

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref]

Nat. Methods (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[Crossref]

Nat. Photonics (8)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[Crossref]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[Crossref]

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8, 931–936 (2014).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[Crossref]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[Crossref]

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

Opt. Express (12)

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011).
[Crossref]

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20, 15086–15092 (2012).
[Crossref]

R. Fiolka, K. Si, and M. Cui, “Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation,” Opt. Express 20, 24827–24834 (2012).
[Crossref]

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22, 14054–14071 (2014).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
[Crossref]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[Crossref]

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).
[Crossref]

X. Tao, D. Bodington, M. Reinig, and J. Kubby, “High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing,” Opt. Express 23, 14168–14187 (2015).
[Crossref]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010).
[Crossref]

C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[Crossref]

I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23, 12189–12206 (2015).
[Crossref]

M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19, 2989–2995 (2011).
[Crossref]

Opt. Lett. (7)

Opt. Quantum Electron. (1)

T. Kurokawa and S. Fukushima, “Spatial light modulators using ferroelectric liquid crystal,” Opt. Quantum Electron. 24, 1151–1163 (1992).
[Crossref]

Optica (4)

Phys. Rev. Lett. (2)

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903 (2001).
[Crossref]

Physica B (1)

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[Crossref]

Proc. SPIE (1)

S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” Proc. SPIE 8979, 897905 (2014).
[Crossref]

Sci. Rep. (4)

J. W. Tay, P. Lai, Y. Suzuki, and L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media,” Sci. Rep. 4, 3918 (2014).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep. 2, 748 (2012).
[Crossref]

H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative time-reversed ultrasonically encoded light focusing in backscattering mode,” Sci. Rep. 4, 7156 (2014).
[Crossref]

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3, 1909 (2013).
[Crossref]

Other (2)

J. A. Kubby, Adaptive Optics for Biological Imaging (CRC Press, 2013).

Hamamatsu Photonics, Phase spatial light modulator LCOS-SLM, https://www.hamamatsu.com/resources/pdf/ssd/e12_handbook_lcos_slm.pdf .

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (3376 KB)      Supplement 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Comparison of different wavefront modulation schemes in wavefront shaping. PBR, peak-to-background ratio.
Fig. 2.
Fig. 2. DOPC using a ferroelectric liquid crystal based spatial light modulator (FLC-SLM). (a) Each FLC-SLM pixel acts as a half-wave plate. PBS, polarizing beamsplitter. (b) Optic axis orientation can be switched between two states, e1 and e2, to achieve binary-phase modulation of the incident light Ein. θ=22.5°. (c) Schematic of the setup during wavefront recording for DOPC-based light focusing through scattering media. BB, beam block; BS, beamsplitter; CL, camera lens; DOPC, digital optical phase conjugation; HWP, half-wave plate; M, mirror; MLS, motorized linear stage; MS, mechanical shutter; PC, personal computer; PCIe ×4, peripheral component interconnect express interface with four lanes; SM, scattering medium; S, sample beam; S*, phase-conjugated sample beam; and Rr and Rp, reference beams for wavefront recording and playback. The distance between SM and L6 (f=100  mm) is 40 cm. (d) Schematic of the setup during wavefront playback for DOPC-based light focusing through scattering media. (e) Schematic of the setup for focusing light inside a scattering medium comprising two pieces of chicken tissue with ultrasound-guided DOPC. A complete schematic can be obtained by replacing the components enclosed in the dashed box in (c) and (d) with the components enclosed in the dashed box in (e). The acousto-optic modulator (AOM) is used only during wavefront recording. During wavefront playback, to verify that light is focused to the ultrasonic (US) focus, a beamsplitter (BS) reflects the focal pattern onto Camera2 (Cam2). To control the speckle correlation time on the SLM plane, a MLS moves the second piece of tissue at different speeds during the entire DOPC process (including both wavefront measurement and playback). The distance between the two pieces of tissue is 32 mm, and the distance between the ultrasonic focus and the tissue on the right side is 20 mm.
Fig. 3.
Fig. 3. Workflow of TRUE optical focusing inside scattering media. A rolling shutter was used for Camera1, that is, neighboring rows are exposed successively with a 9.17 μs delay in the start times. The shutter for S (LS6, Vincent Associates) has a full-aperture transfer time of 0.8 ms, while the shutters for Rr (VSR14, Vincent Associates) and Rp (VS14, Vincent Associates) have full-aperture transfer times of 1.5 ms, because of larger aperture sizes (14 mm). FG, function generator; Ch, channel; RF, radio-frequency.
Fig. 4.
Fig. 4. System performance quantification. (a) Image of the DOPC focus after light passed through an opal diffuser with a 4π scattering angle. The PBR is 5.1×103. Scale bar, 100 μm. (b) Focal intensity distribution along the vertical direction.
Fig. 5.
Fig. 5. Focusing light through moving scattering tissue. (a) Correlation coefficient between the speckle patterns as a function of time, when a 3 mm thick slice of chicken tissue was moved at 0.01 mm/s. Speckle correlation time τc=1.3×102  ms was determined for this speed. (b) Relationship between the speckle correlation time and the tissue movement speed. Errors bars are not plotted due to indiscernible lengths in the figure. (c) Images of the DOPC foci after light passed through the tissue, when the tissue was moved at different speeds. Scale bar, 100 μm. (d) PBR as a function of the speckle correlation time. The error bar shows the standard deviation of three measurements.
Fig. 6.
Fig. 6. Focusing light inside a dynamic scattering medium comprised of two pieces of chicken tissue. (a) Images of the foci achieved by TRUE focusing at different speckle correlation times (τc). Scale bar, 500 μm. (b) The PBR as a function of the speckle correlation time. The error bar shows the standard deviation of three measurements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

φS(r)={0,if  I(r)IR(r)π,if  I(r)<IR(r),
φT(r)={0,if  I1(r)I2(r)π,if  I1(r)<I2(r),

Metrics