Abstract

Pyroelectric materials enable the construction of high-performance yet low-cost and uncooled detectors throughout the infrared spectrum. These devices have been used as broadband sensors and, when combined with an interferometric element or filter, can provide spectral selectivity. Here we propose the concept of and demonstrate a new architecture that uses a multifunctional metamaterial absorber to directly absorb the incident longwave IR (8–12 μm) energy in a thin-film lithium niobate layer and also to function as the contacts for the two-terminal detector. Our device achieves a narrowband (560 nm FWHM at 10.73 μm), yet highly efficient (86%) absorption. The metamaterial creates high field concentration, reducing temperature fluctuation noise, and lowering device capacitance and loss tangent noise. The metamaterial design paradigm applied to detectors thus results in a very fast planar device with a thermal time constant of 28.9 ms with a room temperature detectivity, D*, of 107  cmW/Hz.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-dielectric metasurface absorbers for uncooled terahertz imaging

Kebin Fan, Jonathan Y. Suen, Xinyu Liu, and Willie J. Padilla
Optica 4(6) 601-604 (2017)

Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode

Ivonne Escorcia, James Grant, John Gough, and David R. S. Cumming
Opt. Lett. 41(14) 3261-3264 (2016)

Ultrafast terahertz detectors based on three-dimensional meta-atoms

B. Paulillo, S. Pirotta, H. Nong, P. Crozat, S. Guilet, G. Xu, S. Dhillon, L. H. Li, A. G. Davies, E. H. Linfield, and R. Colombelli
Optica 4(12) 1451-1456 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, Opt. Express 11, 2549 (2003).
    [Crossref]
  2. P. Colarusso, L. H. Kidder, I. W. Levin, J. C. Fraser, J. F. Arens, and E. N. Lewis, Appl. Spectrosc. 52, 106A (1998).
    [Crossref]
  3. R. Bhargava, Appl. Spectrosc. 66, 1091 (2012).
    [Crossref]
  4. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light Sci. Appl. 1, e24 (2012).
    [Crossref]
  5. D. Manolakis, S. Golowich, and R. S. DiPietro, IEEE Signal Process. Mag. 31(4), 120 (2014).
    [Crossref]
  6. H. Burke and G. A. Shaw, Lincoln Lab. J. 14, 3 (2003).
  7. S. Bauer, S. Bauer-Gogonea, and B. Ploss, Appl. Phys. B 54, 544 (1992).
    [Crossref]
  8. T. Maier and H. Brückl, Opt. Lett. 34, 3012 (2009).
    [Crossref]
  9. J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, Meas. Sci. Technol. 14, 916 (2003).
    [Crossref]
  10. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Phys. Rev. B 79, 125104 (2009).
    [Crossref]
  11. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
    [Crossref]
  12. C. M. Watts, X. Liu, and W. J. Padilla, Adv. Mater. 24, OP98 (2012).
  13. V. Stenger, M. Shnider, S. Sriram, D. Dooley, and M. Stout, Proc. SPIE 8261, 82610Q (2012).
    [Crossref]
  14. P. Muralt, Rep. Prog. Phys. 64, 1339 (2001).
    [Crossref]
  15. Ophir-Spiricon LLC, Pyrocam IV User Guide (2015).
  16. Gentec-EO, Discrete Pyros Catalogue (2016), p. 154
  17. K. K. Wong, ed., Properties of Lithium Niobate (2002).
  18. A. Van der Ziel and S. T. Liu, Physica 61, 589 (1972).
    [Crossref]
  19. T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, ACS Photon. 3, 1271 (2016).
    [Crossref]
  20. S. E. Stokowski, Appl. Phys. Lett. 29, 393 (1976).
    [Crossref]
  21. S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, Sens. Actuators A. 37, 497 (1993).
    [Crossref]

2016 (1)

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, ACS Photon. 3, 1271 (2016).
[Crossref]

2014 (1)

D. Manolakis, S. Golowich, and R. S. DiPietro, IEEE Signal Process. Mag. 31(4), 120 (2014).
[Crossref]

2012 (4)

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light Sci. Appl. 1, e24 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, Adv. Mater. 24, OP98 (2012).

V. Stenger, M. Shnider, S. Sriram, D. Dooley, and M. Stout, Proc. SPIE 8261, 82610Q (2012).
[Crossref]

R. Bhargava, Appl. Spectrosc. 66, 1091 (2012).
[Crossref]

2010 (1)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

2009 (2)

T. Maier and H. Brückl, Opt. Lett. 34, 3012 (2009).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Phys. Rev. B 79, 125104 (2009).
[Crossref]

2003 (3)

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, Meas. Sci. Technol. 14, 916 (2003).
[Crossref]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, Opt. Express 11, 2549 (2003).
[Crossref]

H. Burke and G. A. Shaw, Lincoln Lab. J. 14, 3 (2003).

2001 (1)

P. Muralt, Rep. Prog. Phys. 64, 1339 (2001).
[Crossref]

1998 (1)

1993 (1)

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, Sens. Actuators A. 37, 497 (1993).
[Crossref]

1992 (1)

S. Bauer, S. Bauer-Gogonea, and B. Ploss, Appl. Phys. B 54, 544 (1992).
[Crossref]

1976 (1)

S. E. Stokowski, Appl. Phys. Lett. 29, 393 (1976).
[Crossref]

1972 (1)

A. Van der Ziel and S. T. Liu, Physica 61, 589 (1972).
[Crossref]

Arens, J. F.

Bauer, S.

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, Sens. Actuators A. 37, 497 (1993).
[Crossref]

S. Bauer, S. Bauer-Gogonea, and B. Ploss, Appl. Phys. B 54, 544 (1992).
[Crossref]

Bauer-Gogonea, S.

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, Sens. Actuators A. 37, 497 (1993).
[Crossref]

S. Bauer, S. Bauer-Gogonea, and B. Ploss, Appl. Phys. B 54, 544 (1992).
[Crossref]

Becker, W.

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, Sens. Actuators A. 37, 497 (1993).
[Crossref]

Bhargava, R.

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Phys. Rev. B 79, 125104 (2009).
[Crossref]

Brückl, H.

Burke, H.

H. Burke and G. A. Shaw, Lincoln Lab. J. 14, 3 (2003).

Chen, K.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, ACS Photon. 3, 1271 (2016).
[Crossref]

Colarusso, P.

Dao, T. D.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, ACS Photon. 3, 1271 (2016).
[Crossref]

DiPietro, R. S.

D. Manolakis, S. Golowich, and R. S. DiPietro, IEEE Signal Process. Mag. 31(4), 120 (2014).
[Crossref]

Dooley, D.

V. Stenger, M. Shnider, S. Sriram, D. Dooley, and M. Stout, Proc. SPIE 8261, 82610Q (2012).
[Crossref]

Eppeldauer, G.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, Meas. Sci. Technol. 14, 916 (2003).
[Crossref]

Fettig, R.

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, Sens. Actuators A. 37, 497 (1993).
[Crossref]

Fraser, J. C.

Gawarikar, A. S.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light Sci. Appl. 1, e24 (2012).
[Crossref]

Golowich, S.

D. Manolakis, S. Golowich, and R. S. DiPietro, IEEE Signal Process. Mag. 31(4), 120 (2014).
[Crossref]

Inoue, H.

Ishii, S.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, ACS Photon. 3, 1271 (2016).
[Crossref]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Phys. Rev. B 79, 125104 (2009).
[Crossref]

Kawase, K.

Kidder, L. H.

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Phys. Rev. B 79, 125104 (2009).
[Crossref]

Lehman, J.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, Meas. Sci. Technol. 14, 916 (2003).
[Crossref]

Levin, I. W.

Lewis, E. N.

Liu, S. T.

A. Van der Ziel and S. T. Liu, Physica 61, 589 (1972).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, Adv. Mater. 24, OP98 (2012).

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Maier, T.

Manolakis, D.

D. Manolakis, S. Golowich, and R. S. DiPietro, IEEE Signal Process. Mag. 31(4), 120 (2014).
[Crossref]

Muralt, P.

P. Muralt, Rep. Prog. Phys. 64, 1339 (2001).
[Crossref]

Nabatame, T.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, ACS Photon. 3, 1271 (2016).
[Crossref]

Nagao, T.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, ACS Photon. 3, 1271 (2016).
[Crossref]

Ogawa, Y.

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, Adv. Mater. 24, OP98 (2012).

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Phys. Rev. B 79, 125104 (2009).
[Crossref]

Pannell, C.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, Meas. Sci. Technol. 14, 916 (2003).
[Crossref]

Ploss, B.

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, Sens. Actuators A. 37, 497 (1993).
[Crossref]

S. Bauer, S. Bauer-Gogonea, and B. Ploss, Appl. Phys. B 54, 544 (1992).
[Crossref]

Ruppel, W.

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, Sens. Actuators A. 37, 497 (1993).
[Crossref]

Sawada, T.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, ACS Photon. 3, 1271 (2016).
[Crossref]

Shaw, G. A.

H. Burke and G. A. Shaw, Lincoln Lab. J. 14, 3 (2003).

Shea, R. P.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light Sci. Appl. 1, e24 (2012).
[Crossref]

Shnider, M.

V. Stenger, M. Shnider, S. Sriram, D. Dooley, and M. Stout, Proc. SPIE 8261, 82610Q (2012).
[Crossref]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Phys. Rev. B 79, 125104 (2009).
[Crossref]

Sriram, S.

V. Stenger, M. Shnider, S. Sriram, D. Dooley, and M. Stout, Proc. SPIE 8261, 82610Q (2012).
[Crossref]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Stenger, V.

V. Stenger, M. Shnider, S. Sriram, D. Dooley, and M. Stout, Proc. SPIE 8261, 82610Q (2012).
[Crossref]

Stokowski, S. E.

S. E. Stokowski, Appl. Phys. Lett. 29, 393 (1976).
[Crossref]

Stout, M.

V. Stenger, M. Shnider, S. Sriram, D. Dooley, and M. Stout, Proc. SPIE 8261, 82610Q (2012).
[Crossref]

Sugavaneshwar, R. P.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, ACS Photon. 3, 1271 (2016).
[Crossref]

Talghader, J. J.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light Sci. Appl. 1, e24 (2012).
[Crossref]

Theocharous, E.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, Meas. Sci. Technol. 14, 916 (2003).
[Crossref]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Phys. Rev. B 79, 125104 (2009).
[Crossref]

Van der Ziel, A.

A. Van der Ziel and S. T. Liu, Physica 61, 589 (1972).
[Crossref]

von Münch, W.

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, Sens. Actuators A. 37, 497 (1993).
[Crossref]

Wada, Y.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, ACS Photon. 3, 1271 (2016).
[Crossref]

Watanabe, Y.

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, Adv. Mater. 24, OP98 (2012).

Yokoyama, T.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, ACS Photon. 3, 1271 (2016).
[Crossref]

ACS Photon. (1)

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, ACS Photon. 3, 1271 (2016).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, Adv. Mater. 24, OP98 (2012).

Appl. Phys. B (1)

S. Bauer, S. Bauer-Gogonea, and B. Ploss, Appl. Phys. B 54, 544 (1992).
[Crossref]

Appl. Phys. Lett. (1)

S. E. Stokowski, Appl. Phys. Lett. 29, 393 (1976).
[Crossref]

Appl. Spectrosc. (2)

IEEE Signal Process. Mag. (1)

D. Manolakis, S. Golowich, and R. S. DiPietro, IEEE Signal Process. Mag. 31(4), 120 (2014).
[Crossref]

Light Sci. Appl. (1)

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light Sci. Appl. 1, e24 (2012).
[Crossref]

Lincoln Lab. J. (1)

H. Burke and G. A. Shaw, Lincoln Lab. J. 14, 3 (2003).

Meas. Sci. Technol. (1)

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, Meas. Sci. Technol. 14, 916 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Phys. Rev. B 79, 125104 (2009).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Physica (1)

A. Van der Ziel and S. T. Liu, Physica 61, 589 (1972).
[Crossref]

Proc. SPIE (1)

V. Stenger, M. Shnider, S. Sriram, D. Dooley, and M. Stout, Proc. SPIE 8261, 82610Q (2012).
[Crossref]

Rep. Prog. Phys. (1)

P. Muralt, Rep. Prog. Phys. 64, 1339 (2001).
[Crossref]

Sens. Actuators A. (1)

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, Sens. Actuators A. 37, 497 (1993).
[Crossref]

Other (3)

Ophir-Spiricon LLC, Pyrocam IV User Guide (2015).

Gentec-EO, Discrete Pyros Catalogue (2016), p. 154

K. K. Wong, ed., Properties of Lithium Niobate (2002).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1164 KB)      Supplemental Document, Copy Editing version

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Electron micrograph of metamaterial top surface, (b) schematic of unit cell for 10.73 μm detector, and (c) micrograph of detector pixel consisting of 28 × 28 unit cells.

Fig. 2.
Fig. 2.

(a) Simulated (black curve) and measured (red curve) optical absorbance spectra of a typical metamaterial detector structure. (b) Measured optical absorption spectra of several MMDs. (c) Detector response (blue curve) of MMD shows good correspondence with the measured optical absorbance (red curve). Also shown is the detector response of a non-resonant grid (green curve), showing that metamaterial resonance is necessary to absorb energy into the pyroelectric element.

Fig. 3.
Fig. 3.

(a) Measured responsivity and NEP versus modulation frequency. Voltage is referenced at the element (before amplifier). Bars on responsivity show standard deviation. (b) Specific detectivity of the metamaterial detector.

Fig. 4.
Fig. 4.

Simulated optical power absorption density, temperature, and DC electric field through the MMD structure at resonance. One-half watt of vertically polarized IR energy is applied to the unit cell. The multifunctional nature of the metamaterial enables the DC field to directly overlap much of the thermal excitation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NEP lim = 16 k b A σ T 0 5 ,

Metrics