Abstract

Until now, the field of mid-infrared fiber laser research has been constrained by the limitation imposed by the Stokes efficiency limit. The conversion of high-power diode light emission operating at near-infrared wavelengths into mid-infrared light invariably results in the deposition of significant amounts of heat in the fiber. This issue is compounded by the fact that mid-infrared transmitting glasses are thermomechanically weak, which means scaling the output power has been a longstanding challenge. In this report, we show that by cascading the adjacent transitions of the erbium ion at 2.8 and 1.6 μm in combination with a low-loss fluoride fiber, the slope efficiency for emission at 2.8 μm can reach 50%, thus exceeding the Stokes limit by 15%. We also show that by highly resonating the 1.6 μm transition, a highly non-resonant excited-state absorption process efficiently recycles the excitation back to the upper laser level of the mid-infrared transition. This demonstration represents a significant advancement for the field that paves the way for future demonstrations that will exceed the 100 W power level.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient mid-infrared dysprosium fiber laser

Matthew R. Majewski and Stuart D. Jackson
Opt. Lett. 41(10) 2173-2176 (2016)

High-power diode-pumped fiber laser operating at 3 μm

Jianfeng Li, Darren D. Hudson, and Stuart D. Jackson
Opt. Lett. 36(18) 3642-3644 (2011)

Directly diode-pumped holmium fiber lasers

Stuart D. Jackson, F. Bugge, and G. Erbert
Opt. Lett. 32(17) 2496-2498 (2007)

References

  • View by:
  • |
  • |
  • |

  1. F. K. Tittel, D. Richter, and A. Fried, in Solid-state mid-infrared laser sources, I. Sorokina and K. Vodopyanov, eds. (Springer, 2003), paper 458.
  2. M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, Lasers Surg. Med. 26, 491 (2000).
    [Crossref]
  3. H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, Proc. SPIE 5615, 27 (2004).
    [Crossref]
  4. D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010).
    [Crossref]
  5. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, Opt. Lett. 36, 1104 (2011).
    [Crossref]
  6. S. Tokita, M. Murakami, S. Shimizu, M. I. Hashida, and S. Sakabe, Opt. Lett. 34, 3062 (2009).
    [Crossref]
  7. V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, Opt. Lett. 40, 2882 (2015).
    [Crossref]
  8. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
    [Crossref]
  9. S. D. Jackson, Electron. Lett. 45, 830 (2009).
    [Crossref]
  10. J. Li, L. Wang, H. Luo, J. Xie, and Y. Liu, IEEE Photon. Technol. Lett. 28, 673 (2016).
    [Crossref]
  11. M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 38, 162 (2002).
    [Crossref]
  12. V. Fortin, F. Maes, M. Bernier, S. T. Bah, M. D’Auteuil, and R. Vallée, Opt. Lett. 41, 559 (2016).
    [Crossref]
  13. S. Colin, E. Contesse, P. Le Boudec, G. Stephan, and F. Sanchez, Opt. Lett. 21, 1987 (1996).
    [Crossref]
  14. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, Opt. Lett. 32, 454 (2007).
    [Crossref]
  15. N. Caron, M. Bernier, D. Faucher, and R. Vallée, Opt. Express 20, 22188 (2012).
    [Crossref]
  16. Y. D. Huang, M. Mortier, and F. Auzel, Opt. Mater. 17, 501 (2001).
    [Crossref]
  17. J. Koetke and G. Huber, Appl. Phys. B 61, 151 (1995).
    [Crossref]
  18. S. D. Jackson, Nat. Photonics 6, 423 (2012).
    [Crossref]

2016 (2)

J. Li, L. Wang, H. Luo, J. Xie, and Y. Liu, IEEE Photon. Technol. Lett. 28, 673 (2016).
[Crossref]

V. Fortin, F. Maes, M. Bernier, S. T. Bah, M. D’Auteuil, and R. Vallée, Opt. Lett. 41, 559 (2016).
[Crossref]

2015 (1)

2012 (2)

2011 (1)

2010 (1)

2009 (2)

2007 (1)

2004 (1)

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, Proc. SPIE 5615, 27 (2004).
[Crossref]

2002 (1)

M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 38, 162 (2002).
[Crossref]

2001 (1)

Y. D. Huang, M. Mortier, and F. Auzel, Opt. Mater. 17, 501 (2001).
[Crossref]

2000 (2)

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
[Crossref]

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, Lasers Surg. Med. 26, 491 (2000).
[Crossref]

1996 (1)

1995 (1)

J. Koetke and G. Huber, Appl. Phys. B 61, 151 (1995).
[Crossref]

Androz, G.

Auzel, F.

Y. D. Huang, M. Mortier, and F. Auzel, Opt. Mater. 17, 501 (2001).
[Crossref]

Bah, S. T.

Bekman, H. H. P. T.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, Proc. SPIE 5615, 27 (2004).
[Crossref]

Bernier, M.

Caron, N.

Chin, S. L.

Clarkson, W. A.

Colin, S.

Contesse, E.

D’Auteuil, M.

Dickinson, M. R.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, Lasers Surg. Med. 26, 491 (2000).
[Crossref]

Faucher, D.

Fortin, V.

Fried, A.

F. K. Tittel, D. Richter, and A. Fried, in Solid-state mid-infrared laser sources, I. Sorokina and K. Vodopyanov, eds. (Springer, 2003), paper 458.

Golding, P. S.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
[Crossref]

Hashida, M. I.

Huang, Y. D.

Y. D. Huang, M. Mortier, and F. Auzel, Opt. Mater. 17, 501 (2001).
[Crossref]

Huber, G.

J. Koetke and G. Huber, Appl. Phys. B 61, 151 (1995).
[Crossref]

Jackson, S. D.

S. D. Jackson, Nat. Photonics 6, 423 (2012).
[Crossref]

S. D. Jackson, Electron. Lett. 45, 830 (2009).
[Crossref]

M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 38, 162 (2002).
[Crossref]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
[Crossref]

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, Lasers Surg. Med. 26, 491 (2000).
[Crossref]

King, T. A.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, Lasers Surg. Med. 26, 491 (2000).
[Crossref]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
[Crossref]

Koetke, J.

J. Koetke and G. Huber, Appl. Phys. B 61, 151 (1995).
[Crossref]

Le Boudec, P.

Li, J.

J. Li, L. Wang, H. Luo, J. Xie, and Y. Liu, IEEE Photon. Technol. Lett. 28, 673 (2016).
[Crossref]

Liu, Y.

J. Li, L. Wang, H. Luo, J. Xie, and Y. Liu, IEEE Photon. Technol. Lett. 28, 673 (2016).
[Crossref]

Luo, H.

J. Li, L. Wang, H. Luo, J. Xie, and Y. Liu, IEEE Photon. Technol. Lett. 28, 673 (2016).
[Crossref]

Maes, F.

Mortier, M.

Y. D. Huang, M. Mortier, and F. Auzel, Opt. Mater. 17, 501 (2001).
[Crossref]

Murakami, M.

Nilsson, J.

Pierce, M. C.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, Lasers Surg. Med. 26, 491 (2000).
[Crossref]

Pollnau, M.

M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 38, 162 (2002).
[Crossref]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
[Crossref]

Richardson, D. J.

Richter, D.

F. K. Tittel, D. Richter, and A. Fried, in Solid-state mid-infrared laser sources, I. Sorokina and K. Vodopyanov, eds. (Springer, 2003), paper 458.

Sakabe, S.

Saliminia, A.

Sanchez, F.

Schleijpen, R.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, Proc. SPIE 5615, 27 (2004).
[Crossref]

Sheng, Y.

Shimizu, S.

Sloan, P.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, Lasers Surg. Med. 26, 491 (2000).
[Crossref]

Stephan, G.

Tittel, F. K.

F. K. Tittel, D. Richter, and A. Fried, in Solid-state mid-infrared laser sources, I. Sorokina and K. Vodopyanov, eds. (Springer, 2003), paper 458.

Tokita, S.

Vallée, R.

van den Heuvel, J. C.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, Proc. SPIE 5615, 27 (2004).
[Crossref]

van Putten, F. J. M.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, Proc. SPIE 5615, 27 (2004).
[Crossref]

Wang, L.

J. Li, L. Wang, H. Luo, J. Xie, and Y. Liu, IEEE Photon. Technol. Lett. 28, 673 (2016).
[Crossref]

Xie, J.

J. Li, L. Wang, H. Luo, J. Xie, and Y. Liu, IEEE Photon. Technol. Lett. 28, 673 (2016).
[Crossref]

Appl. Phys. B (1)

J. Koetke and G. Huber, Appl. Phys. B 61, 151 (1995).
[Crossref]

Electron. Lett. (1)

S. D. Jackson, Electron. Lett. 45, 830 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 38, 162 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Li, L. Wang, H. Luo, J. Xie, and Y. Liu, IEEE Photon. Technol. Lett. 28, 673 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Lasers Surg. Med. (1)

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, Lasers Surg. Med. 26, 491 (2000).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, Nat. Photonics 6, 423 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Opt. Mater. (1)

Y. D. Huang, M. Mortier, and F. Auzel, Opt. Mater. 17, 501 (2001).
[Crossref]

Phys. Rev. B (1)

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
[Crossref]

Proc. SPIE (1)

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, Proc. SPIE 5615, 27 (2004).
[Crossref]

Other (1)

F. K. Tittel, D. Richter, and A. Fried, in Solid-state mid-infrared laser sources, I. Sorokina and K. Vodopyanov, eds. (Springer, 2003), paper 458.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1655 KB)      Supplemental Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Partial energy level diagram of the relevant energy states of the erbium ions in fluoride glasses. ESA 2 corresponds to the ESA process introduced in this Letter.

Fig. 2.
Fig. 2.

Experimental setup of the cascade laser operating at 2.8 and 1.6    μm that was used to test the performance against different gain fiber lengths (3, 7, and 10 m). Fresnel reflection was used for feedback. HR-DM, highly reflective dichroic mirror; PD, pump diode.

Fig. 3.
Fig. 3.

Measured output power with respect to the launched and absorbed pump powers for cavity lengths of (a), (b) 3 m, (c), (d) 7 m, and (e), (f) 10 m. The black and red dots, respectively, refer to 1.6 and 2.8 μm emissions.

Fig. 4.
Fig. 4.

Experimental setup of the optimized cascade laser operating at 2.825 and 1.614 μm. The cavity is based on a 21 m gain fiber and includes FBGs. HR-DM, highly reflective dichroic mirror at 1.6 μm; RPS, residual pump stripper; PD, pump diode.

Fig. 5.
Fig. 5.

Measured output powers at 1.6 and 2.8 μm with respect to absorbed pump power for the 21 m fiber length.

Fig. 6.
Fig. 6.

Absorption spectrum of a 90 cm length of the 1 mol. % Er 3 + -doped fluoride fiber between 1.55 and 1.80 μm for varying launched pump powers from 0 to 3.2 W.

Metrics